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SUPERCONVERGENCE OF SPECTRAL COLLOCATION
AND p-VERSION METHODS

IN ONE DIMENSIONAL PROBLEMS

ZHIMIN ZHANG

Abstract. Superconvergence phenomenon of the Legendre spectral colloca-
tion method and the p-version finite element method is discussed under the
one dimensional setting. For a class of functions that satisfy a regularity con-
dition (M): ‖u(k)‖L∞ ≤ cMk on a bounded domain, it is demonstrated, both
theoretically and numerically, that the optimal convergent rate is supergeo-
metric. Furthermore, at proper Gaussian points or Lobatto points, the rate of
convergence may gain one or two orders of the polynomial degree.

1. Introduction

Perhaps the most appreciated property of the spectral method/p-version (finite
element) method is the spectral accuracy, geometric/exponential convergent rate.
This remarkable behavior is well understood [3, 5, 6, 8, 9, 13, 16, 19, 21]. In the
literature, some researchers observed supergeometric convergence rate (see, e.g.,
[18]) in numerical tests using spectral collocation methods. However, a theoretical
justification of this phenomenon is lacking.

Observation from interpolation. Let Lk be the Legendre polynomial of degree
k with Lk(1) = 1 and define

(1.1) φk+1(x) =
∫ x

−1

Lk(t)dt, k = 1, 2, . . . .

The following properties are valid:

φk+1(x) =
1

2k + 1
(Lk+1(x) − Lk−1(x)) =

1
k(k + 1)

(x2 − 1)L′
k(x).

Zeros of φk are called Gauss-Lobatto points of degree k. If fp ∈ Pp[−1, 1] interpo-
lates a continuous function f at the p + 1 Gauss-Lobatto points −1 = x0 < x1 <
· · · < xp = 1, then the remainder of the interpolation is

f(x) − fp(x) = f [x0, x1, . . . , xp, x]c1(p)(2p + 1)φp+1(x)
= f [x0, x1, . . . , xp, x]c1(p)(Lp+1(x) − Lp−1(x)),(1.2)
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with [22]

(1.3) c1(p) = 2p+1/

(
2p + 2
p + 1

)
≈

√
π(p + 1)
2p+1

.

When f ∈ Cp+1[−1, 1], the divided difference

f [x0, x1, . . . , xp, x] =
f (p+1)(ξx)
(p + 1)!

, ξx ∈ (0, 1).

Furthermore, if f satisfies condition (M), we have the estimate

(1.4) ‖f − fp‖L∞[−1,1] ≤ c1(p)
2cMp+1

(p + 1)!
≤ C

(
eM

2(p + 1)

)p+1

,

by the Stirling formula (A.2). Here and in the rest of this paper, C stands for a
generic constant, which is not necessary the same in different places.

We may also consider the remainder for the derivative

f ′(x) − f ′
p(x) = f [x0, x1, . . . , xp, x, x]c1(p)(Lp+1(x) − Lp−1(x))

+f [x0, x1, . . . , xp, x]c1(p)(2p + 1)Lp(x)

and to obtain the estimate

(1.5) ‖f ′−f ′
p‖L∞[−1,1] ≤ c1(p)

2cMp+2

(p + 2)!
+c1(p)(2p+1)

cMp+1

(p + 1)!
≤ C

(
eM

2(p + 1)

)p

.

Comparing (1.4) and (1.5), we see that the error for the function value approxima-
tion is better than that of the derivative by a factor p + 1. However, if evaluating
the derivative errors at the Gaussian points gj , i.e., zeros of Lp(x), we obtain

(1.6) |(f ′ − f ′
p)(gj)| ≤ c1(p)

2cMp+2

(p + 2)!
≤ C

(
eM

2(p + 1)

)p+2

.

We see that at the Gaussian points, the approximation error for the derivative is
improved from the global one by a factor (p + 1)2. This motivates the following
definition.

Definition. The error ep = u − up is said to have superconvergence at a set of
points {ξp,j} with order γ > 0 if there exists a constant a > 0 such that

lim
p→∞

‖ep‖L∞[−1,1]

pγ maxj |ep(ξp,j)|
→ a.

We observe the following from the above discussion.
(1) All three error estimates (1.4)–(1.6) are supergeometric in the sense

exp(p(κ − log p)), κ = log
eM

2
,

which is better than the usual spectral convergent rate exp(−σp) for analytic func-
tions.

(2) At the Gaussian points, the derivative approximation error is superconver-
gent.

Now the question is whether we are able to realize (1) and (2) with the p-version
finite element and spectral collocation methods in solving differential equations.
The current paper provides an affirmative answer to this question. We shall prove,
using a simple model with favorable condition, that (1) and (2) are indeed the case.
In addition, we demonstrate, by numerical examples, that our estimates are sharp.
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We end this section by listing some properties of Lj and φj which will be used
later:

‖Lj‖2
L2[−1,1] =

2
2j + 1

, ‖φj‖2
L2[−1,1] =

4
(2j − 3)(2j − 1)(2j + 1)

,(1.7)

‖Lp+1 − Lp−1‖2
L2[−1,1] =

4(2p + 1)
(2p − 1)(2p + 3)

,(1.8)

p∑
j=2

(2j − 1)2

4
‖φj‖2

L2[−1,1]‖Lj−1‖2
L2[−1,1] =

2
3
− 2p

4p2 − 1
.(1.9)

Their proofs are straightforward and we only verify the last one. In fact, using
(1.7), the left-hand side of (1.9) equals

p∑
j=2

2
(2j − 3)(2j + 1)

=
1
2

p∑
j=2

(
1

2j − 3
− 1

2j + 1

)
=

1
2

(
1 +

1
3
− 1

2p − 1
− 1

2p + 1

)

which equals the right-hand side of (1.9).

2. The p-version finite element method

We start from the simplest model

(2.1) −u′′ = f, u(−1) = 0 = u(1).

Its weak form is to find u ∈ H1
0 [−1, 1] such that

(2.2) (u′, v′) = (f, v) =
∫ 1

−1

f(x)v(x)dx, ∀v ∈ H1
0 [−1, 1].

Due to this special feature, the solution has the expansion

(2.3) u(x) =
∞∑

j=2

bj−1φj(x), bj−1 =
2j − 1

2
(f, φj),

where φj is defined by (1.1). The p-version or Legendre spectral method is to find
up ∈ Pp ∩ H1

0 [−1, 1] such that

(2.4) (u′
p, φ

′
j) = (f, φj), j = 2, . . . , p.

Substituting up(x) =
p∑

j=2

aj−1φj(x) into (2.4) and using (1.1) and (1.7), we obtain

aj = bj , j = 1, 2, . . . , p − 1. Differentiating (2.3), we have

u′(x) =
∞∑

k=1

bkLk(x).

Therefore, the bj ’s are coefficients of the Legendre expansion of u′ with b0 = 0, due
to the boundary condition.
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Theorem 2.1. Let u and up be solutions of (2.2) and (2.4), respectively. Assume
that u satisfies condition (M). Then when (2p + 1)(2p + 3) > 2M2,

‖u′ − u′
p‖L2[−1,1] ≤ C

√
p

(
eM

2p

)p+1

,(2.5)

‖u − up‖L2[−1,1] ≤
C
√

p

(
eM

2p

)p+1

.(2.6)

Here C is independent of p and M .

Proof. The error of the (p − 1)-term Legendre expansion is

(2.7) ‖u′ − u′
p‖2

L2[−1,1] =
∞∑

k=p

2
2k + 1

b2
k.

Using the result [14, p. 58, Theorem 2.1.6], we have

(2.8) bk =
2kk!
(2k)!

u(k+1)(ηk), ηk ∈ (−1, 1).

Note that
2kk!
(2k)!

=
1

(2k − 1)!!
. Applying the regularity assumption |u(k)(x)| ≤ cMk,

we derive

‖u′ − u′
p‖2

L2[−1,1]

< 2(cMp+1)2
(

1

(2p − 1)!!(2p + 1)!!
+

M2

(2p + 1)!!(2p + 3)!!
+

M4

(2p + 3)!!(2p + 5)!!
+ · · ·

)

=
2(cMp+1)2

(2p − 1)!!(2p + 1)!!

(
1 +

M2

(2p + 1)(2p + 3)
+

M4

(2p + 1)(2p + 3)2(2p + 5)
+ · · ·

)

<
4(cMp+1)2

(2p − 1)!!(2p + 1)!!
,

when (2p + 1)(2p + 3) > 2M2. This last term can be readily estimated by the
Stirling type formula (A.1)–(A.4),

(2p − 1)!!(2p + 1)!! ≈
√

(2p)!
4
√

π(p + 0.25)

√
(2p + 2)!

4
√

π(p + 1.25)
≈ (2p)!2p

√
πp

≈
(

2p

e

)2p

2
√

2p,

which leads to (2.5) with C = 4
√

2c. Under the asymptotic condition, the first term
in the expansion (2.7) is the dominant term, which has the estimate

(2.9)
2

2p + 1
b2
p ≈ c2p√

2

(
eM

2p

)2(p+1)

.

Now we turn to estimating the error in the function value approximation,

(u − up)(x) =
∞∑

j=p

bjφj+1(x) =
∞∑

j=p

bj

2j + 1
(Lj+1 − Lj−1)(x)

= − bp

2p + 1
Lp−1(x) − bp+1

2p + 3
Lp(x) +

∞∑
j=p+1

(
bj−1

2j − 1
− bj+1

2j + 3

)
Lj(x).

To obtain
bj−1

2j − 1
− bj+1

2j + 3
,
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we compare the power series and the Legendre expansions of u′,

u′(x) =
∞∑

m=1

am

m!
xm =

∞∑
i=1

biLi(x).

Multiplying both sides by Lk and integrating, we have
∞∑

m=0

am

m!

∫ 1

−1

xmLk(x)dx =
2

2k + 1
bk.

Using the fact [15, p. 194 (42)]

1
2

∫ 1

−1

xmLk(x)dx =
m!

(m − k)!!(m + k + 1)!!
, m ≥ k, m − k = 0(mod 2),

we obtain

bk = (2k + 1)
∑

m≥k,m−k=0(mod 2)

am

(m − k)!!(m + k + 1)!!

= (2k + 1)
(

ak

0!!(2k + 1)!!
+

ak+2

2!!(2k + 3)!!
+

ak+4

4!!(2k + 5)!!
+ · · ·

)
.(2.10)

Therefore,
bj−1

2j − 1
− bj+1

2j + 3
=

aj−1

(2j − 1)!!
,

and hence,
(2.11)

‖u − up‖2
L2[−1,1] =

b2
p

(2p + 1)2
2

2p − 1
+

b2
p+1

(2p + 3)2
2

2p + 1
+

∞∑
j=p+1

a2
j−1

[(2j − 1)!!]2
2

2j + 1
.

Following similar arguments, it is straightforward to obtain the error bound (2.6)
with the same constant C as in (2.5). �

Since up is the Legendre expansion of u, the upper bound in Theorem 2.1 is also
a lower bound under the nondegenerate assumption: bp 
= 0.

Corollary 2.1. Under the nondegenerate assumption in addition to the hypotheses
of Theorem 2.1, we have

‖u − up‖L2[−1,1] = O[
1
√

p

(
eM

2p

)p+1

], ‖u′ − u′
p‖L2[−1,1] = O[

√
p

(
eM

2p

)p+1

],

(2.12)

‖u − up‖L∞[−1,1] = O[
(

eM

2p

)p+1

], ‖u′ − u′
p‖L∞[−1,1] = O[p

(
eM

2p

)p+1

].(2.13)

3. Spectral collocation method

In practice, collocation methods are usually employed. In our current situation,
it is natural to collocate at the p + 1 Gauss-Lobatto points. Therefore, we are
seeking wp ∈ Pp ∩ H1

0 [−1, 1] such that

−w′′
p (xj) = f(xj), j = 0, 1, . . . , p.
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A well-known fact is that the above collocation method is equivalent to a spectral
method with numerical integration. Let ωj , j = 0, 1, . . . , p, be the weights for the
(p + 1)-point Gauss-Lobatto quadrature. Then for k = 2, . . . , p,
(3.1)

(w′
p, φ

′
k) = −(w′′

p , φk) = −
p∑

j=0

w′′
p (xj)φk(xj)ωj =

p∑
j=0

f(xj)φk(xj)ωj = (f, φk)∗.

Note that the (p + 1)-point Gauss-Lobatto quadrature rule (f, φj)∗ is exact for
polynomials of degrees up to 2p − 1. Therefore, the solution wp can be expressed
by

wp(x) =
p∑

j=2

cj−1φj(x), cj−1 =
2j − 1

2
(f, φj)∗.

We want to estimate the error between up and wp. This error is the influence
of numerical interpolation and integration. Towards this end, we introduce an
auxiliary problem: Find vp ∈ Pp ∩ H1

0 [−1, 1] such that

(3.2) (v′p, φ
′
j) = (fp, φj), j = 2, . . . , p,

where fp is the Lagrange interpolation of f at p + 1 Gauss-Lobatto points. Since
the quadrature rule (·, ·)∗ uses only the function values at the Gauss-Lobatto points
where fp is interpolated, then

(f, φj)∗ = (fp, φj)∗, j = 2, . . . , p.

Recall that the quadrature rule (·, ·)∗ is exact for polynomials of degree ≤ 2p − 1.
From this it is clear that

(fp, φj)∗ = (fp, φj), j = 2, . . . , p − 1.

We see that wp and vp differ only at the last coefficient. If we denote

c̄p−1 =
2p − 1

2
(fp, φp),

then

(3.3) vp(x) − wp(x) =
2p − 1

2
((fp, φp) − (fp, φp)∗)φp(x).

Theorem 3.1. Let wp and vp be solutions of (3.1) and (3.2), respectively. Then

(3.4) (vp − wp)(x) = − (p + 1)2pp!
p(2p + 1)(2p)!

f (p)(ξp)φp(x), ξp ∈ (−1, 1).

Proof. The numerical integration error is given by [7, p. 104, (2.7.1.13)]

(3.5) (fp, φp) − (fp, φp)∗ = − (p + 1)22p+1(p!)4

p(2p + 1)[(2p)!]3
(fpφp)(2p).

By the Newton-Leibnitz formula

(fpφp)(2p) =
(

2p

p

)
f (p)

p φ(p)
p(3.6)

=
(

2p

p

) (
2p − 2
p − 1

)
(p − 1)!
2p−1

f (p)
p

=
[(2p)!]2

(2p − 1)(p!)32p
f (p)(ξp).
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Here we have used the fact that

φ(p)
p (x) = L

(p−1)
p−1 (x) =

(
2p − 2
p − 1

)
(p − 1)!
2p−1

.

Note that f
(p)
p = f [x0, x1, . . . , xp]p!. Substituting (3.6) into (3.5) yields

(3.7) (fp, φp) − (fp, φp)∗ = − (p + 1)2p+1p!
p(4p2 − 1)(2p)!

f (p)(ξp).

The conclusion follows from (3.3). �

Applying Stirling’s formula and condition (M) (note that f (p) = −u(p+2)) to
Theorem 3.1, it is straightforward to obtain estimates for vp − wp in any norm,
especially the following.

Corollary 3.1.

‖vp − wp‖L2[−1,1] = O[
1
√

p

(
eM

2p

)p+2

], ‖v′p − w′
p‖L2[−1,1] = O[

√
p

(
eM

2p

)p+2

],

(3.8)

‖vp − wp‖L∞[−1,1] = O

(
eM

2p

)p+2

, ‖v′p − w′
p‖L∞[−1,1] = O[p

(
eM

2p

)p+2

].(3.9)

Theorem 3.2. Let up and vp be solutions of (2.4) and (3.2), respectively. Assume
that u satisfies condition (M). Then

‖up − vp‖L2[−1,1] ≤
2
π
‖u′

p − v′p‖L2[−1,1] ≤
C
√

p

(
eM

2p

)p+2

,(3.10)

‖up − vp‖L∞[−1,1] ≤
C
√

p

(
eM

2p

)p+2

, ‖u′
p − v′p‖L∞[−1,1] ≤ C

(
eM

2p

)p+2

.(3.11)

Proof. By (2.4) and (3.2), the error expression can be decomposed into two parts

(3.12) (up − vp)(x) =
p∑

j=2

2j − 1
2

(f − fp, φj)φj(x) = Rp(x) + rp(x),

where by (1.2)

Rp(x) = c1(p)
p∑

j=2

2j − 1
2

((f [x0, . . . , xp, ·]−f [x0, . . . , xp, 0])(Lp+1−Lp−1), φj)φj(x),

rp(x) =
2p − 3

2
c1(p)f [x0, . . . , xp, 0](Lp+1 − Lp−1, φp−1)φp−1(x)

= −c1(p)
f (p+1)(ηp)
(p + 1)!

1
2p − 1

φp−1(x).(3.13)

Here we have used the fact that

(Lp+1 − Lp−1, φj) = 0, j 
= p − 1, (Lp+1 − Lp−1, φp−1) = − 2
(2p − 1)(2p − 3)

.
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The expressions for u′
p−v′p as well as R′

p and r′p can be obtained by replacing φj(x)
with Lj−1(x). Observe that

|((f [x0, . . . , xp, ·] − f [x0, . . . , xp, 0])(Lp+1 − Lp−1), φj)|

≤
‖f (p+2)‖L∞[−1,1]

(p + 2)!
‖Lp+1 − Lp−1‖L2[−1,1]‖φj‖L2[−1,1],

and ‖Lj‖L∞[−1,1] = 1. We have

‖R′
p‖L∞[−1,1]

≤ c1(p)
‖f (p+2)‖L∞[−1,1]

(p + 2)!
‖Lp+1 − Lp−1‖L2[−1,1]

p∑
j=2

2j − 1
2

‖φj‖L2[−1,1]

≤ 2c1(p)
CMp+2

(p + 2)!
.

(3.14)

Here we have used (1.8) and the fact that
p∑

j=2

2j − 1
2

‖φj‖L2[−1,1] =
p∑

j=2

√
2j − 1

(2j − 3)(2j + 1)
≤

∫ p

1

dx√
2x − 1

=
√

2p − 1 − 1.

Similarly, note that ‖φj‖L∞[−1,1] ≤ 2/(2j − 1). We have

‖Rp‖L∞[−1,1]

≤ c1(p)
‖f (p+2)‖L∞[−1,1]

(p + 2)!
‖Lp+1 − Lp−1‖L2[−1,1]

p∑
j=2

‖φj‖L2[−1,1]

< 2c1(p)
CMp+2

(p + 2)!
‖Lp+1 − Lp−1‖L2[−1,1].

(3.15)

Here we have used the fact that
p∑

j=2

‖φj‖L2[−1,1] = 2
p∑

j=2

1√
(2j − 3)(2j − 1)(2j + 1)

< 2
∫ p

1

dx

(2x − 1)3/2
< 2.

Apply (1.3), condition (M), and Stirling’s formula to (3.13), (3.14), and (3.15), we
obtain the estimates (3.11). Similarly, we obtain the estimate

‖R′
p‖2

L2[−1,1]

≤ c1(p)2
‖f (p+2)‖2

L∞[−1,1]

(p + 2)!2
‖Lp+1 − Lp−1‖2

L2[−1,1]

×
p∑

j=2

(2j − 1)2

4
‖φj‖2

L2[−1,1]‖Lj−1‖2
L2[−1,1]

≤ 8(2p + 1)
3(2p + 3)(2p − 1)

c1(p)2
C2M2(p+2)

(p + 2)!2

by using (1.8), (1.9), and condition (M). The estimate for ‖r′p‖L2[−1,1] can be ob-
tained similarly by replacing φp−1 with Lp−2 in (3.13). The semi-H1 norm estimate
follows by recalling (1.3) and Stirling’s formula.

The L2-error is a direct application of the Poincare inequality. �
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Superconvergence. We are interested in the error between u and wp. Consider
the decomposition

(3.16) (u − wp)(x) = (u − up)(x) + (up − vp)(x) + (vp − wp)(x).

Corollary 2.1, Theorem 3.2, and Corollary 3.1 provide error bounds for all three
terms on the right-hand side, respectively. We see that the latter two terms converge
faster than the first term by at least a factor of p. Therefore, the error u − wp is
majorized by u − up.

In order to investigate the superconvergence property, we denote by gj , j =
1, . . . , p, the Gaussian points, and we let ‖ · ‖G be the Gauss quadrature with these
p Gaussian points. We also recall that the xj are the Gauss-Lobatto points and
that ‖ · ‖∗ is the (p + 1)-point Gauss-Lobatto quadrature.

Theorem 3.3. Let u and wp be solutions of (2.2) and (3.1), respectively. Assume
that u satisfies condition (M) and the nondegenerate condition bp 
= 0. Then when
(2p + 1)(2p + 3) > 2M2, we have

max
1≤j≤p−1

|(u − wp)(xj)| ≤ C

(
eM

2p

)p+2

,(3.17)

max
1≤j≤p

|(u − wp)′(gj)| ≤ Cp

(
eM

2p

)p+2

,(3.18)

‖u − wp‖∗ ≤ C
√

p

(
eM

2p

)p+2

,(3.19)

‖u′ − w′
p‖G ≤ C

√
p

(
eM

2p

)p+2

.(3.20)

Proof. By the decomposition (3.16), Theorem 3.2, and Corollary 3.1, we have

|(u − wp)(xj)| ≤ |(u − up)(xj)| + C

(
eM

2p

)p+2

≈ |bp+1φp+2(xj)| + C

(
eM

2p

)p+2

≤ C

(
eM

2p

)p+2

.

Note that φp+1(xj) = 0 and therefore the dominate term in (u − up)(xj) is
bp+1φp+2(xj). This proves (3.17). Similarly,

|(u − wp)′(gj)| = |(u − up)′(gj)| + C

(
eM

2p

)p+1

≈ |bp+1Lp+1(gj)| + C

(
eM

2p

)p+1

≤ C

(
eM

2p

)p+1

.

Here we have used the fact that Lp(gj) = 0. This establishes (3.18). Next,

‖u′ − w′
p‖∗ ≈ ‖u′ − u′

p‖∗ ≈ ‖bp+1Lp+1‖∗ ≈ ‖bp+1Lp+1‖

=
2|bp+1|
2p + 3

≤
√

2c
√

πp

(
eM

2(p + 1)

)p+1

,

which is equivalent to (3.20). The estimate of (3.19) is similar. �
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Theorem 3.4. Assume the same hypotheses as in Theorem 3.3. Let u be even
(odd) and let p be odd (even). We have

max
1≤j≤p

|(u − wp)′(gj)| ≤ C

(
eM

2p

)p+2

,(3.21)

‖u′ − w′
p‖G ≤ C

√
p

(
eM

2p

)p+2

.(3.22)

Proof. With the even-odd assumption, fpφp is an odd function and therefore

(fp, φp) = 0, (fp, φp)∗ = 0.

As a consequence, vp −wp = 0 in the decomposition (3.16). Hence by Theorem 3.2,
we have

|(u − wp)′(gj)| ≤ |(u − up)′(gj)| + C

(
eM

2p

)p+2

≈ |bp+2Lp+2(gj)| + C

(
eM

2p

)p+2

≤ C

(
eM

2p

)p+2

.

Here we have used the fact that Lp(gj) = 0 and bp+1 = 0. This establishes (3.21).
Next,

‖u′ − w′
p‖∗ ≈ ‖u′ − u′

p‖∗ ≈ ‖bp+2Lp+2‖∗ ≈ ‖bp+2Lp+2‖

=
2|bp+2|
2p + 5

≤
√

2c
√

πp

(
eM

2(p + 2)

)p+2

,

which is equivalent to (3.22). �

Remark. As we mentioned earlier, the collocation solution wp is equivalent to ap-
plying the (p+1)-point Gauss-Lobatto quadrature to obtain (f, φj)∗. However, the
same error bounds hold for any p-point or (p + 1)-point quadrature rule when con-
structed by orthogonal polynomials and is exact for polynomials of degree 2p − 1.
Again, this is confirmed by numerical tests. We have actually tested p-point Gauss
quadrature, p-point Chebyshev quadrature, and (p + 1)-point Chebyshev-Lobatto
quadrature. They show no essential difference in delivering the numerical results.

General cases. Similar results can be developed for general two-point boundary
value problems of type

−(au′)′ + bu = f, u(±1) = 0, a(x) ≥ α > 0, b(x) ≥ 0,

or in its weak form: Find u ∈ H1
0 [−1, 1] such that

A(u, v) = (au′, v′) + (bu, v) = (f, v), ∀v ∈ H1
0 [−1, 1].

In fact, let up be the Galerkin spectral approximation in the finite dimensional
polynomial space of degree p. Then we have

‖u − up‖A ≤ ‖u − πpu‖A,

where ‖·‖A is the energy norm induced by the bilinear form and πp is the projection
operator such that (πpu)′ is the truncated Legendre expansion of u′ defined in
Section 2. In this way, all analysis in Section 2 can be applied here. As for the
spectral collocation, some more numerical integration error estimates are needed.
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4. Numerical tests

We consider only a simple model problem:

u′′ + bu = f, u(±1) = 0.

The Legendre collocation method is to find 
wp such that (D2
p + bI)
wp = 
f with [6,

p. 65]

Dp(j, j) = 0, Dp(i, j) =
Lp(xi)
Lp(xj)

1
xi − xj

, i 
= j, 
f =

⎛
⎜⎝

f(x1)
...

f(xp−1)

⎞
⎟⎠ ,

where x1 < x2 < · · · < xp−1 are interior Lobatto points, zeros of L′
p. The solution


wp provides an approximation at the Lobatto points. In order to obtain derivative
values, we define

wp(x) =
p−1∑
k=1

ckψk+1(x), ψk+1(x) = (1 − x2)L′
p(x).

Then

w′
p(x) = −

p−1∑
k=1

ckk(k + 1)Lk(x),

where 
c can be obtained from T
c = 
wp with

T =

⎛
⎜⎜⎜⎝

ψ2(x1) ψ3(x1) · · · ψp(x1)
ψ2(x2) ψ3(x2) · · · ψp(x2)

...
...

. . .
...

ψ2(xp−1) ψ3(xp−1) · · · ψp(xp−1)

⎞
⎟⎟⎟⎠ .

Fortunately, T has an explicit inverse [12]:

T−1 =
2p

p + 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1−x2
1

ψ2
p(x1)

ψ2(x1)
s2

1−x2
2

ψ2
p(x2)

ψ2(x2)
s2

· · · 1−x2
p−1

ψ2
p(xp−1)

ψ2(xp−1)
s2

1−x2
1

ψ2
p(x1)

ψ3(x1)
s3

1−x2
2

ψ2
p(x2)

ψ3(x2)
s3

· · · 1−x2
p−1

ψ2
p(xp−1)

ψ3(xp−1)
s3

...
...

. . .
...

1−x2
1

ψ2
p(x1)

ψp(x1)
sp

1−x2
2

ψ2
p(x2)

ψp(x2)
sp

· · · 1−x2
p−1

ψ2
p(xp−1)

ψp(xp−1)
sp

⎞
⎟⎟⎟⎟⎟⎟⎠

,

with sk =
2k(k − 1)

2k − 1
. Note that ψ′

k+1(x) = −k(k + 1)Lk(x).

We choose b = 10 and u = sin 4πx. Therefore, M = 4π. The asymptotic
condition (2p + 1)(2p + 3) > 2M2 in Theorem 3.3 is about

√
2(p + 1) > M , which

suggests p > 8. Indeed, for smaller p, we observe some oscillatory behavior in the
error.

Figure 1 depicts the error (the y-axis) max
1≤j≤p−1

|(u−wp)(xj)| against
(

eM

2p

)p+2

for p = 20, 21, . . . , 30. We observe straight lines for both even (◦) and odd (∗)

p. To see different rates for odd and even p, Figure 3 plots the ratio
(

eM

2p

)p+2

:
√

p max
1≤j≤p

|(u − wp)(xj)|. This ratio is a constant for odd p (comparing with (3.17)
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Figure 2. Gaussian points convergence rate

and (3.19)) and increases linearly for even p, indicating an order-two superconver-
gence rate.
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Figure 2 depicts the error (the y-axis) max
1≤j≤p

|(u′ − w′
p)(gj)| against

(
eM

2p

)p+1

,

and Figure 4 plots the ratio
(

eM

2p

)p+1

:
√

p max
1≤j≤p

|(u′−w′
p)(gj)|. Again we observe
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superconvergence of order-one for odd p (comparing with (3.18) and (3.20)) and
order-two for even p (comparing with (3.21) and (3.22)).

5. Final remarks

Comparing with Theorem 2.1, there is a completely different strategy for prov-
ing the supergeometric rate of convergence for the usual Fourier and Chebyshev
expansions; see, e.g., [11], [8, p. 37], and [4]. The asymptotics of the Legendre
polynomials are messier than Fourier or Chebyshev, making the task much harder
here.

The Legendre polynomials have been used as basis functions in the p-version
finite element community since late 1970s; see [19] and references therein. In the
early 1990s, Shen introduced them to the spectral method community combined
with fast solvers [17], which made the method more appealing.

The counterpart error bound for the hp-version finite element is in the form(
eMh

2p

)p+α

, where h is the mesh size and α = 1, 2.

Entire functions and condition (M). Consider entire function

f(z) =
∞∑

n=0

cnzn, lim
n→∞

n
√
|cn| = 0.

A spectral approximation of f converges at a certain rate depending on the way cn

decreases. In order to see the relativeness of condition (M), we need some notation.
Here we follow [10]. Define

Mf (r) = max
|z|=r

|f(z)|.

If Mf (r) has a “minimum” upper-bound of type eσrρ

, then we say that the entire
function f is of order ρ and of type σ. To be more precise,

ρ = lim
n→∞

sup
log log Mf (r)

log r
, σ = lim

r→∞
sup

log Mf (r)
rρ

.

Indeed, ρ and σ are determined by cn in the following way:

ρ = lim
r→∞

sup
n log n

− log |cn|
, σ =

1
ρe

lim
n→∞

sup n n
√
|cn|ρ.

When ρ = 1, the entire function f is called the exponential type. One of the most
significant properties of this kind of function was due to Bernstein [10, p. 227]: If
f(z) is an entire function of exponential type σ > 0 and |f(x)| ≤ C for −∞ < x <
∞, then |f ′(x)| ≤ Cσ for −∞ < x < ∞. The equality sign is attained here for
some x if and only if f(z) = c1 cos σz + c2 sin σz.

By this property, entire functions of exponential type bounded on the real line
satisfy condition (M) with σ = M . Then all results in the paper are valid.

As for the general case when ρ 
= 1, the rate of convergence is of the type
(comparing with Theorem 2.1):(

eMρ

p

) p
ρ +1

2−p, σ = M.
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Other cases are
(1) 0 < ρ < ∞: f is of order ρ and of maximum (minimum) type if σ = ∞

(σ = 0).
(2) ρ = ∞: f is of infinite order.
(3) ρ = 0: f is of zero order.

Spectral approximations of different types of entire functions have different con-
vergence rates. Finally, it is worthy to point out that the results in the paper cover
more than entire functions, since condition (M) is required only on a finite interval
(the solution domain), not the whole real line or the whole complex plain.

Appendix

Stirling’s formula is

(A.1)
√

2πnn+1/2 < n!en <
√

2πnn+1/2
(
1 +

1
4n

)
.

A rough approximation was given by Stirling in 1730:

(A.2) n! ≈
(n

e

)n √
2πn.

The relative error is less than 1% from n ≥ 9 and less than 0.1% from n ≥ 84. A
more accurate approximation is [1, (4.48)]

(A.3) n! ≈
(n

e

)n
√

2π(n +
1
6
).

The relative error is less than 1% from n ≥ 3 and less than 0.1% from n ≥ 9.
Another useful result is

(A.4) (2n − 1)!! ≈
√

(2n)!
4

√
π(n + 1

4 )
,

which comes from [2],

(A.5) π = lim
n→∞

(
22n(
2n
n

)
)2 (

n +
1
4

)−1

.
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