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EXTENDED ADMISSIBLE FUNCTIONS
AND GAUSSIAN LIMITING DISTRIBUTIONS

MICHAEL DRMOTA, BERNHARD GITTENBERGER, AND THOMAS KLAUSNER

Abstract. We consider an extension of Hayman’s notion of admissibility to
bivariate generating functions f(z, u) that have the property that the coeffi-
cients ank satisfy a central limit theorem. It is shown that these admissible
functions have certain closure properties. Thus, there is a large class of func-
tions for which it is possible to check this kind of admissibility automatically.
This is realized with help of a MAPLE program that is also presented. We
apply this concept to various combinatorial examples.

1. Introduction

When counting objects with two characteristics (e.g., size n and another param-
eter k: ank) one usually expects that there exists the limiting distribution of the
random variables Xn defined by

P [Xn = k] =
ank

an

(where an =
∑
k

ank). In many cases this limiting distribution is Gaussian. More

precisely, there exist sequences µn and σn (with σn → ∞) with∑
k≤µn+xσn

ank = anΦ(x) + o(an)

as n → ∞, where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2 dt.

The purpose of this paper is to present a concept that allows one to decide this
question directly by looking at the corresponding generating function

f(z, u) =
∑
n,k

ankznuk.

There are good reasons for considering generating functions. First of all, there
are lots of (combinatorial) examples where the corresponding (bivariate) generating
function is easy to establish. For example the coefficients of the generating function

f(z, u) = eu(ez−1)
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are the Stirling numbers of the second kind Snk that count the number of partitions
of k sets of a set of size n.

Second, the generating function f(z, u) encodes certain characteristics of Xn in
a proper way. Expected value EXn and variance VarXn are given by

EXn =
[zn]fu(z, 1)
[zn]f(z, 1)

and

VarXn =
[zn]fuu(z, 1) + fu(z, 1) − (fu(z, 1))2

[zn]f(z, 1)
,

where fu denotes the derivative of f with respect to u. Furthermore, the moment
generating function mn(t) = E etXn is given by

mn(t) =
[zn]f(z, et)
[zn]f(z, 1)

.

There are numerous results on Gaussian limiting distributions related to the
shape of generating functions. For instance, if the coefficients [zn]f(z, u) behave
like a power of a function in u, there are results by Bender and Richmond [BR83]
and Gao and Richmond [GR92]. Extensions are due to Drmota [Drm94], Gardy
[Gar95] (powers of functions), and Hwang [Hwa96, Hwa98] (so-called quasi-powers).
Generating functions related to components of combinatorial constructions have
been investigated by Flajolet and Soria [FS90, FS93].

We will examine a different approach: for example, if f(z, 1), fu(z, 1) and
fuu(z, 1) are all Hayman-admissible functions (see [Hay56]), for which the asymp-
totic expansion of the coefficients is known, then it is possible to get an asymptotic
relation of an = [zn]f(z, 1) and consequently of EXn and VarXn. One advantage
of the class of Hayman-admissible functions is the presence of strong closure prop-
erties which are easy to test with MAPLE. The closure properties say that from a
basic set of admissible functions (for which one has to verify that the conditions for
Hayman-admissibility are fulfilled) one automatically gets a large class of composite
functions that are Hayman-admissible as well.

There have been attempts to extend Hayman’s concept: one is due to Harris and
Schoenfeld [HS68] in order to get full expansions for the coefficients. Bender and
Richmond [BR86, BR96] defined admissibility for functions in several variables and
obtained a multidimensional normal law for the coefficients.

However, in order to prove a central limit theorem for the random variables
defined above and to establish sufficiently strong closure properties for automatic
treatment as well, we need a different concept. In the next section, we define the
concept of extended admissibility and present the main results that can be proven
for such functions. Section 3 gives a description of an implementation of our results
in MAPLE. In section 4 we present some applications mainly related to set partition
problems. The last section is devoted to the proofs.

2. Main results

We will now present the basic definition. The aim is to follow Hayman [Hay56] as
closely as possible, which will imply f(z, 1) to be Hayman-admissible, and to require
as little as possible for the behaviour of f with respect to the second argument.
This results in the following definition.
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Definition 1. A function f(z, u) =
∑

n,k≥0 ankznuk is called extended admissible
or e-admissible if there exists 0 < R ≤ ∞ such that the following conditions are
satisfied:

(1) f(z, u) is analytic in ∆R,ζ := {(z, u) : |z| < R, |u| < 1 + ζ}, where ζ > 0,
and for some R0 < R we have

f(r, 1) > 0, R0 < r < R.

(2) Set

a(z, u) = z
fz(z, u)
f(z, u)

,

b(z, u) = zaz(z, u) = z
fz(z, u)
f(z, u)

+ z2 fzz(z, u)
f(z, u)

− z2

(
fz(z, u)
f(z, u)

)2

,

ā(z, u) = u
fu(z, u)
f(z, u)

, b̄(z, u) = uāu(z, u), c(z, u) = uau(z, u),

and

ε(r) = K

(
b̄(r, 1) − c(r, 1)2

b(r, 1)

)−1/2

,

where K > 0 is an arbitrary constant. Then, for each choice of K > 0 there
exists a function δ(r) : (R0, R) → (0, π) such that for R0 < r < R we have

f
(
reiθ, u

)
∼ f(r, u) exp

(
iθa(r, u) − θ2

2
b(r, u)

)
, as r → R,

uniformly for |θ| ≤ δ(r) and u ∈ [1 − ε(r), 1 + ε(r)].
(3) For R0 < r < R we have

f
(
reiθ, u

)
= o

(
f(r, u)√
b(r, u)

)
, as r → R,

uniformly for δ(r) ≤ |θ| ≤ π and u ∈ [1 − ε(r), 1 + ε(r)].
(4) For r → R we have b(r, 1) → ∞.
(5) b(r, u) ∼ b(r, 1) for r → R, uniformly for u ∈ [1 − ε(r), 1 + ε(r)].
(6) a(r, u) = a(r, 1) + c(r, 1)(u − 1) + O

(
c(r, 1)(u − 1)2

)
for r ∈ (R0, R) and

u ∈ [1 − ε(r), 1 + ε(r)].
(7) ā(r, u) = O (ā(r, 1)) and b̄(r, u) = O

(
b̄(r, 1)

)
for all u in an arbitrary but

fixed complex neighbourhood of 1 and all r.
(8) b̄(r, 1) − c(r,1)2

b(r,1) → ∞ as r → R.
(9) ε(r)3b̄(r, 1) → 0 for r → R.

(10) b̄(r, 1) = O
(
ā(r, 1)2

)
and ā(r, 1) = O (f(r, 1)η) for every η > 0.

Remark. Note that this definition implies that functions f(z, u) that are e-admis-
sible in some ∆R,ζ (in symbols f ∈ ER) are Hayman admissible (H-admissible, in
symbols ∈ HR) in the first variable, i.e.,

f(z, u) ∈ ER =⇒ f(z, 1) ∈ HR.

This follows from the fact that assumptions (1)–(5) actually define Hayman admis-
sibility uniformly in u. In particular, this means that the analog of (10) for a and
b is true by [Hay56, Lemma 2]: we have

(2.1) b(r, 1) = o
(
a(r, 1)2

)
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and for every η > 0, the estimates

(2.2) a(r, 1) = O (f(r, 1)η) and b(r, 1) = O (f(r, 1)η)

hold.

Furthermore, Hayman’s result applies for f(z, 1) and because of uniformity in u
it carries over to u ∈ [1 − ε(r), 1 + ε(r)]. We get

Theorem 1. Let f(z, u) ∈ ER. Then as r → R we have

[zn]f(z, u) =
f(r, u)

rn
√

2πb(r, u)

(
exp

(
− (a(r, u) − n)2

2b(r, u)

)
+ o(1)

)
,

uniformly in n and u ∈ [1 − ε(r), 1 + ε(r)].

As a consequence of this theorem we can prove

Theorem 2. Let f(z, u) ∈ ER such that for sufficiently large n all coefficients ank

are nonnegative. Xn denotes a sequence of random variables satisfying

P [Xn = k] =
ank

an
.

Then the following central limit theorem holds:

(2.3) Yn :=
Xn − ā(rn, 1)√
|B(rn, 1)|/b(rn, 1)

→ N (0, 1),

where rn is the positive solution of a(r, 1) = n and |B| is the determinant of B with

B(r, u) =
(

b(r, u) c(r, u)
c(r, u) b̄(r, u)

)
.

Furthermore we have, as n → ∞,

(2.4) EXn = ā(rn, 1) + o (|B(rn, 1)|/b(rn, 1))

and

(2.5) VarXn ∼ |B(rn, 1)|
b(rn, 1)

.

Note that (2.3), (2.4), and (2.5) also show that
Xn − EXn√

VarXn

→ N (0, 1).

Remark. We also want to mention that the proofs of Theorems 1 and 2 do not
require all parts of the definition of e-admissibility. For Theorem 1 assumptions
(1)–(4) are sufficient. The assertion of Theorem 2 follows from the assumptions
(1)–(6), (8), and (9). However, all assumptions are needed to establish the closure
properties for e-admissible functions. Those assumptions are usually satisfied for
reasonably constructed functions; compare with Theorems 3 and 4.

Theorem 3. The following two classes of functions are extended admissible:
• Let P (z, u) be a polynomial in z and u with real coefficients written in the

form P (z, u) =
∑

n pnzknuln by choosing an arbitrary order of the monomi-
als. Furthermore, let P (z, 1) =

∑
m bmzm, i.e., bm =

∑
n:kn=m pn. Finally,

set

K := max E with E =
{

ki + kj : det
(

ki li
kj lj

)
�= 0

}
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and I := {(i, j) : ki + kj = K}. Then eP (z,u) ∈ E∞ if and only if the
following conditions are satisfied:
(a) For every d > 1 there exists an m �≡ 0 mod d such that bm �= 0.

Moreover, for md = max{m �≡ 0 mod d : bm �= 0} we have bmd
> 0.

(b) E is not empty and

∑
(µ,ν)∈I

pµpν det
(

kµ lµ
kν lν

)2

> 0.

(c) max{kj : pj �= 0} < 3K/5.
• If f(z) ∈ HR, g(u) is analytic for |u| ≤ 1 + ζ and satisfies g(1) > 0 as well

as g′(1) + g′′(1) − g′(1)2

g(1) > 0, then eg(u)f(z) ∈ ER.

Remark. Note that for functions of the form eP (z,u) the definition of e-admissibility
is too strict. In fact, there are many cases where a normal limit law occurs though
the corresponding generating function is not e-admissible (compare with the ex-
amples presented in Section 4). The reason lies in condition (c), which is related
to (9) of the definition. Since P (z, u) are nice functions not only for u close to
one, this can be avoided and a multivariate normal limit law can be proved. A
characterization of these cases is the topic of work in progress.

Theorem 4. Suppose that f(z, u) ∈ ER and g(z, u) ∈ ER, P (z, u) a polynomial
with positive coefficients, and h(z) ∈ HR. Then the following functions are also in
ER:

• f(z, u) · g(z, u),
• h(z) · f(z, u),
• P (z, u) · f(z, u),
• ef(z,u),
• eP (z,u)h(z), if P (z, u) is not independent of u,
• eP (z,u)+h(z), if R = ∞ and P (z, u) is not independent of u,
• f(z, u) + Q(z, u), where Q(z, u) is an arbitrary polynomial.

Remark. For eP (z,u)+h(z) the positivity condition for P (z, u) can be relaxed. For
such a function to be e-admissible it is sufficient that limz→∞ Pu(z, 1)+Puu(z, 1) =
∞.

With help of Theorems 2–4 it is also possible to check automatically (with
MAPLE) if a given function f(z, u) is in ER, and in most cases one obtains a
central limit theorem for the coefficients as well.

Theorem 2 also provides asymptotic expansions for the expected value and vari-
ance in terms of the derivatives of f(z, u) (evaluated at z = rn and u = 1). Thus,
it is also of interest to obtain these asymptotic expansions automatically. For this
purpose one has to solve two problems, first an asymptotic expansion for rn (that
is, an asymptotic inversion of the function r 
→ a(r, 1) = rfz(r, 1)/f(r, 1)) and,
second, an asymptotic insertion of rn into ā(r, 1) and into |B(r, 1)|/b(r, 1). For ex-
ample, if f is an exp-log function (that is, it is built by finitely many compositions
of rational functions as well as ez and log z), then we can apply the results and
implementations for multiseries inversion and substitution by Salvy and Shackell
[SS99] (cf. also Richardson et al. [RSSVdH96]) in order to compute automatically
an asymptotic expression for rn and, consequently, for the mean and variance if



1958 MICHAEL DRMOTA, BERNHARD GITTENBERGER, AND THOMAS KLAUSNER

they exist. (The problem is that not every exp-log function has an inverse that is
asymptotically equal to an exp-log functionl; see Shackell [Sha93].)

3. Description of the program

The implementation provides a MAPLE module named extadm with two user
entry points: extadmtest and ea addfunc. For H-admissibility tests, the equivalent
function from algolib (see [Sal91]) is used.

extadmtest(fct::algebraic, var1::name, var2::name) tests if a given function is
extended admissible in var1 around var2=1 and returns true, false, or an error if
it cannot decide. It splits the given function fct in smaller parts according to its
structure and uses the closure properties from Theorems 3 and 4 above.

A user can teach extadmtest about additional classes of functions. For this,
the user has to provide a function impl that takes three arguments fct, var1,
and var2 like extadmtest itself, and returns true, false, or error depending on
the e-admissibility of the tested function. This function impl is then added to
extadmtest ’s function table by calling ea addfunc(fname::symbol, impl). After a
function fname has been added in this way, whenever it appears in a test,
extadmtest calls impl(fct, var1, var2) on the subfunction.

For example: ea addfunc(’sinh’, ea sinh) would add the user-provided function
ea sinh as a decision function for any hyperbolic sine (sub-)functions.

Additional information will be printed when the variable infolevel[extadm] is set
to at least 3.

4. Examples

In this section we present some combinatorial applications for e-admissibility.
Note that many generating functions occurring in the following examples satisfy
more than what is required for being e-admissible. For instance, examples 4.1,
4.3, and 4.5 are admissible in the sense of Bender and Richmond [BR96] as well.
However, there are combinatorial problems whose generating function is not BR-
admissible; see example 4.4.

4.1. Stirling numbers of the second kind. The generating function for the Stir-
ling numbers of the second kind is f(z, u) = eu(ez−1). Since ez − 1 is H-admissible,
f(z, u) is e-admissible by the second part of Theorem 3. We get

a(z, u) = uzez, ā(z, u) = u (ez − 1) ,

and

B(z, u) =
(

u
(
z + z2

)
ez uzez

uzez u (ez − 1)

)
.

The solution of a(r, 1) = rer = n is rn ∼ log n − log log n. Hence we get a normal
limit law with asymptotic mean ā(rn, 1) ∼ n

log n and asymptotic variance

detB(rn, 1)
b(rn, 1)

= ern − 1 − (rnern)2

(r2
n + rn)ern

∼ ern

rn
∼ n

log2 n
,

which has already been shown by Harper [Har67].
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4.2. Permutations with bounded cycle length. Permutations with cycle
length less than or equal to � can be described by the generating function f(z, u) =
eue�(z), where e�(z) =

∑�
i=1

zi

i . Since the exponent is a polynomial, we have to
check the conditions of Theorem 3, and it turns out that f(z, u) is e-admissible if
and only if � > 3. So in this case Theorem 2 implies a central limit law. To get the
asymptotic mean and variance compute

a(z, u) = uz
1 − z�

1 − z
, ā(z, u) = u

�∑
i=1

zi

i
, c(z, u) = a(z, u),

b(z, u) = uz
1 − (� + 1)z� + �z�+1

(1 − z)2
, b̄(z, u) = ā(z, u).

a(r, 1) = n implies rn ∼ n1/� and, consequently, the asymptotic mean and variance
are given by

ā(rn, 1) ∼ n

�
and

det B(rn, 1)
b(rn, 1)

∼ 2�2 − 2� + 1
�2(� − 1)

n1− 1
� ,

respectively.

Remark. Though for � ≤ 3 the function is no longer e-admissible (ε would be too
large in this case), it can be shown that the central limit law with asymptotic mean
and variance as given above is true for � ≥ 2. In the case � = 1 the distribution
degenerates. (The same holds for the first two examples in Section 4.5.)

4.3. Partitions of a set of partitions. These objects are the partition of the
set of subsets of a given partition. One gets the generating function f(z, u) =
eu(eexp(z)−1−1). Again, one can compute the logarithmic derivatives and an asymp-
totic expression for rn, mean and variance. This has been done by Salvy and
Shackell [SS99], and they get

ā(rn, 1) ∼ n

log n log log n
and

det B(rn, 1)
b(rn, 1)

∼ n

log2 n log log n
.

Since eez−1 − 1 is H-admissible and thus f(z, u) e-admissible, Theorem 2 implies
that, moreover, a central limit theorem holds.

4.4. Partitions counted by singleton blocks. When counting the number of
partitions of an n-element set having k singleton blocks, we get the generating
function f(z, u) = eez−1−z+zu. The exponent is the sum of a polynomial and
ez − 1 − z, an H-admissible function. Thus, by Theorem 4, f(z, u) is e-admissible,
and therefore a central limit theorem holds. We get

a(z, u) = zez − z + uz, ā(z, u) = uz

and

B(z, 1) =
((

z2 + z
)
ez z

z z

)
.

Thus by a(r, 1) = rer = n we have as before rn ∼ log n − log log n, and therefore
the asymptotic mean and variance are given by ā(rn, 1) ∼ log n and

detB(rn, 1)
b(rn, 1)

=
(r3

n + r2
n)ern − r2

n

rn(rn + 1)ern
∼ rn ∼ log n,

respectively.
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4.5. Other examples.

Set partitions with bounded block size. The generating function is exp
(
u

∑�
i=1

zi

i!

)
,

which is obviously e-admissible if and only if � > 3.
Of course, different kinds of restrictions on the block size may be investigated

by our method as well, since they differ from the present case only in the sum in
the exponent. The same applies to restrictions of the cycle length in permutations
(cf. Example 4.2).

Number of cycles of maximal allowed length in restricted permutations. Here the
generating function is exp

(
uz�

� +
∑�−1

i=1
zi

i

)
, which is e-admissible for � > 3.

Covering complete graphs with bipartite graphs. The generating function is
exp

(
u(ez − 1)2/2

)
(see [GJ83, BR96]), which is obviously e-admissible.

5. Proofs

Proof of Theorem 1. To prove this theorem Hayman’s proof can be used without
any change. The idea is to write the coefficient as

rn · [zn]f(z, u) =
1
2π

2π−δ∫
−δ

f(reiθ, u)e−inθ dθ

=
1
2π

⎛
⎝ δ∫

−δ

+

2π−δ∫
δ

⎞
⎠ f(reiθ, u)e−inθ dθ

and to use the expansions (2) and (3) of the definition of admissibility to the two
integrals of the right-hand side. Since (2) and (3) are uniform in u, the resulting
expansion is uniform in u as well. �

Proof of Theorem 2. In order to prove the theorem, we have to show that the
moment generating function of Xn,

mn(t) = EetXn =
[zn]f(r, et)
[zn]f(r, 1)

satisfies

EetYn = exp

(
tā(r, 1)√

b̄(r, 1) − c(r, 1)2/b(r, 1)

)
→ et2/2

for all t ∈ [−K, K] with some K > 0. [Hay56, Lemma 4] tells us that, if |b̄(r, u)| <
b̄(r, 1) for |u − 1| < 2η (which is true by (7)), then

f(r, et) = f(r, 1) exp
(

tā(r, 1) +
t2

2
b̄(r, 1) + O

(
b̄(r, 1)t3

))
, as r → R,
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uniformly for |t| < ε(r). Thus by (6) we obtain (for r = rn)

mn(t) = exp
(
− (a(r, et) − a(r, 1))2

2b(r, 1)
(1 + O (t))

+tā(r, 1) +
t2

2
b̄(r, 1) + o(1)

)
(1 + O (() t))

= exp
(

tā(r, 1) +
t2

2

(
b̄(r, 1) − c(r, 1)2

b(r, 1)

)

+O
(

c(r, 1)2

b(r, 1)
t3

)
+ o(1)

)
(1 + O (() t)).

Since c(r, 1)2 < b(r, 1)b̄(r, 1) by (8) an application of (9) finally establishes the
central limit theorem (2.3).

The proofs of (2.4) and (2.5) are standard. We can even show that all moments
of the normalized random variable converge to the corresponding moments of the
Gaussian distribution. Convergence of the moment generating function and Cher-
nov’s inequality provide exponential tail estimates for the distribution functions.
Thus, it is sufficient to consider finite intervals for proving convergence of moments.
However, on finite intervals monomials are bounded and, thus, (uniform) conver-
gence of distribution functions implies convergence of bounded functionals. This
completes the proof of Theorem 2. �

Proof of Theorem 3.

Part 1. Let P (z, u) =
∑L

n=1 pnzknuln be a polynomial satisfying the assumptions
of the theorem. Since P (r, u) ∼ P (r, 1), uniformly in u, and the statement of
the theorem is true for Hayman admissibility and polynomials in one variable (see
[Hay56, Theorem X]) satisfying condition (a), we immediately get (2) and (3) with
a(r, u) =

∑
n pnknrknuln and b(r, u) =

∑
n pnk2

nrknuln if we choose δ such that
δ(r) = o

(
r−k/3

)
, where k = max kn. Furthermore, (a) implies that the leading

coefficient in b(z, 1) is positive, which implies (4). Now (5) and (6) are obvi-
ously satisfied with c(r, u) =

∑
n pnknlnrknuln . Since ā(r, u) =

∑
n pnlnrknuln

and b̄(r, u) =
∑

n pnl2nrknuln we immediately get (7). To show (8), as in Theorem 2
let B denote the matrix of the second logarithmic derivatives of P (z, u). Then by
the multilinearity of the determinant we get

det B(r, 1) =
L∑

h=1

L∑
i=1

phpir
kh+ki

(
det

(
kh lh
ki li

))2

.

Then by condition (b) the order of magnitude of B is B = Θ
(
rK

)
and the

leading term is positive, which implies (8). From b(r, 1) = Θ
(
rk

)
we obtain

ε = Θ
(
r(K−k)/2

)
and by condition (c) this proves (9). Finally, note that f grows

exponentially while ā and b̄ do not. Moreover, ā and b̄ have the same order of
magnitude and thus we have (10).

On the other hand, if the first condition is violated, then eP (z,1) will not be
H-admissible and hence eP (z,u) �∈ E . (8) and (9) are equivalent to (b) and (c),
respectively. Therefore the three conditions in the theorem are necessary and suf-
ficient for admissibility.
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Part 2. Let F (z, u) = eg(u)f(z) with f ∈ HR and g(u) as in the statement of the
theorem. By [Hay56, Lemma 5] we have uniformly for |θ| ≤ a(r)−1,

(5.1) f(reiθ) = f(r) + iθrf ′(r) − θ2

2
(rf ′(r) + r2f ′′(r)) + O

(
θ3f(r)a(r)3

)
.

We have

a(r, u) = rg(u)f ′(r), ā(r, u) = ug′(u)f(r),

b(r, u) = (rf ′(r) + r2f ′′(r))g(u), b̄(r, u) = (ug′(u) + ug′′(u))f(r),

c(r, u) = rug′(u)f ′(r).

With these formulas the validity of (4)–(7) is easily seen. For (8) note that by
[Hay56, Th. III] we have

f (k)(r) ∼ f(r)
(

a(r)
r

)k

,

and thus we get

b̄ − c2

b
= (g′(1) + g′′(1))f(r)− r2g′(1)2f ′(r)2

(rf ′(r) + r2f ′′(r))g(1)

∼
(

g′(1) + g′′(1) − g′(1)2)
g(1)

)
f(r) → ∞.

Consequently, ε(r)3b̄(r, 1) � f(r, 1)−1/2 → 0, as required in (9). As to the expo-
nential growth of f , (10) is obvious.

Finally, following Hayman [Hay56], we set δ(r) = f(r)−2/5 and (5.1) directly
yields (2). By [Hay56, Lemma 6] we have

|f(reiθ)| ≤ f(r) − f(r)1/7,

and hence
|F (reiθ, u)| ≤ F (r, u)e−g(u)f(r)1/7

.

Now applying [Hay56, Th. III and Lemma 2] gives B(r, u) = O
(
g(u)f(r)1+ε

)
and

(3) follows. �

Proof of Theorem 4.

Product of admissible functions. Let f1, f2 ∈ ER. Clearly, the logarithmic deriva-
tives of f = f1f2 satisfy

a = a1 + a2, b = b1 + b2, c = c1 + c2,

ā = ā1 + ā2, b̄ = b̄1 + b̄2.

Thus (5), (6), and (4) are fulfilled for u ∈ [1 − η, 1 + η] with η = min(ε1, ε2). The
validity of (7) is easy to check as well. To prove (8) observe that

b̄− c2

b
≥ b̄1 −

c2
1

b1
+ b̄2 −

c2
2

b2
⇐⇒ (c1 + c2)2

b1 + b1
≤ c2

1

b1
+

c2
2

b2
⇐⇒ 2c1c2b1b2 ≤ c2

1b
2
2 + c2

2b
2
1,

which is obviously true and implies (8). Another consequence is that ε =
1/

√
b̄ − c2/b ≤ η; hence the domain of validity for (5), (6), and (4) is large enough.

Furthermore, this implies (9). (2) and (3) can be proven in the same way as [Hay56,
Th. VII], and (10) is obvious. �
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Multiplication by a Hayman admissible function. If f1 ∈ HR and f2 ∈ ER, then
the same argument as in the previous section applies. Of course, here we have
c1 = ā1 = b̄1 = 0 and ε = ε2. �
Multiplication by a polynomial. Let f(z, u) ∈ ER with some positive R ≤ ∞ and
P (z, u) a polynomial with positive coefficients. Due to uniformity in u the proof of
[Hay56, Th. VIII] can be used without change to prove (2) and (3). Let A, B, C, Ā, B̄
denote the logarithmic derivatives corresponding to P (z, u)f(z, u). Then we have

A(r, u) = a(r, u) + r
Pz(r, u)
P (r, u)

,

Ā(r, u) = ā(r, u) + u
Pu(r, u)
P (r, u)

,

B(r, u) = b(r, u) + r
Pz(r, u)
P (r, u)

+ r2

(
Pzz(r, u)
P (r, u)

− Pz(r, u)2

P (r, u)2

)
,

B̄(r, u) = b̄(r, u) + u
Pu(r, u)
P (r, u)

+ u2

(
Puu(r, u)
P (r, u)

− Pu(r, u)2

P (r, u)2

)
,

C(r, u) = c(r, u) + ru

(
Pzu(r, u)
P (r, u)

− Pz(r, u)Pu(r, u)
P (r, u)2

)
.

Since the rational terms in the equations above remain bounded when r → R,
contrary to a, ā, b, and b̄, they do not affect the validity of (4)–(10). �

Exponential of admissible functions. Let F (z, u) = ef(z,u). The logarithmic deriva-
tives of f are denoted as usual by a, ā, b, b̄, and c, the ones of F by the corresponding
capital letters.

Since extended admissible functions satisfy all the conditions imposed on H-
admissible functions even uniformly in u, Lemmas 1–6 of Hayman [Hay56] are true
for extended admissible functions, too. The proofs there can be used without any
change except for replacing f(z) by f(z, u) and derivatives by partial derivatives
with respect to z, and the results hold uniformly in u. Since with the help of
these lemmas Hayman proved that the exponential of an H-admissible function is
H-admissible as well, we can adopt his proof of (2) and (3). Moreover, we get

(5.2) B(r, 1) → ∞.

Note that

A(r, u) = rfz(r, u) = a(r, u)f(r, u),

Ā(r, u) = ufu(r, u) = ā(r, u)f(r, u),(5.3)

B(z, u) = rfz(r, u) + r2fzz(r, u) = (b(r, u) + a2(r, u))f(r, u),

B̄(z, u) = ufu(r, u) + u2fuu(r, u) = (b̄(r, u) + ā2(r, u))f(r, u),(5.4)

C(z, u) = zufzu(r, u) = (c(r, u) + a(r, u)ā(r, u))f(r, u).

With these formulas we see that (10) is valid, since for every γ, η > 0 we have
āf = O

(
f1+γ

)
= O

(
eηf

)
and (b̄ + ā2)f = o

(
ā2f2

)
. Moreover, we get

(5.5) B̄ − C2

B
=

(
b̄ + ā2 − (c + aā)2

b + a2

)
f ≥ bb̄ − c2

b + a2
f → ∞,

where the inequality is obtained by expanding the terms, using c = o (aā), which is
a consequence of (8), (2.1), and (10), and performing some elementary estimates.
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The limit follows from (8) and (2.2). Furthermore, observe that since |u − 1| ≤
√

b + a2/
√(

bb̄ − c2
)
f we obtain by (10) and (2.2),

|(u − 1)ā| ≤ ā
√

b + a2√(
bb̄ − c2

)
f
→ 0,

|(u − 1)2b̄| ≤ b̄(b + a2)(
bb̄ − c2

)
f
→ 0.

(5.6)

Hence we immediately get (9):

(5.7) ε3B̄ =
(b̄ + ā2)(b + a2)3/2(

bb̄ − c2
)3/2 √

f
→ 0.

Turning to (5) observe
B(r, u)

B(r, 1)

=
b(r, u) + a(r, u)2

b(r, 1) + a(r, 1)2

=
b(r, 1) + a(r, 1)2 + O

(
2a(r, 1)c(r, 1)(u − 1) + (a(r, 1)c(r, 1) + c(r, 1)2)(u − 1)2

)
+ o (b(r, 1))

b(r, 1) + a(r, 1)2

= 1 + o(1),

where the last equation follows from application of (10) and (2.2): we have
ac

b + a2
(u − 1) ≤ ac

√
b + a2

√(
bb̄ − c2

)
f

by (5.5)

≤ b +
√

bb̄

a
√(

bb̄ − c2
)
f
→ 0,

by (10) along with c ≤
√

bb̄ and then (10) together with (2.2), and

ac + c2

b + a2
(u − 1)2 ≤ a

√
bb̄ + bb̄(

bb̄ − c2
)
f
→ 0

by (5.5) together with (10) and (10) together with (2.2). This implies (5) and in
conjunction with (5.2) we get (4). Next we prove (6). Set u = et. Then we have

A(r, u) − A(r, 1)
C(r, 1)(u − 1)

=
f(r,u)
f(r,1) a(r, u) − a(r, 1)

(c(r, 1) + a(r, 1)ā(r, 1))(u − 1)

=

(
f(r,et)
f(r,1) − 1

)
a(r, 1) + f(r,et)

f(r,1) c(r, 1)t + O
(

f(r,et)
f(r,1) c(r, 1)t2

)
t(c(r, 1) + a(r, 1)ā(r, 1))

=

(
etā−t2b̄ − 1

)
a + etā−t2b̄ct + O

(
etā−t2b̄ct2

)
t(c + aā)

= 1 + O (t) ,

where the last two lines follow from (5.7) and (5.6). Finally, (7) is obvious in view
of (5.3) and (5.4).
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The class exp(P (z, u)h(z)). Since e-admissible functions are closed under multipli-
cation, it is sufficient to consider the case where P (z, u) is a monomial. Then use
the fact that the product of an H-admissible function with a polynomial is again
H-admissible and combine this with the second part of Theorem 3 to get the result.

The class exp(P (z, u) + h(z)). Here we have

a(z, u) = z(Pz(z, u) + h′(z)), ā(z, u) = uPu(z, u),

b(z, u) = z(Pz(z, u) + h′(z)) + z2(Pzz(z, u) + h′′(z)),

b̄(z, u) = uPu(z, u) + u2Puu(z, u),

c(z, u) = zuPzu(z, u)

and hence

|B(z, u)| =
∣∣∣∣zPz + z2Pzz zuPzu

zuPzu uPu + u2Puu

∣∣∣∣ +
∣∣∣∣zh′ + z2h′′ zuPzu

0 uPu + u2Puu

∣∣∣∣
= D1(z, u) + D2(z, u).

The growth properties of H-admissible functions and their derivatives are well stud-
ied (see [Hay56]). Therefore we know the order of magnitude of D1(r, 1) and
D2(r, 1): we have D2(r, 1) = Θ(r2h′′(r)(Pu(r, 1) + Puu(r, 1)) and D1 = o(D2), as
r → ∞. Moreover, since b̄(r, 1) and c(r, 1) grow polynomially and b(r, 1) ∼ r2h′′(r)
we get (8). The polynomial growth of ā and b̄ along with their equal order of mag-
nitude immediately implies (10). Since ε ∼ b̄−1/2, we have on the one hand (9) and
on the other hand ε → 0, which implies (2) and (4)–(7). Finally, since

exp
(
P

(
reiθ, u

))
= O

(
eP (r,u)

)
and eh(reiθ) = o

(
eh(r)√
b(r, 1)

)

we get (3).

Addition of polynomials. Since every e-admissible function f(z, u) grows at least
exponentially, polynomials are negligibly small in comparison to f(z, u) and thus
f(z, u) + P (z, u) is obviously e-admissible too. �
Acknowledgments. The authors express their gratitude to Bruno Salvy who kindly
offered access to a pilot MAPLE implementation of multiseries inversion.

References

[BR83] Edward A. Bender and L. Bruce Richmond. Central and local limit theorems applied

to asymptotic enumeration. II. Multivariate generating functions. J. Combin. Theory
Ser. A, 34(3):255–265, 1983. MR0700034 (85k:05009)

[BR86] Edward A. Bender and L. Bruce Richmond. A generalisation of Canfield’s formula.
J. Combin. Theory Ser. A, 41(1):50–60, 1986. MR0826937 (87c:41023)

[BR96] Edward A. Bender and L. Bruce Richmond. Admissible functions and asymptotics
for labelled structures by number of components. Electron. J. Combin., 3(1):Re-
search Paper 34, approx. 23 pp. (electronic), 1996. MR1418482 (98a:05012)

[Drm94] Michael Drmota. A bivariate asymptotic expansion of coefficients of powers of gener-
ating functions. European J. Combin., 15(2):139–152, 1994. MR1261060 (94k:05014)
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