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LOCALLY SUPPORTED RATIONAL SPLINE WAVELETS
ON A SPHERE

DANIELA ROŞCA

Abstract. In this paper we construct certain continuous piecewise rational
wavelets on arbitrary spherical triangulations, giving explicit expressions of
these wavelets. Our wavelets have small support, a fact which is very impor-
tant in working with large amounts of data, since the algorithms for decompo-
sition, compression and reconstruction deal with sparse matrices. We also give
a quasi-interpolant associated to a given triangulation and study the approx-
imation error. Some numerical examples are given to illustrate the efficiency
of our wavelets.

1. Introduction

For many fields of numerical analysis, wavelet-based methods have become pop-
ular since they provide efficient and fast algorithms.

For applications in geodesy or meteorology, where the sphere is taken as a model
of the Earth, wavelets on the two-dimensional sphere are needed. In these ap-
plications one represents functions which estimate temperature, pressure, rainfall,
ozone, etc., over the sphere S2, based on a discrete sample of measurements.

Another application is the modelling of closed surfaces as the graph of a function
defined on the sphere.

Although the sphere appears to be a simple manifold, techniques from R2 do not
easily extend to the sphere.

It is possible to reduce the approximation of a function defined on S2 to the
approximation of a function defined on [0, 1]× [0, 1] , but when using this approach,
some periodicity conditions should be satisfied. If, for example, we consider the
mapping

ρ : U = [0, 1] × [0, 1] → S
2, (ϕ, θ)

ρ→

⎛⎝ cos (2πϕ) sin (πθ)
sin (2πϕ) sin (πθ)
cos (πθ)

⎞⎠ ,

then a function defined on U can be identified with a function on S2. But not every
continuous function on U gives rise to a C0 function on S

2, since for example the
lines {(ϕ, 0) | ϕ ∈ [0, 1]} and {(ϕ, 1) | ϕ ∈ [0, 1]} collapse into a point. To make sure
that a continuous function f defined on the rectangle U remains continuous after
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mapping it onto S2, it is necessary that f satisfy the following conditions:⎧⎨⎩
f (0, θ) = f (1, θ) , 0 ≤ θ ≤ 1,

there exist constants SN , SS such that
{

f (ϕ, 0) = SN ,
f (ϕ, 1) = SS, 0 ≤ ϕ ≤ 1.

Unfortunately, such conditions are not easily satisfied.
We will consider in this paper another approach, where we make use of a radial

projection onto the sphere. Before summarizing the content of the present work,
we review some approaches which treat the sphere S2.

The first construction of wavelets on the sphere has been presented by Dahlke
et al. in [3] using a tensor product basis, where one factor is an exponential spline.
The multiresolution is nonstationary and the wavelets are C1, have global support
and are semi-orthogonal. They also give a characterization of C1 functions on S2

and S3 with a wavelet representation. Their construction is based on an approach
which used splines, proposed by Schumaker and Traas in [23].

Another approach to creating wavelets on the 2D sphere is the one realized by
Potts and Tasche in [15]. They first map the rectangle [0, π]× [0, 2π] to the sphere
via standard spherical coordinates and then construct nonorthogonal wavelets by
taking the tensor product of interpolatory trigonometric wavelets and algebraic
polynomial wavelets, obtaining continuous wavelets on S2. Doing this, singulari-
ties and distortions near the poles occur. A similar idea with spherical harmonics
is presented in [16], where the authors construct a frame in L2

(
S2
)

consisting of
smooth functions arising from kernels of spherical harmonics. The idea of con-
structing spherical wavelets using spherical harmonics was realized in a different
manner in [8] for equidistant nodes and [12] for scattered data. A drawback is that
the spherical harmonic functions are globally supported and suffer from the same
difficulties as Fourier representations on the line, such as “ringing”.

In [11], Narcowich and Ward construct a nonstationary multiresolution analysis
with functions generated by translations of a spherical basis function. The wavelets
here are orthogonal and localized, but not locally supported. In [24], Weinreich
describes a nonstationary multiresolution and biorthogonal C1 wavelets on the 2D
sphere via tensor product. In [21], Schröder and Sweldens present a method to
obtain biorthogonal wavelets on spherical triangulations using the lifting scheme.
This approach is useful in practical areas (e.g. for compression of tomographic
data) as well as in computer graphics, but no result regarding the stability was
given. For the wavelets obtained by lifting, the stability was established later by
Cohen et al. in [2]. Here, finite element wavelets on planar triangulations with
compactly supported duals are obtained by the lifting scheme.

In [10] Lounsbery et al. construct wavelets defined on subdivision surfaces. These
surfaces are constructed by iteratively refining a control polyhedron M0, so that
the sequence of refined polyhedra M1, M2, . . . converges to the sphere. Taking
the limit of this sequence of wavelets, they construct globally supported wavelets
defined on the sphere which are then truncated to a small region. Thus, they
produce functions that are no longer elements of the orthogonal complementary
wavelet spaces and they call them quasi-wavelets.

Piecewise constant wavelets on arbitrary spherical triangulations were construct-
ed by Nielson et al. in [13] and Bonneau in [1]. Their wavelets are “nearly orthog-
onal” and no Riesz stability was proved. The techniques presented in this paper
also work for piecewise constant wavelets. Thus, in [17] we enlarged the classes of
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wavelets constructed by Bonneau and by Nielson et al., establishing at the same
time the Riesz stability. In [18] we realized a comparison of the wavelets obtained
in [17], with respect to the l2-norm of the reconstruction error.

Our construction is based on the results of Floater and Quak for planar trian-
gulations, presented in [4], [5] and [6]. In a first step we transfer their results to a
no longer planar triangulation having its vertices in 3-space. Then, using a radial
projection, we obtain locally supported wavelets defined on the sphere. Explicit
and simple expressions are available.

The present work is structured as follows.
In Section 2 we prove some statements that are necessary to use the results

obtained in [4], [5] and [6] and we introduce a norm on S
2 which is equivalent to

the usual L2-norm of S2.
In Section 3 the construction of a stationary multiresolution analysis on the

sphere S2 will be described and explicit formulas for the scaling functions will be
given.

By definition, a multiresolution analysis of the space L2
(
S2
)

is a sequence of
subspaces

{
Vj : j ≥ 0

}
of L2

(
S2
)

which satisfy the following requirements:

(1) Vj ⊆ Vj+1 for all j ∈ N0.

(2) closL2(S2)

∞⋃
j=0

Vj = L2
(
S2
)
.

(3) There are index sets Kj ⊆ Kj+1 such that for every level j there exists
a Riesz basis

{
ϕj

v, v ∈ Kj

}
of the space Vj . This means that there exist

constants 0 < c ≤ C < ∞, independent of the level j, such that

c2−j
∥∥∥{cj

v

}
v∈Kj

∥∥∥
l2(Kj)

≤
∥∥∥∥∥∑

v∈Kj

cj
vϕ

j
v

∥∥∥∥∥
L2(S2)

≤ C2−j
∥∥∥{cj

v

}
v∈Kj

∥∥∥
l2(Kj)

.

We do not require the scaling functions ϕj
v to be translations and dilations of the

same function ϕ. In some papers the authors replace the translation requirement
with a rotational one, but in most of the research on spherical wavelets this require-
ment is not demanded since it is difficult to be satisfied.

Once the multiresolution analysis is determined, we construct the wavelet spaces
Wj . They are orthogonal complements with respect to a weighted L2-inner product.
The basis functions of each space Wj are commonly called wavelets. In Section 4 we
describe the construction of a locally supported wavelet basis of Wj . Our wavelets
will be semi-orthogonal, meaning that we have orthogonality between levels but not
within one level. Some authors use the term prewavelets instead of semi-orthogonal
wavelets. Then, in Section 5, we present a quasi-interpolant and prove some error
estimates for the approximation. Finally, in Section 6 we give some numerical
examples.

The construction presented in this paper may also be adapted for arbitrary
sphere-like surfaces. A sphere-like surface is defined as

{
σ (v) = ρ (v) v, v ∈ S2

}
,

with a continuous positive function ρ defined on S2. We restrict our attention to the
case of the 2D sphere S2, since this case has more practical applications and since
we can obtain an explicit expression for our wavelets defined on S

2. The conditions
that have to be satisfied by the function ρ in order to assure the Riesz stability of
the wavelets are given in [19].
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2. Basics

2.1. Spatial triangulations with planar triangles. Consider the unit sphere
S2 of R3 with the center in O, and let Π be a convex polyhedron having all the
vertices situated on S

2 and triangular faces,1 such that no face contains O and O is
situated inside the polyhedron. We denote by T = {T1, . . . , TM} the set of the faces
of Π, by E the set of edges and by V the set of vertices. For a vertex v ∈ V , the
set of neighbors of v is Vv = {w ∈ V : [v, w] ∈ E}. The surface of the polyhedron
Π will be denoted by Ω. Given the data values fv ∈ R, for v ∈ V , there is a unique
function f : Ω → R, which is continuous on Ω, linear on each triangle in T , and
which interpolates the data: f(v) = fv, v ∈ V . For a given Π, the set of all such
continuous and piecewise linear functions forms a linear space S with dimension
|V |. A basis for S is {φv, v ∈ V }, where φv : Ω → R is the unique continuous and
piecewise linear “hat” function in S such that for all w ∈ V ,

(1) φv(w) =
{

1 for w = v,
0 otherwise.

Specifically, the “hat” function φM1 : Ω → R, associated to the vertex M1(x1, y1, z1)
∈ Ω is given by
(2)

φM1(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣∣∣∣∣∣
x y z
xi yi zi

xk yk zk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 y1 z1

xi yi zi

xk yk zk

∣∣∣∣∣∣∣∣
on each triangle [M1MiMk] of T ,

0 on the triangles that do not contain M1.

We intend to use some of the results from [4], [5] and [6]. For this, we need to
prove the following lemmas.

The first lemma gives a formula for the integral of the product of two linear
functions defined on a triangle T of Ω. The proof of this lemma is given in the
Appendix.

Lemma 1. Let T = [M1M2M3] ⊂ Ω with Mi(xi, yi, zi), φ1(x, y, z) = ax + by + cz,
φ2(x, y, z) = mx + ny + pz and denote fi = φ1(xi, yi, zi), gi = φ2(xi, yi, zi), i =
1, 2, 3. Then∫

T

φ1(x)φ2(x)dΩ(x) =
a(T )
12

(f1g1 + f2g2 + f3g3 + (f1 + f2 + f3)(g1 + g2 + g3)) .

Let 〈·, ·〉Ω be the following inner product, based on the given polyhedron

〈f, g〉Ω =
∑
T∈T

1
a(T )

∫
T

f(x)g(x)dx, f, g ∈ C(Ω),

where a(T ) is the area of the triangle T . We also consider the induced norm
‖f‖Ω = 〈f, f〉1/2

Ω .
Regarding this norm, we prove the following equivalence.

1The polyhedron could also have faces which are not triangles. In this case we triangulate each
of these faces and consider it as having triangular faces, with some of the faces coplanar triangles.
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Lemma 2. In the space L2 (Ω) , the norm ‖·‖Ω is equivalent to the usual norm
‖·‖L2(Ω).

Proof. For f ∈ L2(Ω),

‖f‖2
L2(Ω) =

∫
Ω

f2(x)dΩ(x)

=
∑
T∈T

∫
T

f2(x)dΩ(x).

Now, using the definition of the norm ‖ · ‖Ω, we obtain

1
max
T∈T

a(T )

∑
T∈T

∫
T

f2(x)dΩ(x)

≤
∑

T∈T 0

1
a(T )

∫
T

f2(x)dΩ(x)

≤ 1
min
T∈T

a(T )

∑
T∈T

∫
T

f2(x)dΩ(x),

whence

1
max
T∈T

a(T )
‖f‖2

L2(Ω) ≤ ‖f‖2
Ω ≤ 1

min
T∈T

a(T )
‖f‖2

L2(Ω) . �

2.2. Spherical triangulations. Now for the given polyhedron Π, we define the
radial projection onto S2, p : Ω → S2,

p(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)
, (x, y, z) ∈ Ω,

and its inverse p−1 : S
2 → Ω,

(3) p−1(η1, η2, η3) =
(
− η1d

aη1 + bη2 + cη3
,− η2d

aη1 + bη2 + cη3
,− η3d

aη1 + bη2 + cη3

)
,

where ax + by + cz + d = 0 is the equation of that face of Π onto which the point
(η1, η2, η3) ∈ S2 projects. In the case when the point (η1, η2, η3) projects onto an
edge, then we may choose one of its adjacent faces to express the function p−1.

If we consider the images Ui = p(Ti) of the triangles Ti under the projection
p, then we say that U = {U1, . . . , UM} is a triangulation of the sphere S2. The
functions ϕv : S2 → R, ϕv = φv ◦ p−1, v ∈ V are continuous on S2 and their
supports are Mv—the set of all spherical triangles of U that contain the vertex v,
so the ϕv are local around the vertex v.
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Remark 3. Let [M1MiMk] be a triangle of T and [M ′
1M

′
iM

′
k] its radial projection

onto S2. Then, the restriction to [M ′
1M

′
iM

′
k] of ϕM1 is

ϕM1(η1, η2, η3)

=

∣∣∣∣∣∣
− η1d

aη1+bη2+cη3
− η2d

aη1+bη2+cη3
− η3d

aη1+bη2+cη3

xi yi zi

xk yk zk

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

x1 y1 z1

xi yi zi

xk yk zk

∣∣∣∣∣∣
−1

= − d

aη1 + bη2 + cη3
·

∣∣∣∣∣∣
η1 η2 η3

xi yi zi

xk yk zk

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

x1 y1 z1

xi yi zi

xk yk zk

∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣
η1 η2 η3

xi yi zi

xk yk zk

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

η1 η2 η3 0
x1 y1 z1 1
xi yi zi 1
xk yk zk 1

∣∣∣∣∣∣∣∣
−1

,

where a, b, c, d are the coefficients of x, y, z, 1 of the polynomial function

(4)

∣∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
xi yi zi 1
xk yk zk 1

∣∣∣∣∣∣∣∣ .

Thus the “hat” functions ϕv are piecewise rational functions, with the numerator
and denominator linear polynomials of degree one.

The following proposition establishes the relations between the area elements of
S2 and Ω.

Proposition 4. The relations between dΩ(x) (the area element of Ω) and dω(η)
(the area element of S

2) are

dω(η) =
|d|√

a2 + b2 + c2
· 1

(x2 + y2 + z2)3/2
dΩ(x),(5)

dΩ(x) =
d2
√

a2 + b2 + c2

|aη1 + bη2 + cη3|3
dω(η),(6)

where x = (x, y, z) ∈ Ω, η = (η1, η2, η3) ∈ S2, and a, b, c, d are determined for
each face of Π as described above.

The proof of this proposition can be found in the Appendix.
For L2-integrable functions defined on S2, let 〈·, ·〉∗ be defined by

(7) 〈F, G〉∗ = 〈F ◦ p, G ◦ p〉Ω.
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Then 〈·, ·〉∗ is an inner product which induces the norm ‖F‖∗ = 〈F, F 〉1/2
∗ and

we have

〈F, G〉∗ =
∑
T∈T

1
a(T )

∫
T

F (p(x))G(p(x))dΩ(x)

=
∑
T∈T

1
a(T )

∫
p(T )

F (η)G(η)
d2

T

√
a2

T + b2
T + c2

T

|aT η1 + bT η2 + cT η3|3
dω(η)

=
∑
T∈T

∫
p(T )

F (η)G(η)
2 d2

T

|aT η1 + bT η2 + cT η3|3
dω(η),

where aT , bT , cT , dT are the coefficients of x, y, z and 1 in the polynomial function
given by (4), and the notation is as in Remark 3.

The inner product 〈·, ·〉∗ can be interpreted as a “multi-weighted” inner product,
with the weights

wT (η1, η2, η3) = 2 d2
T |aT η1 + bT η2 + cT η3|−3 .

The following lemma establishes a norm equivalence in L2
(
S2
)
.

Lemma 5. In the space L2(S2), the norm ‖ · ‖∗ is equivalent to the usual norm
‖ · ‖2 of L2(S2).

Proof. For F ∈ L2(S2),

‖F‖2
∗ =

∑
T∈T

∫
p(T )

F 2(η)
2d2

T

|aT η1 + bT η2 + cT η3|3
dω(η).

Denoting by min(T ) and max(T ) the minimum and maximum values of the func-
tions

hT (η) = |aT η1 + bT η2 + cT η3|−3
,

respectively, a simple calculation shows that min (T ) = 1
(2a(T ))3

and max (T ) =
1

|dT |3 . Thus, we write

min(T ) ≤ 1
|aT η1 + bT η2 + cT η3|3

≤ max(T ),

and then

2
∑
T∈T

d2
T min(T )

∫
p(T )

F 2(η) dω(η) ≤ ‖F‖2
∗ ≤ 2

∑
T∈T

d2
T max(T )

∫
p(T )

F 2(η) dω(η).

Denoting M = 2 maxT∈T
{
d2

T max(T )
}

and m = 2 minT∈T
{
d2

T min(T )
}
, we finally

obtain
m‖F‖2

L2(S2) ≤ ‖F‖2
∗ ≤ M‖F‖2

L2(S2). �

3. Multiresolution analysis

Given Ω, we can say that T = T 0 is a triangulation of Ω, and next we wish
to consider its uniform refinement T 1. For a given triangle [M1M2M3] in T 0, let
A1, A2, A3 denote the midpoints of the edges M2M3, M3M1 and M1M2, respec-
tively. Then we consider the set

T 1 =
⋃

[M1M2M3]∈T 0

{[M1A2A3], [A1M2A3], [A1A2M3], [A1A2A3]} ,
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which is also a triangulation of Ω, and continuing the refinement process in the
same way, we obtain a triangulation T j of Ω for j ∈ N . We denote by V j the set
of all vertices of the triangles in T j and by Ej the set of all edges of triangles in
T j . Then Sj , V j

v , φj
v, ϕ

j
v,Uj , and Mj

v are defined accordingly. The space Sj is a
subspace of Sj+1, since we have

φj
v = φj+1

v +
1
2

∑
w∈V j+1

v

φj+1
w , v ∈ V j , j ∈ N.

For the nodal functions
{
φj

v

}
the following statement holds.

Lemma 6. There exist constants 0 < c ≤ C < ∞, independent of the level j, such
that for all functions gj =

∑
v∈V j cj

vφj
v we have

c

∥∥∥∥{h
j

vcj
v

}
v∈V j

∥∥∥∥
l2

≤ ‖gj‖L2(Ω) ≤ C

∥∥∥∥{h
j

vcj
v

}
v∈V j

∥∥∥∥
l2

.

Here h
j

v denotes the diameter of the support of φj
v.

Proof. Due to the uniform refinement, it is clear that h
j

v ≈ 2−j , so it is enough to
prove the equivalence ∥∥∥{2−jcj

v

}
v∈V j

∥∥∥
l2
≈
∥∥∥∥∥∑

v∈V j

cj
vφ

j
v

∥∥∥∥∥
L2(Ω)

or equivalently ∥∥∥{cj
v

}
v∈V j

∥∥∥
l2
≈
∥∥∥∥∥∑

v∈V j

cj
v2jφj

v

∥∥∥∥∥
L2(Ω)

.

In order to prove this, we refer to Lemma 5.2 in [7]. As in that lemma, we can show
that for all f in Sj we have

2−2j

12

∑
w∈V j

t (w) f2 (w) ≤ ‖f‖2
Ω ≤ 2−2j

3

∑
w∈V j

t (w) f2 (w) ,

where t (w) is the number of the triangles in T j that contain the vertex w.
If we take f =

∑
v∈V j cj

vφ
j
v, then f (w) = cj

w since φv(w) = δvw. So,

2−2j

12

∑
w∈V j

t (w)
(
cj
w

)2 ≤
∥∥∥∥∥ ∑

w∈V j

cj
wφj

w

∥∥∥∥∥
2

Ω

≤ 2−2j

3

∑
w∈V j

t (w)
(
cj
w

)2
.

But t (w) is either 6 or t0 (w) from the initial triangulation, so if we denote n =
minv∈V 0

(
6, t0 (v)

)
and N = maxv∈V 0

(
6, t0 (v)

)
, then we may write

n

12

∑
w∈V j

(
cj
w

)2 ≤
∥∥∥∥∥ ∑

w∈V j

cj
w2jφj

w

∥∥∥∥∥
2

Ω

≤ N

3

∑
w∈V j

(
cj
w

)2
,

which together with Lemma 2 completes the proof. �

The sequence of triangulations {T j}j∈N is regular in the following sense: the
ratios of the radii of the inscribed and circumscribed circles remain bounded from
below by a constant γ0 > 0 independent of the level j and of the triangles. For
each triangle Kj of T j the diameter h (Kj) = diamKj characterizes its typical size.
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Figure 1. A pyramidal function ϕj
u represented on S2.

Usually, h
(
T j

)
= max h (Kj) is called (maximal) mesh-size of T j . Let hmin

(
T j

)
=

min h (Kj) . The sequence of triangulations {T j}j∈N is quasi-uniform, in the sense
that the ratio h(T j)

hmin(T j) is bounded from above by a constant γ1 < ∞, independent
of j.

If we set Vj = span{ϕj
v, v ∈ V j}, j ∈ N , then Vj is a subspace of Vj+1, due to

the refinement equation

ϕj
v = ϕj+1

v +
1
2

∑
w∈V j+1

v

ϕj+1
w , v ∈ V j , j ∈ N.

The set {ϕj
v, v ∈ V j} is a local basis for Vj in the sense that diam

(
supp ϕj

v

)
≈ 2−j .

Let [M1MiMk] be a triangle of a triangulation T j and [M ′
1M

′
iM

′
k] its radial

projection onto S2. Then, using the same arguments as in Remark 3, we can
deduce that the restriction to [M ′

1M
′
iM

′
k] of ϕj

M1
is

ϕj
M1

(η1, η2, η3) =

∣∣∣∣∣∣
η1 η2 η3

xi yi zi

xk yk zk

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣

η1 η2 η3 0
x1 y1 z1 1
xi yi zi 1
xk yk zk 1

∣∣∣∣∣∣∣∣
−1

.

Thus the spaces Vj are spaces of rational splines, with the numerator and de-
nominator linear polynomials of degree one. An example of function ϕj

u ∈ Vj is
represented in Figure 1.

4. Wavelets

With respect to the inner product 〈·, ·〉∗ , the spaces Vj and Vj+1 become Hilbert
spaces, with the corresponding multi-weighted norm ‖F‖∗ = 〈F, F 〉1/2

∗ . Let Wj

denote the orthogonal complement with respect to 〈·, ·〉∗ of the coarse space Vj in
the fine space Vj+1, so that

Vj+1 = Vj ⊕Wj ,

and therefore
Vj+1 = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj .
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The spaces Wj are called the wavelet spaces and its nonzero elements are called
wavelets. The dimension of Wj is

∣∣V j+1
∣∣− ∣∣V j

∣∣ =
∣∣Ej

∣∣.
In this section we construct a basis for Wj , consisting of wavelets of small sup-

port. Here we follow [5] and [6].
To a vertex u ∈ V j+1 \ V j , which is a midpoint of some edge [a1a2] ∈ Ej , we

associate a wavelet ψj
u in the following way. We take

ψj
u(η) = σj

a1,u(η) + σj
a2,u(η), for η ∈ S

2,

where the functions σj
a1,u and σj

a2,u are called semi-wavelets. They are taken as

σj
a1,u(η) = sa1ϕ

j+1
a1

(η) +
∑

w∈V j+1
a1

swϕj+1
w (η), with sa1 , sw ∈ R , w ∈ V j+1

a1
,

σj
a2,u(η) = sa2ϕ

j+1
a2

(η) +
∑

w∈V j+1
a2

twϕj+1
w (η), with sa2 , tw ∈ R , w ∈ V j+1

a2

and satisfy the conditions

(8) 〈ϕj
w, σj

a1,u〉∗ =

⎧⎨⎩
−2−2jγ if w = a1,

2−2jγ if w = a2,
0 otherwise

for a given γ �= 0. This means that σj
a1,u is orthogonal to all nodal functions from

the level j, except for ϕj
a1

and ϕj
a2

and its support is included in Mj
a1

. From (8)
we find that

(9) 〈ϕj
w, ψj

u〉∗ = 〈ϕj
w, σa1,u〉∗ + 〈ϕj

w, σa2,u〉∗ = 0 for all w ∈ V j ,

and therefore ψj
u belongs to the wavelet space Wj , being orthogonal to a basis of

Vj . The support of ψj
u is included in Mj

a1
∪Mj

a2
.

Suppose the degree (the number of neighbors) of a1 is s1 :=
∣∣V j

a1

∣∣ =
∣∣V j+1

a1

∣∣ and
its fine neighbors are b0, b1, . . . bs1−1, with b0 = u, the degree of a2 is s2 and its fine
neighbors are c0, c1, . . . cs2−1, with c0 = u. A choice for the coefficients sa1 , sbi

, sa2

and tci
is

sa1 = − 3
2s1

, sbi
=

3
28s1

+ θ(i, s1), i = 0, 1, . . . , s1 − 1,

sa2 = − 3
2s2

, tci
=

3
28s2

+ θ(i, s2), i = 0, 1, . . . , s2 − 1,

where θ(i, s) = λi+λs−i
√

21(1−λs)
, with λ =

(
−5 +

√
21
)
/2.

This choice was made for planar triangulations in Lemma 3.3 of [6]. Similarly
we can prove the result for our triangulations, due to Lemma 1. Note that the
coefficients do not depend on the level j.

Now we have obtained the set {ψj
u, u ∈ V j+1\V j} of locally supported functions

satisfying the orthogonality conditions (9). In order to be a basis for Wj , the
wavelets ψj

u, u ∈ V j+1 \ V j must be linearly independent for every j ∈ N. The
linear independence can be proved in the same way as in [6].

To be useful in practice the basis of wavelets should be dense in C(S2) (and
therefore in L2(S2)) and should satisfy the Riesz stability property. The set

(10)
⋃
j≥0

Vj = V0 ⊕
∞⊕

j=0

Wj
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is indeed dense in C(S2), which follows immediately from the density of⋃
j≥0

{
φj

u : u ∈ V j
}

in C(Ω) and from Lemma 5 and Lemma 6.
Now we must establish that the set{

ϕ0
u : u ∈ V 0

}
∪

∞⋃
j=0

{
2j ψj

u : u ∈ V j+1 \ V j
}

forms a Riesz basis of the space given in (10). This is equivalent to the existence of
positive constants R1, R2, independent of the level j, such that for all sets of real
coefficients

{
dj

u, j ≥ −1, u ∈ V j+1 \ V j
}

with∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2
< ∞,

the inequalities

R1

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2 ≤

∥∥∥∥∥∥
∑

j≥−1

∑
u∈V j+1\V j

dj
u 2jψj

u

∥∥∥∥∥∥
2

L2(S2)

≤ R2

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2
,

hold with the notation ψ−1
u = 2ϕ0

u and V −1 = ∅.
Using Theorem 5.1 from [6], we establish that

C1

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2 ≤

∥∥∥∥∥∥
∑

j≥−1

∑
u∈V j+1\V j

dj
u 2jψj

u

∥∥∥∥∥∥
2

∗

≤ C2

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2

Figure 2. A wavelet ψj
u represented in spherical coordinates.
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Figure 3. A wavelet ψj
u represented on the sphere.

with C1 = L2
B/4 and C2 = 25/21 t0, where LB = 0.0468962 . . . and t0 =

max(6, maxw∈V 0 t(w)), t(w) denoting, as before, the number of neighbors of the
vertex w.

If we want Riesz bounds for ‖ · ‖L2(S2), we can use Lemma 5 and obtain

C1

M

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2 ≤

∥∥∥∥∥∥
∑

j≥−1

∑
u∈V j+1\V j

dj
u 2jψj

u

∥∥∥∥∥∥
2

L2(S2)

≤ C2

m

∑
j≥−1

∑
u∈V j+1\V j

(
dj

u

)2
.

Figures 2 and 3 show a wavelet ψj
u represented in spherical coordinates and on the

sphere, respectively.

5. Quasi-interpolants

Following the idea of Oswald (see [14], Chapter 2) we will build a piecewise
linear quasi-interpolant Q : L2 (Ω) → S, where S is one of the spaces Sj defined
in Section 3. For each space Sj , a quasi-interpolant Qj is defined accordingly. For
simplicity we present the construction only for the space S0 = S and we study the
error ‖f − Qf‖L2(Ω) for f ∈ L2 (Ω).

Consider an arbitrary vertex Pi of a triangle of T 0 = T of Ω and fix a triangle
∆i of T which is at a distance ≤ chi from Pi, with the constant c independent of
i. Here hi is the diameter of the support of the nodal function φPi

. Due to the
regularity of the triangulation T 0, the diameter of ∆i satisfies h (∆i) ≈ hi. Let Min,
n = 0, 1, 2, and λin (P ) , n = 0, 1, 2, 3, denote the vertices of ∆i and the barycentric
coordinates of a point P ∈ R3 with respect to OMi0Mi1Mi2, respectively. The
functions λin span the space of linear polynomials in three variables defined on Ω.
Another property of the functions λin is λi3 = 1 − λi0 − λi1 − λi2 and for (x, y, z)
belonging to the plane of the triangle ∆i we have λi3 (x, y, z) = 0. To get a better
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idea of what the functions λin look like, we write λi0 as

λi0 (x, y, z) =

∣∣∣∣∣∣
x y z
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
−1

,

where (xl, yl, zl) , l = 0, 1, 2, are the coordinates of Mil, respectively.
Then a straightforward calculation shows that the functions

νin (P ) =

{
3

a(∆i)

(
3λin (P ) −

∑
k �=n λik (P )

)
if P ∈ ∆i,

0 if P /∈ ∆i,
n = 0, 1, 2,

are L2-biorthogonal to the basis {λin, n = 0, 1, 2} of the polynomial space men-
tioned above. Finally we define the functions

(11) νi (P ) =
2∑

n=0

λin (Pi) νin (P ) ,

with the support ∆i. The quasi-interpolant is now defined as

(12) Qf (P ) =
∑

i

(∫
∆i

fνi dx

)
φPi

(P ) .

This quasi-interpolant satisfies the following properties:

Proposition 7. For every triangle K of Ω we have

‖Qf‖L2(K) ≤ C ‖f‖L2(K) ,

where K denotes the union of K and all its neighboring triangles which have a
distance from K less than or equal to c · h(K).

Proof. The proof follows the same ideas as in [14], Chapter 2. �

Proposition 8. The quasi-interpolant Q preserves linear polynomials.

Proof. Let us take a nonconstant linear polynomial q defined on Ω. Using the
barycentric coordinates with respect to any of the simplices OMi0Mi1Mi2, we can
write

q (P ) =
2∑

n=0

αinλin (P ) ,

with some coefficients αin and evaluate Qq at an arbitrary vertex Pi, as

Qq (Pi) =
∫
∆i

qνi dx =
∫
∆i

2∑
n=0

αinλinνi dx

=
2∑

n=0

αin

∫
∆i

λinνi dx =
2∑

n=0

αinλin (Pi) = q (Pi) ,

by using the biorthogonality of the sets {λin, n = 0, 1, 2} and {νin, n = 0, 1, 2}.
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Thus for any triangle K of Ω we have local preservation of linear polynomials in
the following sense: if f coincides with a linear polynomial on K, then Qf = f on
K. This property is equivalent to Qp = p for every linear polynomial p defined on
Ω. Since the constant function f ≡ 1 belongs to the space S0, we have that Qp = p
for every polynomial of degree at most 1, so we can say that Q is a quasi-interpolant
of order 1. �

Note that the previous two propositions remain valid for the whole sequence of
subspaces

{
Sj
}

j≥0
, with the interpolants Qj defined accordingly. Furthermore in

Proposition 7 the constant C is independent of the level j (see [14]).
In the following we want to evaluate the error ‖f − Qf‖L2(Ω) by writing the

integral of the function defined on Ω as a sum of double integrals. We need to
replace each Qf : ∆i → R with a two-variable quasi-interpolant Q̃fi : PrP ∆i ⊆
R2 → R, where P is one of the coordinate planes. Moreover we establish conditions
under which the quasi-interpolant Q̃fi coincides with the quasi-interpolant built by
Oswald in [14], Chapter 2, for the two-dimensional case.

5.1. The quasi-interpolant Q̃f̃ for a function f̃ ∈ L2(∆̃), ∆̃ ⊆ R2. This
construction was carried out by Oswald in [14] for arbitrary dimension.

Let us take a triangulation D in R2, an arbitrary nodal point Ni(α̃i, β̃i) as a
vertex of a triangle of D and Di a triangle situated at a distance ≤ c h̃i from Ni.
Denote the vertices of Di by Mn (x̃n, ỹn) , n = 0, 1, 2.

Let us define the functions

λ̃i0 (x, y) =

∣∣∣∣∣∣
x y 1
x̃1 ỹ1 1
x̃2 ỹ2 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

x̃0 ỹ0 1
x̃1 ỹ1 1
x̃2 ỹ2 1

∣∣∣∣∣∣
−1

and analogously λ̃i1 and λ̃i2. Then we consider the functions

ν̃in (P ) =

{
3

a(Di)

(
3λ̃in (P ) −

∑
k �=n λ̃ik (P )

)
if P ∈ Di,

0 if P /∈ Di,
n = 0, 1, 2,

ν̃i (P ) =
2∑

n=0

λ̃in (Ni) ν̃in (P ) .(13)

The nodal function φ̃Ni
(x, y) restricted to the triangle NiNjNk of D is equal to∣∣∣∣∣∣

x y 1
α̃j β̃j 1
α̃k β̃k 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

α̃i β̃i 1
α̃j β̃j 1
α̃k β̃k 1

∣∣∣∣∣∣∣
−1

,

where
(
α̃j , β̃j

)
and

(
α̃k, β̃k

)
are the coordinates of the points Nj and Nk, respec-

tively. The quasi-interpolant Q̃f̃ has a similar expression to (12), namely

(14) Q̃f̃ (P ) =
∑

i

(∫
Di

f̃ ν̃i dx

)
φ̃Ni

(P ) , P ∈ ∆̃.
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The first term of the sum (13) is

λ̃i0 (Ni) ν̃i0 (P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
3(3λ̃i0(P )−λ̃i1(P )−λ̃i2(P ))

a(Di)
·

∣∣∣∣∣∣∣∣∣
α̃i β̃i 1
x̃1 ỹ1 1
x̃2 ỹ2 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x̃0 ỹ0 1
x̃1 ỹ1 1
x̃2 ỹ2 1

∣∣∣∣∣∣∣∣
if P ∈ Di,

0 if P /∈ Di.

5.2. Projecting the polyhedral surface Ω onto the coordinate planes. Let
us divide the polyhedral surface Ω into six parts: Ω = Ω1 ∪Ω2 ∪Ω3 ∪Ω4 ∪Ω5 ∪Ω6

according to the following rule: first we split the sphere S2 into six equal disjoint
parts Sm, m = 1, . . . , 6, building the inscribed cube with faces parallel to the
coordinate axes and arches of big circles between the neighbor vertices of the cube.
The parts S1 and S2 will be symmetric with respect to the plane xOy, S3 and S4

will be symmetric with respect to the plane yOz , resp. S5 and S6 will be symmetric
with respect to the plane zOx. The intersection of two neighbors Sm will be the
big arch between the corresponding two vertices of the cube.

Thus, Ωm will contain those triangles of Ω that have all the vertices situated in
Sm. There will also be triangles that have the vertices situated in different parts
Sm. In order to decide to which Ωm such triangles belong, we measure for each
of them the angles αl, l = 1, 2, 3, between its plane and the planes xOy, yOz and
zOx, respectively, and then take the minimum of αl. If for example the minimum
is attained for l = 1, then the triangle will belong to either Ω1 or Ω2, depending
on which Ωm contains one vertex of the triangle. In the beginning we choose the
triangulation (the polyhedron) such that no triangle has vertices situated on the
“opposite” Ωm.

Now let us reorder the triangles of the triangulation T so that the part Ωm

contains the triangles Tm
i , i = 1, . . . , km, m = 1, . . . , 6.

We have to make some remarks concerning the interpolant Q. For the point
Pi ∈ Ωm, it is possible for the associated triangle ∆i not to belong to Ωm. This is
why we ask for all the associated triangles ∆i to be chosen so that they contain the
vertices Pi, respectively. We will see in Proposition 9 that we need this condition
for our purposes anyway.

Without loss of generality, we restrict ourselves to the part Ω1 consisting of the
triangles T 1

i , i = 1, . . . , k1.
Now the part Ω1 is split into three zones Ω1 = Ωx

1 ∪ Ωy
1 ∪ Ωz

1 according to the
following rule. For each triangle T 1

i of the part Ω1, we calculate the angles between
its plane and the coordinate planes. Then we project T 1

i onto that coordinate
plane that gives the minimum angle. If there is more than one angle that attains
the minimum, we perform only one of the projections.

To do this, we evaluate the quantities |Axoy/A| , |Ayoz/A| and |Azox/A| , defined
in Lemma 1, representing the absolute values of the cosines of the respective angles.
Then we choose the maximum of these quantities. The parts Ωx

1 , Ωy
1 and Ωz

1 contain
those triangles that project onto yOz, zOx and xOy, respectively. We reorder the
triangles of Ω1 such that the zone Ωx

1 contains the triangles Tx1
i , i = 1, . . . , kx

1 , and
analogously for Ωy

1 and Ωz
1. Obviously kx

1 + ky
1 + kz

1 = k1.
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We need to consider “enlarged” regions Ωx
1 , Ωy

1 and Ωz
1 for our quasi-interpolant.

The region Ωx
1 consists of the union of the triangles Tx1

i and all their neighboring
triangles from Ω, where we consider two triangles as neighbors if they share a
common vertex. The regions Ωy

1 and Ωz
1 are taken analogously. These enlarged

regions are not necessarily connected and they may contain triangles that have
degenerated projections onto the respective planes. In this case, we redefine the
enlarged zones eliminating the triangles that have degenerated projections.

Again, without loss of generality, we restrict to the part Ωz
1 and try, in the

expression of Qf, to replace z by zi (x, y) from the equation of the plane of each
triangle Tz1

i , i = 1, . . . , kz
1 . In this case (x, y) ∈ Prxoy Tz1

i and the surface element

dTz1
i equals

a(Tz1
i )

a(Prxoy Tz1
i )

dx dy.

Moreover it is easy to show that λin(x, y, zi (x, y)) = λ̃in (x, y) for (x, y) belonging
to the triangle Di, which is the projection of Tz1

i onto xOy. Let us now compare the
nodal functions. Take the face (AiAjAk) of Ωz

1 with Ai (αi, βi, γi) , Aj (αj , βj , γj) ,
Ak (αk, βk, γk) . The equation of this face is∣∣∣∣∣∣∣∣

x y z 1
αi βi γi 1
αj βj γj 1
αk βk γk 1

∣∣∣∣∣∣∣∣ = 0,

or Ayozx+Azoxy+Axoyz−ξ = 0. The nodal function φAi
, restricted to the triangle

AiAjAk, is equal to ∣∣∣∣∣∣
x y z
αj βj γj

αk βk γk

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

αi βi γi

αj βj γj

αk βk γk

∣∣∣∣∣∣
−1

.

Furthermore, by replacing z using the equation Ayozx+Azoxy +Axoyz−ξ = 0 and
making some column transformations, we obtain

φAi
(x, y, z (x, y)) =

∣∣∣∣∣∣∣
x y ξ

Axoy

αj βj
ξ

Axoy

αk βk
ξ

Axoy

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣

αi βi
ξ

Axoy

αj βj
ξ

Axoy

αk βk
ξ

Axoy

∣∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣
x y 1
αj βj 1
αk βk 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

αi βi 1
αj βj 1
αk βk 1

∣∣∣∣∣∣
−1

,

which is exactly the nodal function φ̃i (x, y) restricted to the triangle A′
iA

′
jA

′
k—the

projection of the triangle AiAjAk onto xOy.
In order to compare the two quasi-interpolants, we need to state the first term

of the sum (11) explicitly as

λi0 (Ai) νi0 (P ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
3(3λi0(P )−λi1(P )−λi2(P ))

a(∆1
i )

·

∣∣∣∣∣∣∣∣
αi βi γi

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣
if P ∈ ∆1

i ,

0 if P /∈ ∆1
i .
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Comparing the formulae (12) and (14), we can establish the following result.

Proposition 9. Let Qf be the quasi-interpolant given in (12) and Q̃fz the two-
dimensional quasi-interpolant given in (14) , associated to the triangulation obtained
by projecting Ωz

1 onto xOy. If

(1) each point Pi is one of the vertices of the triangle ∆1
i ,

(2) the associated triangles ∆1
i are chosen such that they have non-degenerated

projection onto xOy,

then for all (x, y) ∈ Prxoy Ωz
1 we have

Q̃f1 (x, y) =
∑

i

1
a (Di)

· Gi (fz; x, y) ,(15)

Qf (x, y, z (x, y)) =
∑

i

1
a (Prxoy ∆1

i )
· Gi (fz; x, y) ,(16)

where the function z (x, y) is the function whose restrictions to each triangle
Prxoy Tz1

i (Tz1
i any triangle of Ωz

1) are equal to the function zi (x, y) which ex-
presses z using the equation of the plane of Tz1

i . Also f and fz are related by the
formula f (x, y, zi (x, y)) = fz (x, y) , where (x, y) ∈ Prxoy Tz1

i .

Proof. The proof follows immediately from the above calculations and from the fact
that, if Pi is a vertex of the triangle ∆1

i , then we have

∣∣∣∣∣∣
αi βi 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣ ·
∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣
αi βi γi

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
∣∣∣∣∣∣

x0 y0 z0

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
−1

,

together with the other two symmetric equalities for the second and third terms
of the sums (11) and (13). If Pi is one of the vertices of the triangle ∆1

i , then the
conclusion follows. We will not write here the expressions for the functions Gi. The
point is that the same functions Gi appear on the right sides of the equalities (15)
and (16) and so we can relate the two quasi-interpolants. �

Now let us turn back to the error ‖f − Qf‖L2(Ω), which can be written as

‖f − Qf‖2
L2(Ω) =

6∑
m=1

‖f − Qf‖2
L2(Ωm)

=
6∑

m=1

km∑
i=1

∫
T m

i

|f (x, y, z) − Qf (x, y, z)|2 dTm
i .
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Projecting now onto the coordinate planes, we obtain

‖f − Qf‖2
L2(Ω)

=
2∑

m=1

kz
m∑

i=1

∫
Prxoy Tzm

i

|f(x, y, zim(x, y))

− Qf(x, y, zim(x, y))|2 a(Tzm
i )

a(Prxoy Tzm
i )

dx dy

+
4∑

m=3

kx
m∑

i=1

∫
Pryoz Txm

i

|f(xim(y, z), y, z)

− Qf(xim(y, z), y, z)|2 a(Txm
i )

a(Pryoz Txm
i )

dy dz

+
6∑

m=5

ky
m∑

i=1

∫
Przox Tym

i

|f(x, yim(z, x), z)

− Qf(x, yim(z, x), z)|2 a(Tym
i )

a(Przox Tym
i )

dz dx,

and furthermore, using the L2-norm on the projected surfaces and Proposition 9,

‖f − Qf‖2
L2(Ω) =

6∑
m=1

⎛⎝ kz
m∑

i=1

a (Tzm
i )

a (Prxoy Tzm
i )

∥∥∥fz − Q̃fz

∥∥∥2

L2(Prxoy Tzn
i )

+
kx

m∑
i=1

a (Txm
i )

a (Pryoz Txm
i )

∥∥∥fx − Q̃fx

∥∥∥2

L2(Pryoz Txm
i )

+
ky

m∑
i=1

a (Tym
i )

a (Przox Tym
i )

∥∥∥fy − Q̃fy

∥∥∥2

L2(Przox Tym
i )

⎞⎠ .

It is well known that for an arbitrary plane we have the equality cos2 α + cos2 β +
cos2 γ = 1, where α, β and γ are the angles of this plane with xOy, yOz and zOx,
respectively. Since max (cos α, cosβ, cos γ) ≥ 1/

√
3, we get

1 ≤ a (Tzm
i )

a (Prxoy Tzm
i )

≤
√

3, for all i = 1, . . . , kz
m, m = 1, . . . , 6,

1 ≤ a (Txm
i )

a (Pryoz Txm
i )

≤
√

3, for all i = 1, . . . , kx
m, m = 1, . . . , 6,

1 ≤ a (Tym
i )

a (Przox Tym
i )

≤
√

3, for all i = 1, . . . , ky
m, m = 1, . . . , 6.

Hence, we obtain

(17)
6∑

m=1

(
Em
z + Em

x + Em
y

)
≤ ‖f − Qf‖2

L2(Ω) ≤
√

3
6∑

m=1

(
Em
z + Em

x + Em
y

)
,
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where

Em
z =

∥∥∥fm
z − Q̃fm

z

∥∥∥2

L2(Prxoy Ωz
m)

,

Em
x =

∥∥∥fm
x − Q̃fm

x

∥∥∥2

L2(Pryoz Ωx
m)

,

Em
y =

∥∥∥fm
y − Q̃fm

y

∥∥∥2

L2(Przox Ωy
m)

and⎧⎨⎩
fm
z (x, y) = f (x, y, zim (x, y)) on each triangle Prxoy Tzm

i , i = 1, . . . , kz
m,

fm
x (y, z) = f (xim (y, z) , y, z) on each triangle Pryoz Txm

i , i = 1, . . . , kx
m,

fm
y (z, x) = f (x, yim (z, x) , z) on each triangle Przox Tym

i , i = 1, . . . , ky
m.

Thus, the problem of studying the error ‖f − Qf‖L2(Ω) has been reduced to the
study of two-dimensional errors from [14].

5.3. Jackson and Bernstein inequalities. Let us recall some of the results in
[14]. To simplify the notation, we restrict ourselves to the case m = 1 and to
the projections onto xOy, and we set Θ = Prxoy Ωz

1. Given a subset M of L2 (Θ) ,
consider the best approximation

EM (f)2 = inf
g∈M

‖f − g‖2 , f ∈ L2 (Θ) .

We are interested in approximations from above for EM (f)2, when M coincides
with a subspace S̃j of piecewise linear continuous functions on the triangles of a
triangulation Dj of Θ. The proofs can be found in [14].

Theorem 10 (Jackson-type inequality). There exists a constant C such that

ES̃j (f1)2 ≤
∥∥∥f1 − Q̃jf1

∥∥∥
2
≤ Cω1

(
h
(
Dj

)
, f1

)
2
, for all f1 ∈ L2 (Θ) ,

ω1(t, f)2 being the modulus of smoothness of order 1 associated to the function f
and the L2-norm on Θ at the point t > 0.

The following theorem gives inverse estimates for our approximation, i.e. we give
estimates for the moduli of smoothness of functions in L2 (Θ) .

Theorem 11 (Bernstein-type inequality). There exists a constant C such that for
all j > 0 and f1 ∈ L2 (Θ) we have

ω1

(
2−j , f1

)
2
≤ C 2−j

(
‖f1‖L2(Θ) +

j∑
l=0

2lES̃l (f1)2

)
.

5.4. The spherical quasi-interpolant. The step back to the sphere is straight-
forward. We define the quasi-interpolants Qj : L2

(
S2
)
→ Vj as

QjF = Qj (F ◦ p) ◦ p−1.

Then the error in the norm ‖ · ‖∗ is

‖QjF − F‖∗ = ‖
(
QjF − F

)
◦ p‖Ω = ‖

(
QjF

)
◦ p − F ◦ p‖Ω

= ‖Qj (F ◦ p) ◦ p−1 ◦ p − F ◦ p‖Ω = ‖Qj (F ◦ p) − F ◦ p‖Ω.

So the evaluation of the error for the spherical quasi-interpolant reduces to the
evaluation of the error for the quasi-interpolant associated to the polyhedron.
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Figure 4. The data set pol5.

6. Numerical examples

In order to illustrate our wavelets, we take as the initial polyhedron Π an oc-
tahedron with six vertices and we perform five levels of decomposition. At level
five the total number of vertices is 4098. We consider a particular data set pol5
from the texture analysis of crystals (cf. [20]); see Figure 4. It consists of 36 × 72
measurements on the sphere and its main characteristic is that the values over the
whole sphere are constant, except for some peaks.

Figure 5. The function f5 ∈ V5, an approximation of pol5 at level 5.
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First we approximate this data with the function f5 ∈ V5 (see Figure 5). The
approximation error

e =
1

36 · 72

36∑
i=1

72∑
j=1

∣∣f5(i, j) − pol5(i, j)
∣∣

is 1.0984. Since the set
{
ϕj

v

}
v∈V j is a basis for Vj , for j = 0, 1, 2, . . . , we can write

f5 (η) =
∑

v∈V 5

f5
v ϕ5

v (η) , η ∈ S
2.

The vector f5 =
(
f5

v

)
v∈V 5 associated to the function f5 was then decomposed into

f0 and g0, g1, g2, g3, g4 using the decomposition algorithm A1′ described in [7], p.
191. The detail coefficients gj , j = 0, . . . , 4, were thresholded to obtain a specific
compression rate. More precisely, their components

(
gj

u

)
u∈V j+1\V j were replaced

by the values
(
ĝj

u

)
u∈V j+1\V j according to a strategy known as hard thresholding.

This consists of choosing a threshold ε > 0 and then setting

ĝj
u =

{
gj

u if
∣∣gj

u

∣∣ ≥ ε,
0 otherwise.

The ratio of the number of nonzero coefficients to the total number,∑4
j=0

∣∣{u ∈ V j+1 \ V j : ĝj
u �= 0

}∣∣∑4
j=0 |V j+1 \ V j |

,

is referred to as the compression rate.
After compression we perform the reconstruction (see the reconstruction algo-

rithm A2′ in [7], p. 191), yielding an approximation with error e5, e5 = f5 − f̂ 5,

where f̂ 5 =
(
f̂ 5

v

)
v∈V 5

is the vector associated to the reconstructed function f̂ 5.

Figure 6. The reconstructed function f̂ 5 for the compression rate 0.1.
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Table 1. Reconstruction errors for some compression rates.

comp. rate nr. of zero coeff.
∥∥e5

∥∥
∞

∥∥e5
∥∥

2
mean

(
e5
)

0.05 3888 123.09 1764.80 21.70
0.1 3683 49.16 659.32 7.83
0.25 3070 11.47 169.78 1.92
0.5 2046 0.99 12.94 0.12
0.75 1024 0.07 0.63 0.004

We have measured this error in several ways:

• the maximum error given by∥∥e5
∥∥
∞ = max

η∈S2

∣∣e5 (η)
∣∣ = max

v∈V 5

∣∣e5 (v)
∣∣ ;

• the 2-norm

∥∥e5
∥∥

2
=

(∑
v∈V 5

∣∣∣f5
v − f̂ 5

v

∣∣∣2)1/2

;

• the mean absolute error over the vertices

mean
(
e5
)

=
1

|V 5|
∑

v∈V 5

∣∣e5 (v)
∣∣ .

Figures 6, 7, and 8 show the reconstructed functions f̂ 5 for different compression
rates, and the errors are tabulated in Table 1.

Figure 7. The reconstructed function f̂ 5 for the compression rate 0.25.
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Figure 8. The reconstructed function f̂ 5 for the compression rate 0.75.

7. Appendix

Appendix 7.1. Proof of Lemma 1. To simplify the formulas, let us denote

Axoy =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ , Ayoz =

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ , Azox =

∣∣∣∣∣∣
z1 x1 1
z2 x2 1
z3 x3 1

∣∣∣∣∣∣ ,
dT =

∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ , A =
√
A2

xoy + A2
yoz + A2

zox .

Then the equation of the plane M1M2M3 is

Ayozx + Azoxy + Axoyz − dT = 0

and if we project this plane onto xOy in order to transform the integral on Ω to a
double integral, we obtain

dΩ(x) = dΩ(x, y, z) =
|A|

|Axoy|
dx dy.

Note that if the triangle T is parallel to Oz, then Axoy = 0, and in this case we
prove the formula by projecting the triangle [M1M2M3] onto the plane xOz. So,

φ1(x, y, z(x, y)) = ax + by − c · xAyoz + yAzox − dT

Axoy

= ax + by − c

Axoy
·

∣∣∣∣∣∣∣∣
x y 0 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = Ax + By + C.
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Then

f1 = φ1 (x1, y1, z(x1, y1)) = ax1 + by1 −
c

Axoy
·

∣∣∣∣∣∣∣∣
x1 y1 0 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣
= ax1 + by1 −

c

Axoy
(−z1)Axoy = ax1 + by1 + cz1,

and analogously for the values f2, f3, g1, g2, g3.
Coming back to the integral and using the formula for the integral of a Bernstein-

type polynomial (see [4], §5), we may write∫
T

φ1(x)φ2(x)dΩ(x)

=
∫

Prxoy T

2a(T )
|Axoy|

φ1 (x, y, z(x, y))φ2 (x, y, z(x, y)) dx dy

=
2a(T )
|Axoy|

· a (Prxoy T )
12

(f1g1 + f2g2 + f3g3 + (f1 + f2 + f3)(g1 + g2 + g3))

=
a(T )
12

(f1g1 + f2g2 + f3g3 + (f1 + f2 + f3)(g1 + g2 + g3)) ,

since |Axoy| = 2a (Prxoy T ), as Prxoy T denotes the projection of the triangle T
onto the plane xOy.

Appendix 7.2. Proof of Proposition 4. We focus on the face ∆ of the poly-
hedron Π, contained in a plane P of equation ax + by + cz + d = 0. At least one
of the numbers a, b, c is nonzero. Without loss of generality, we suppose c �= 0 and
consider the parametric equations of the plane P

(18) x (u, v) = u, y (u, v) = v, z (u, v) = −1
c

(au + bv + d) , (u, v) ∈ R
2.

We intend to express dω(η) and dΩ(x) with respect to du and dv.
With �r (u, v) =

(
u, v,−1

c (au + bv + d)
)

representing the vectorial equation of
the plane P and �ru =

(
1, 0,−a

c

)
, �rv =

(
0, 1,− b

c

)
its partial derivatives, we have

�ru × �rv =
(

a
c , b

c , 1
)

and therefore

(19) dΩ(x) = ‖�ru × �rv‖ du dv =
√

a2 + b2 + c2

|c| du dv.

The projection onto the sphere of the point (x, y, z) ∈ ∆ has the coordinates

X (x, y, z) =
x√

x2 + y2 + z2
,

Y (x, y, z) =
y√

x2 + y2 + z2
,

Z (x, y, z) =
z√

x2 + y2 + z2
.
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If we want to express dω(η) with respect to du and dv, we have to consider x =
x (u, v) , y = y (u, v) , z = z (u, v) given by (18). Denoting

�R(u, v) = (X(x(u, v), y(u, v), z(u, v)),

Y (x(u, v), y(u, v), z(u, v)),

Z(x(u, v), y(u, v), z(u, v))),

we have

�Ru = (Xu, Yu, Zu)
= (Xxxu + Xyyu + Xzzu, Yxxu + Yyyu + Yzzu, Zxxu + Zyyu + Zzzu)
= (∇X · �ru,∇Y · �ru,∇Z · �ru)

and similarly
�Rv = (∇X · �rv,∇Y · �rv,∇Z · �rv) .

Therefore, using the formula

(�u1 · �v1) (�u2 · �v2) − (�u1 · �v2) (�u2 · �v1) = (�u1 × �u2) (�v1 × �v2) ,

we further obtain
�Ru × �Rv =

(
�M · �n, �N · �n, �P · �n

)
,

with

�M = ∇Y ×∇Z, �N = ∇Z ×∇X, �P = ∇X ×∇Y, �n = �ru × �rv,

and consequently∥∥∥�Ru × �Rv

∥∥∥2

=
(

�M · �n
)2

+
(

�N · �n
)2

+
(

�P · �n
)2

.

Evaluating �M · �n, we get

�M · �n =
1
c

∣∣∣∣∣∣
a b c
Yx Yy Yz

Zx Zy Zz

∣∣∣∣∣∣ =
x

c (x2 + y2 + z2)2
(ax + by + cz) = − xd

c (x2 + y2 + z2)2

and analogous expressions for �N · �n and �P · �n. Finally

(20) dω(η) =
∥∥∥�Ru × �Rv

∥∥∥ du dv =
|d|

|c| (x2 + y2 + z2)3/2
du dv.

Comparing (19) and (20), we obtain

dω(η) =
|d|√

a2 + b2 + c2
· 1

(x2 + y2 + z2)3/2
dΩ(x)

and thus formula (5) is proved.
Furthermore, using formula (3), we express x, y, and z with respect to η =

(η1, η2, η3) and we get

(
x2 + y2 + z2

)3/2
=

(
d2

(
η2
1 + η2

2 + η2
3

)
(aη1 + bη2 + cη3)

2

)3/2

=
d3

(aη1 + bη2 + cη3)
3 .

Replacing it in (5), we obtain formula (6).
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