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THE APPROXIMATION
OF THE MAXWELL EIGENVALUE PROBLEM

USING A LEAST-SQUARES METHOD

JAMES H. BRAMBLE, TZANIO V. KOLEV, AND JOSEPH E. PASCIAK

Abstract. In this paper we consider an approximation to the Maxwell’s
eigenvalue problem based on a very weak formulation of two div-curl systems
with complementary boundary conditions. We formulate each of these div-curl
systems as a general variational problem with different test and trial spaces,
i.e., the solution space is �2(Ω) ≡ (L2(Ω))3 and components in the test spaces
are in subspaces of H1(Ω), the Sobolev space of order one on the computational
domain Ω. A finite-element least-squares approximation to these variational
problems is used as a basis for the approximation. Using the structure of the
continuous eigenvalue problem, a discrete approximation to the eigenvalues is
set up involving only the approximation to either of the div-curl systems. We
give some theorems that guarantee the convergence of the eigenvalues to those
of the continuous problem without the occurrence of spurious values. Finally,

some results of numerical experiments are given.

1. Introduction

In this paper we consider the eigenvalue problem associated with Maxwell’s equa-
tions. These equations can, for example, be used to determine the frequencies that
will propagate through a medium such as a waveguide [3, 32]. It looks promising
that similar ideas can be applied to the more general equations describing propa-
gation through photonic crystals; see [23, 38].

Although two dimensional versions of Maxwell’s eigenvalue problem often result
in eigenvalue problems involving the Laplacian, three dimensional problems are
significantly more complicated as they result in an eigenvalue problem involving
curl-curl, an operator that is not elliptic. Accordingly, the inverse is no longer
compact which leads to a much more complicated analysis. However, as we shall
see, a compact “pseudo” inverse can be constructed that has the same eigenvectors.

One of the more popular approaches for approximating Maxwell’s eigenvalue
problem is based on using curl-conforming spaces such as those developed by
Nédélec (cf. [34, 35]). In such a method one looks for solutions to the prob-
lem in H(curl), the space of vector functions which, along with their curls, are
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in L2(Ω). Analysis of the eigenvalue problem using these spaces either involves
proving collective compactness [29, 33] or proving convergence in norm [4, 5, 6, 22].

Early engineering approximations to these equations were often attempted using
H1-conforming finite-element spaces [7]. These were known to have problems due
to low regularity solutions and multiple valued potentials [19, 24, 30]. Recently,
new methods for dealing with these problems have been proposed [13, 14, 36]. The
methods of [14] depend on weighted functionals with weights depending on the
strength of the singularities at corners and edges. In [36], discontinuous Galerkin
methods are proposed.

The approach we take in this paper is to first relate the problem to a block system
involving the solution of div-curl systems. These div-curl systems are formulated
as variational problems following [12] in which the solutions are posed in L2(Ω)
and the (components of the) test functions are in various subspaces of the Sobolev
space H1(Ω). This results in a very weak formulation of the div-curl problem
where the data can reside in a negative norm space, e.g., in the dual of the test
spaces. That the test functions are in H1(Ω) is a critical attribute of the method
we take advantage of in our subsequent analysis of the Maxwell eigenvalue problem.
Indeed, this leads to solution operators for the div-curl problem that are bounded
from H−1(Ω) into L2(Ω) in the continuous as well as the discrete case. Since the
approximation is based in L2(Ω), our approximation subspaces can be very simple.
For example, we can use discontinuous functions at the material interfaces where
the solutions jump while using C0 elements in the interior where the solution is
smooth.

In this paper we shall show how our variational form of the div-curl system can
be used to develop a stable approximation to the Maxwell eigenvalue problem. We
first show that the eigenfunctions with nonzero eigenvalues are also eigenfunctions
of a block-compact skew-Hermitian problem where the blocks correspond to div-curl
problems. We use our div-curl approximation to derive a sequence of approximation
operators which converge in norm to the above-mentioned compact operator.

Actual three-dimensional applications necessarily contain large numbers of un-
knowns (on the order of millions). Such a large number of unknowns result from
complicated device geometry and the mesh refinement necessary for resolving sin-
gular behavior in the solutions. Since the systems are too large for conventional
direct eigensolvers, the eigenvalues must be computed iteratively. To obtain a sys-
tem which is more amenable to iterative computation, we show that the original
eigenpairs can be computed from those of a compact symmetric real operator. This
system can be approximated in norm by the discrete operator for one div-curl sys-
tem and its adjoint, and it results in a symmetric discrete eigenvalue problem.
The development of effective iterative techniques for computing the eigenvalues of
large symmetric problems has been the subject of intensive research in the past two
decades; e.g., [18, 26, 10]. These methods are more efficient and robust than those
developed for nonsymmetric and/or indefinite systems. Thus, the reformulation
of the problem as a symmetric real system represents a significant computational
advantage.

The outline of the remainder of this paper is as follows. In Section 2 we describe
the Maxwell eigenvalue problem and reformulate it in terms of variational div-
curl systems. In Section 3 we show how the discrete technique of [12] can be
used to develop approximations to the reformulated variational div-curl system.
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These operators are used to construct symmetric discrete eigenproblems in Section
4. Earlier sections of this paper are presented under the assumption of a simply
connected domain with a connected boundary. We extend the techniques herein
to the case of multiply connected domains with multiply connected boundaries in
Section 5. Finally, the results of numerical experiments illustrating the convergence
behavior of the eigenvalue approximations are given in Section 6.

2. The Maxwell eigenvalue problem

Let Ω be a polyhedral domain with Lipschitz boundary in R3. For simplicity,
we shall assume that Ω is simply connected with a simply connected boundary.
We shall address the case of nonsimply connected domains and domains whose
boundaries consist of multiply connected components in Section 5.

Maxwell eigenvalue problems involve the quantities h, e : Ω → C3, respectively,
the magnetic and electric field intensity. The Maxwell eigenvalue problem is given
by

(2.1)

∇× h = λεe in Ω,

∇× e = −λµh in Ω,

e × n = 0 on ∂Ω.

Here n denotes the outward normal on ∂Ω. In addition, the real-valued functions µ
and ε describe the experimentally determined material properties, respectively, the
magnetic permeability and the electric permittivity. Typically, these are piecewise
smooth functions that are bounded above and below with jumps at the material
interfaces. Clearly, the above problem has a large null eigenspace made up of gra-
dients. We are only interested in the nonzero eigenvalues λ and the corresponding
eigenfunctions h, e.

We shall use the following complex spaces, where γ ∈ {ε, µ}:
�

2
γ(Ω) −�2(Ω) equipped with the weighted inner product (�,�)γ = (γ�,�)�2(Ω),

�(curl) = {� ∈ �2(Ω),∇× � ∈ �2(Ω)},
�0(curl) = {� ∈�(curl), : � × � = 0 on ∂Ω},
�(div; γ) = {� ∈ �2(Ω),∇ · (γ�) ∈ L2(Ω)},
�0(div; γ) = {� ∈�(div; γ) : � · (γ�) = 0 on ∂Ω},

A more precise statement of the eigenvalue problem now reads as follows. Find
λ ∈ C, h ∈ H(curl) and e ∈ H0(curl) satisfying the first two equations of (2.1).

One way to analyze the above problem is to look for (e, h) in H0(curl)×H(curl).
In contrast, we look for solutions in L2(Ω)×L2(Ω). This is natural as we ultimately
end up with a compact operator on L2(Ω) × L2(Ω).

We shall characterize the above eigenvalue problem by showing that it is related
to an eigenvalue problem involving a compact Hermitian semidefinite operator.
Suppose we have an eigenfunction pair, e ∈ H0(curl) and h ∈ H(curl) with a
nonzero eigenvalue λ. Then, it follows that

(2.2) 0 = (∇× h,∇θ) = λ(εe,∇θ) for all θ ∈ H1
0 (Ω).

Note that the integration by parts formula

(2.3) (∇× w, v) = (w,∇× v)
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for all w ∈ H(curl) and v ∈ H0(curl) follows from the density of D(Ω)3 in
H0(curl). Thus,

(2.4) 0 = (∇× e,∇θ) = −λ(µh,∇θ) for all θ ∈ H1(Ω)

and
e ∈ H0(curl) ∩ H(div; ε) and h ∈ H(curl) ∩ H0(div; µ).

We shall assume that ε and µ are regular enough so that H0(curl)∩H(div; ε) and
H(curl)∩H0(div; µ) are continuously embedded in (Hs(Ω))3 for some s > 0. Such
results are provided in [15] when ε and µ are piecewise smooth.

From the above discussion, it is natural to consider two source problems. The
first is the div-curl system

(2.5)

∇× h = εg1 in Ω,

∇ · (µh) = 0 in Ω,

h · n = 0 on ∂Ω.

The second div-curl system is similar:

(2.6)

∇× e = µg2 in Ω,

∇ · (εe) = 0 in Ω,

e × n = 0 on ∂Ω.

An L2(Ω)-based variational framework for the solution of the above two prob-
lems in the case of real-valued functions was given in [12]. The extension of this
framework to complex spaces is straightforward. To describe this formulation, we
introduce the spaces

H1 = H1(Ω), H2 = H1
0 (Ω),

V 1 = H1
0(Ω) ≡ (H1

0 (Ω))3, V 2 = (H1(Ω))3,

V 1,0 = {w = ∇ψ, ψ ∈ H2
0 (Ω)},

V 2,0 = {w = ∇ψ, ψ ∈ H2(Ω)}.

For k = 1, 2, let Yk = V k ×Hk and consider the sesquilinear forms on L2(Ω)×Yk

defined by

b1(x, (v, h)) = (x,∇× v) + (µx,∇h) for all x ∈ L2(Ω) and (v, h) ∈ Y1

and

b2(x, (v, h)) = (x,∇× v) + (εx,∇h) for all x ∈ L2(Ω) and (v, h) ∈ Y2.

It is shown in [12] that there is a unique function xk ∈ L2(Ω) satisfying

(2.7) bk(xk, (v, h)) = 〈fk, v〉 for all (v, h) ∈ Yk

for any functional fk ∈ V ∗
k satisfying the compatibility condition

(2.8) 〈fk, v〉 = 0 for all v ∈ V k,0.

This analysis is based the inf-sup condition

(2.9) ‖xk‖L2(Ω) ≤ C sup
(v,h)∈Yk

|bk(xk, (v, h))|
‖(v, h)‖Yk

for all xk ∈ L2(Ω),

which was proved in [12]. Here and in what follows, C is used to denote a generic
positive constant.
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We next consider the compatibility condition (2.8). Let V̄ 1,0 = {∇φ : φ ∈
H1

0 (Ω)} and V̄ 2,0 = {∇φ : φ ∈ H1(Ω)}. Then V̄ k,0 is the closure in L2(Ω) of
V k,0 for k = 1, 2. Let Qk denote the weighted L2(Ω)-orthogonal projector onto
V̄ k,0 defined by

(εQ1v, φ) = (εv, φ) for all φ ∈ V̄ 1,0

and
(µQ2v, φ) = (µv, φ) for all φ ∈ V̄ 2,0.

Then for gk ∈ L2(Ω), the functionals given by

(2.10) 〈f1, φ〉 = (εg1, φ) and 〈f2, φ〉 = (µg2, φ).

satisfy the compatibility condition (2.8) if and only if (εg1, φ) = 0 for all φ ∈ V̄ 1,0

and (µg2, φ) = 0 for all φ ∈ V̄ 2,0; i.e., gk ∈ V ⊥
k,0, the (weighted) L2(Ω)-orthogonal

complement of V̄ k,0. If gk is in V̄
⊥
k,0 and fk is defined by (2.10), then xk defined

by (2.7) solves (2.5) and (2.6); i.e., h = x1 and e = x2.
Let Sk : L2(Ω) → L2(Ω) be defined by Skgk = xk where xk solves the problem

b1(x1, (v, h)) = (ε(I − Q1)g1, v) for all (v, h) ∈ Y1

and
b2(xk, (v, h)) = (µ(I − Q2)g2, v) for all (v, h) ∈ Y2.

It is clear from the above discussion that the compatibility conditions are satisfied
so that Sk is well defined. Moreover, since gk is in L2(Ω), S1(g1) is in H(curl) ∩
H0(div; µ) and S2(g2) is in H0(curl) ∩ H(div; ε) (cf., [12]). Thus, our regularity
assumptions imply that Sk(gk) is in (Hs(Ω))3 for some s > 0; i.e., Sk is a compact
mapping of L2(Ω) into L2(Ω).

Note that if e ∈ H0(curl), h ∈ H(curl), and λ 
= 0 satisfy (2.1), then they
satisfy (2.5) and (2.6) with g1 = λe and g2 = −λh. Moreover, by (2.2) and (2.4),
e ∈ V ⊥

1,0 and h ∈ V ⊥
2,0, so gk = (I − Qk)gk and hence

h = S1(g1) = λS1(e),

e = S2(g2) = −λS2(h).

We rewrite this in block matrix form as

(2.11) B

(
e
h

)
≡

(
0 −S2

S1 0

) (
e
h

)
= σ

(
e
h

)
,

where σ = λ−1. We have shown that the eigenpairs (e, h) of (2.1) with nonzero λ
satisfy (2.11).

Conversely, let (e, h) be a solution of (2.11) with nonzero σ. It follows from [12]
that

(2.12) ∇×S1g = ε(I −Q1)g and ∇×S2g = µ(I −Q2)g for all g ∈ L2(Ω).

Thus,
ε(I − Q1)e = σ∇× h

and
µ(I − Q2)h = −σ∇× e.

Moreover, from the definition of S1 and S2, it is immediate that

(2.13) S1(g) ∈ V ⊥
2,0 and S2(g) ∈ V ⊥

1,0
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for any g. This implies that ε(I−Q1)e = εe and µ(I−Q2)h = µh. Combining the
above shows that (e, h) satisfy (2.1) with λ = 1/σ. We have proved the following
theorem.

Theorem 2.1. The eigenvectors corresponding to nonzero eigenvalues for (2.1)
and (2.11) are the same, i.e., e ∈ H0(curl), h ∈ H(curl), and λ 
= 0 satisfy (2.1)
if and only if they satisfy (2.11) with σ = 1/λ.

Clearly, B is a compact operator mapping (L2(Ω))2 into (L2(Ω))2. Moreover, if
we consider B as an operator on L2

ε (Ω)×L2
µ(Ω), with the standard inner product((

e
h

)
,

(
ẽ

h̃

))
= (εe, ẽ) + (µh, h̃ ),

then B is skew-Hermitian. Indeed,(
B

(
e
h

)
,

(
ẽ

h̃

))
= −(S2h, εẽ) + (S1e, µh̃ ).

Using (2.12) and (2.13) gives

(S2h, εẽ) = (S2h, ε(I − Q1)ẽ) = (S2h,∇× S1ẽ)

= (∇× S2h, S1ẽ) = (µ(I − Q2)h, S1ẽ) = (µh, S1ẽ)

from which it follows that B is skew-Hermitian. Note that the above identity is
just S∗

1 = S2, where S1 is considered as an operator from L2
ε (Ω) to L2

µ(Ω). When
S1 is considered as an operator on L2(Ω), we will denote its adjoint by St

1.
The eigenvectors and eigenvalues of B are related to the compact positive semi-

definite operator

(2.14) −B2 =
(

S2S1 0
0 S1S2

)
.

This operator is Hermitian relative to the inner product on L2
ε(Ω) × L2

µ(Ω). The
nonzero eigenvalues and the corresponding eigenvectors for B can be recovered also
from those of either diagonal block above. For example, S2S1 : L2(Ω) → L2(Ω) is
Hermitian relative to the inner product (ε·, ·) and if the real function φ satisfies

(2.15) S2S1φ = τ2φ,

then (
φ

i
τ S1φ

)
and

(
φ

−i
τ S1φ

)
are eigenvectors for B with eigenvalues −iτ and iτ , respectively. We get all nonzero
eigenvalues and their corresponding eigenvectors this way. Thus, the original eigen-
value problem (2.1) can be reduced to the real eigenvalue problem (2.15). The
eigenvectors and nonzero eigenvalues of B can be recovered from those of the lower
right diagonal block of −B2 in an analogous fashion.

Remark 2.1. The form (with ω 
= 0)

bω(h, e, v1, v2, h1, h2) = b1(h; v1, h1) − ω(εe, v1) + b2(e; v2, h2) + ω(µh, v2)

(for h, e ∈ L2(Ω), vk ∈ V k, hk ∈ Hk, k = 1, 2) arises in an analysis of the time
harmonic Maxwell problem given in [9]. Suppose that nonzero h, e ∈ L2(Ω) satisfy

(2.16) bω(h, e, v1, v2, h1, h2) = 0
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for all vk ∈ V k, hk ∈ Hk. Then x1 = h and x2 = e satisfy (2.5) and (2.6)
with g1 = ωe and g2 = −ωh. Arguments given above imply that e ∈ H0(curl),
h ∈ H(curl) and satisfy (2.1) with λ replaced by ω; i.e., ω−1 is an eigenvalue of
B. It follows that if ω−1 is not an eigenvalue of B, then there are no nontrivial
solutions of (2.16).

3. Approximation of the operators Sk, k = 1, 2

To define approximations to Sk, we start with a finite-element approximation
given in [12] for problem (2.7). There were two techniques discussed in (2.7) and
we shall only consider the first involving stable pairs of approximation spaces. The
second technique in (2.7) involving stabilization by form modification could also be
applied.

In [12], it is shown how problem (2.7) can be discretized using pairs of approx-
imation subspaces, Xh ⊂ L2(Ω) and Yh,k ⊂ Yk. These spaces are constructed
so that Xh has approximation properties and the pair satisfies the discrete inf-sup
condition

(3.1) ‖xk‖L2(Ω) ≤ C sup
(v,h)∈Yk

bk(xk, (v, h))
‖(v, h)‖Yh,k

for all xk ∈ Xh.

The simplest discretization involved locally quasi-uniform partitioning of the com-
putational domain into tetrahedra and setting Xh to be the space of piecewise
constant vector fields with respect to the mesh (cf., [12]). The companion spaces
Yh,k consist of continuous piecewise linear functions (satisfying the appropriate
boundary conditions) enriched with face bubble functions. For more detail, see
[12]. The addition of the bubble functions gives rise to (3.1) much in the same way
as the addition of bubble functions are used to stabilize Stokes approximations [20].

One can then consider the discrete problem: Find xh,k ∈ Xh satisfying

bk(xh,k, y) = 〈fk, y〉 for all y ∈ Yh,k.

The above equation, however, has a solution only if the data fk satisfy appropri-
ate discrete compatibility conditions. Such conditions are difficult to deal with in
practice, and so instead we use an approach that is related to least-squares in a
dual norm.

To define this approximation, we first set T h,k : Y∗
h,k → Yh,k by

(T h,kl, y)1 = 〈l, y〉 for all y ∈ Yh,k.

Here (·, ·)1 denotes the componentwise H1-inner product in Yh,k. The approxima-
tion xh,k is then defined to be the unique function in Xh satisfying
(3.2)

Ah,k(xh,k, x) ≡ 〈Bh,kxh,k, T h,kBh,kx〉 = 〈fk, T h,kBh,kx〉, for all x ∈ Xh.

Here Bh,k is the map of Xh into Y∗
h,k defined by

〈Bh,kx, y〉 = bk(x, y) for all y ∈ Yh,k.

The existence, uniqueness, and convergence properties of the above approximation
are provided in [12]. There it is shown that if fk satisfies the compatibility condition
(2.8) and the solution xk of (2.7) is in (Hs(Ω))3 for some s ∈ [0, 1], then

(3.3) ‖xk − xh,k‖ ≤ Chs‖xk‖s.
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For later use, we let Rh,k denote the operator on L2(Ω) defined by Rh,kw = xh,k

where xh,k solves (3.2) with data

〈f1, (v, h)〉 = (εw, v)

and
〈f2, (v, h)〉 = (µw, v).

Evaluation of the discrete operator T h,k involves solving finite-element approxi-
mations to second-order problems with various boundary conditions using the sub-
spaces enriched by bubble functions. It is shown in [12] that these problems can be
replaced by efficient preconditioners. The computation of the solution xh,k can then
be obtained by an efficient, well-conditioned (rapidly convergent), preconditioned,
conjugate gradient iteration.

To define our approximation for Sk, we set fk in (3.2) by

〈f1, (v, h)〉 = (ε(I − Qh,1)g1, v) and 〈f2, (v, h)〉 = (µ(I − Qh,1)g2, v),

and define Sh,kgk = xh,k. The operators Qh,k, k = 1, 2, are defined in terms of
the approximation subspace for V̄ k,0. For example, if Hh,k is the approximation
subspace associated with Yh,k, then we define Qh,1v = ∇φ where φ ∈ Hh,2 satisfies

(3.4) (ε∇φ,∇θ) = (εv,∇θ) for all θ ∈ Hh,2.

Similarly, we define Qh,2v = ∇φ where φ ∈ Hh,1 satisfies

(3.5) (µ∇φ,∇θ) = (µv,∇θ) for all θ ∈ Hh,1.

Actually, as will become clear later, the bubble functions are not needed for Qh,k.
For example, for the case when Xh is piecewise constant, it suffices to use the
subspaces of piecewise linear functions with appropriate boundary conditions in
the definition of Qh,k. However, the bubble functions are still required in the
spaces Yh,k.

To analyze the approximation properties of the above operators, we shall need
regularity results for second-order problems with piecewise smooth coefficients. For
example, we consider the solution u ∈ H1

0 (Ω) satisfying

(3.6) (ε∇u,∇φ) = 〈f, φ〉 for all φ ∈ H1
0 (Ω).

We assume that the solution is in H1+s(Ω) when f coincides with a function in
L2(Ω); i.e.,

(3.7) ‖u‖1+s ≤ C‖f‖.
Estimates of this sort were given in [17] for piecewise smooth ε.

We also assume similar regularity for the Neumann problem involving µ. For
f ∈ (H1(Ω))∗ with 〈f, 1〉 = 0, let u ∈ H1(Ω) have zero mean value and satisfy

(3.8) (µ∇u,∇φ) = 〈f, φ〉 for all φ ∈ H1(Ω).

We assume that the solution is in H1+s(Ω) when f coincides with a function in
L2(Ω); i.e., (3.7) holds for u solving (3.8).

Remark 3.1. We assume that multiplication by ε and µ are bounded operators on
Hγ(Ω). This holds for 0 < γ < 1/2 when the coefficients are piecewise smooth
with respect to polygonal subdomains {Ωj}. Indeed, for 0 < γ < 1/2 and Lipschitz
continuous domains D, Hγ(D) = Hγ

0 (D) from which it follows by interpolation
between

∑
H1

0 (Ωj) and L2(Ω) that Hγ(Ω) is isomorphic to
∑

j Hγ(Ωj). Since ε is
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piecewise smooth, multiplication by ε is a bounded operator on
∑

j Hγ(Ωj). For
smooth coefficients, we can take γ = 1.

We then have the following theorem.

Theorem 3.1. Let γ be such that multiplication by ε and µ are bounded operators
on Hγ(Ω) (see Remark 3.1). There is a positive constant C = C(γ) independent of
h such that for k = 1, 2,

‖Sk − Sh,k‖ ≤ Chsγ .

Here ‖ · ‖ denotes the operator norm on L2(Ω).

Proof. We consider k = 1. The case of k = 2 is similar. We have that for g1 ∈
L2(Ω),

S1g1 − Sh,1g1 = x1 − xh,1 + Rh,1(Qh,1 − Q1)g1,

where x1 and xh,1 solve (2.7) and (3.2), respectively, with

〈f1, (v, h)〉 = (ε(I − Q1)g1, v).

By (3.3) and our regularity assumptions on S1,

‖x1 − xh,1‖ ≤ Chs‖x1‖(Hs(Ω))3 ≤ Chs‖g1‖.

Let w = (Qh,1 − Q1)g1. To complete the proof, we need only show that

(3.9) ‖Rh,1w‖ ≤ Chsγ‖g1‖.

It is shown in [12] that the form Ah,1(x, x) is equivalent to ‖x‖2 for x ∈ Xh

uniformly in h. Thus,

‖Rh,1w‖2 ≤ CAh,1(Rh,1w, Rh,1w)

= (εw, T h,1Bh,1Rh,1w) ≤ ‖w‖−γ‖εT h,1Bh,1Rh,1w‖γ

≤ C‖w‖−γ‖T h,1Bh,1Rh,1w‖γ .

Note that
‖T h,1Bh,1Rh,1w‖γ ≤ ‖T h,1Bh,1Rh,1w‖1

≤ CAh,1(Rh,1w, Rh,1w)
1
2 ≤ C‖Rh,1w‖,

so we need only bound ‖w‖−γ . The middle inequality follows from the definition
of T h,k and (3.2).

Now Q1g1 = ∇u, where u ∈ H1
0 (Ω) satisfies (3.6) with 〈f, θ〉 = (εg1,∇θ). In

addition Qh,1g1 = ∇uh, where uh is the elliptic projection of u into Hh,2; i.e.,
w = ∇(u − uh). Now

‖∇(u − uh)‖ ≤ C‖g1‖.
Furthermore, by finite element duality and (3.7),

‖∇(u − uh)‖−1 ≤ ‖u − uh‖ ≤ Chs‖u‖1 ≤ Chs‖g1‖.

By interpolation
‖w‖−γ = ‖∇(u − uh)‖−γ ≤ Chsγ‖g1‖.

The inequality (3.9) follows combining the above estimates. This completes the
proof of the theorem. �
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Remark 3.2. If we assume stronger shift theorems, e.g.,

‖u‖1+s ≤ C‖f‖−1+s

for all f ∈ H−1+s(Ω) (for 0 < s < s0), then by finite element duality

‖∇(u − uh)‖−s ≤ ‖u − uh‖1−s ≤ Chs‖u‖1.

Thus, the theorem becomes

‖Sk − Sk,h‖ ≤ Chmin(γ,s).

4. The eigenvalue/eigenvector discretization

In this section we use the approximations and results of the previous section to
define and analyze an approximation to the eigenvalue/eigenvector problem (2.1).
As previously observed, this reduces to approximating the eigenvalues and eigenvec-
tors for either of the symmetric semi-definite operators S2S1 or S1S2. We could
directly use the discrete operators Sh,k, k = 1, 2. This will be avoided for two
reasons. One would have to code both Sh,1 and Sh,2. In addition, even though
the product of the continuous operators is symmetric, the product of their discrete
counterparts is not likely to be symmetric.

We circumvent the above mentioned problems by implementing only one of the
discrete operators, e.g., Sh,1. Then, instead of implementing Sh,2, we implement
the adjoint S∗

h,1 of Sh,1, considered as an operator of L2
ε(Ω) into L2

µ(Ω). The
implementation of S∗

h,1 = ε−1St
h,1µ is relatively straightforward given the imple-

mentation of Sh,1. Indeed, Sh,1 is implemented as a sequence of matrix operations,
and the implementation of St

h,1 just reduces to transposing the matrix operations
and running them in reverse order. Note that S∗

h,1Sh,1 is symmetric by definition.
The symmetry of the approximation is an important property. This is because

realistic computations for three-dimensional electromagnetic devices necessarily in-
volve minimal problem sizes on the order of 106 unknowns. The eigenvalues and
eigenvectors of such systems cannot be computed by direct methods. It is often of
interest to compute a block of the smallest nonzero eigenvalues and eigenvectors of
(2.1) [23, 38]. This means that we are required to iteratively compute the largest
eigenvalues and their corresponding eigenvectors for the problem S∗

h,1Sh,1x = τ2x.
The problem of iteratively computing the largest eigenvalues of a symmetric pos-
itive semi-definite problem has been well studied; see, for example, [8, 26, 18, 28].
Even block versions of the power method work, although not as well as other itera-
tive strategies. A survey of iterative methods for eigenvalue problems can be found
in [27].

By Theorem 3.1 Sh,1 converges to S1 in norm. It immediately follows that S∗
h,1

converges to S∗
1 = S2. It follows from the identity

S∗
h,1Sh,1 − S2S1 = (S∗

h,1 − S2)Sh,1 + S2(Sh,1 − S1)

that S∗
h,1Sh,1 converges to S2S1 in norm. By standard perturbation theory [25],

one can conclude that if τ2 > 0 is an eigenvalue of S2S1 of multiplicity k and ν > 0
is given such that there are no other eigenvalues in the interval δ = (τ2−ν, τ2 +ν),
then for h small enough there will be exactly k discrete eigenvalues {τ2

i (h)}k
i=1

(counted up to multiplicity) in δ. Thus, there will not be any spurious discrete
eigenvalues.
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Alternatively, we can use Sh,1S
∗
h,1 to approximate S1S2, Sh,2S

∗
h,2 to approx-

imate S2S1, or S∗
h,2Sh,2 to approximate S1S2. The analogous results for eigen-

value/eigenvector convergence follow for these operators as well.
Next we discuss the eigenvector and eigenvalue convergence rate. Using the

general results for spectral approximation of compact operators (see, e.g., [11]),
we get that there is a constant C = C(τ ) > 0 such that if V is the eigenspace
corresponding to τ2 and Vh is the eigenspace corresponding to the eigenvalues of
S∗

h,1Sh,1 in δ, then for small enough h

(4.1) δ̂(V, Vh) ≡ sup
v∈V,‖v‖=1

dist(v, Vh) ≤ C ‖S2S1 − S∗
h,1Sh,1‖ .

The quantity δ̂(V, Vh) is called the gap between V and Vh. It is a measure for close-
ness of subspaces, which in this case is related to the angle between them. Further
detail and results concerning δ̂ can be found in [25]. Related estimates, demon-
strating that each orthonormal basis of V can be approximated by an orthonormal
basis of Vh, with the same rate, are given in [11, pp. 532–533].

Combining (4.1) with Theorem 3.1 we obtain the following convergence result
for the eigenvectors.

Theorem 4.1. Let ω > 0 be fixed, such that λ = iω is an eigenvalue of (2.1). Let
τ = ω−1, and V , Vh are the eigenspaces defined above. Then, for small enough h,
there is a positive constant C = C(ω) independent of h such that

δ̂(V, Vh) ≤ Chsγ .

Regarding the eigenvalues, the general theory states (cf. [25]) that there exists
a constant C = C(τ ) > 0, such that if h is small enough,

(4.2) |τ2 − τ2
i (h)| ≤ C ‖S2S1 − S∗

h,1Sh,1‖

for all i = 1, . . . , k. Thus, in general, we get the following convergence result for
the eigenvalues.

Theorem 4.2. Let ω > 0 be fixed, such that λ = iω is an eigenvalue of (2.1).
Let τ = ω−1, and {τ2

j (h)}k
j=1 are the eigenvalues defined above. Then, for small

enough h, there is a positive constant C = C(ω) independent of h such that for all
j = 1, . . . , k,

|τ2 − τ2
j (h)| ≤ Chsγ .

Our numerical results, however, indicate that sometimes the rate of convergence
of the eigenvalues is significantly better than the rate of convergence of the eigen-
vectors. Below we outline a proof of this fact in the case of smooth eigenvectors.

For the remainder of this section we assume that Ω is a convex polyhedron,
ε = µ = 1, T h,k corresponds to a direct solve (not a preconditioner), and the
eigenvectors are such that e·n ∈ H3/2(F ) on each face F of ∂Ω. This is the case, for
example, if the domain is the unit cube. By Theorem 3.1 we have ‖Sk−Sh,k‖ ≤ Ch
for k = 1, 2.

Fix an eigenvector e of S2S1 corresponding to an eigenvalue τ2 and let 0 < ε < 1
2 .

We will prove that the approximation of τ2 converges at a rate of at least h2−ε.
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Consider the biharmonic problem

(4.3)

∆2ψ = 0 in Ω,

ψ = 0 on ∂Ω,

∂ψ

∂n
= θ on ∂Ω,

with data θ = e · n. By our assumptions, θ ∈ H3/2(F ) and θ = 0 on ∂F on every
face F of ∂Ω. By examination of the proof of the regularity result from [21], one
can show that this implies ψ ∈ H3−ε(Ω).

Set w = τ−2e + ∇∆ψ and consider the div-curl system

(4.4)

∇× v = w in Ω,

∇ · v = 0 in Ω,

v · n = 0 on ∂Ω.

By construction, w is in H−ε(Ω), the dual space of Hε
0(Ω)3, and satisfies the com-

patability conditions, so the above problem is well posed. Moreover, we show in
the appendix that the solution is in H1−ε(Ω) and there exist C > 0 such that
‖v‖1−ε ≤ C‖w‖ε.

Define T 1 : H−1(Ω) �→ H1
0(Ω) by

(∇T 1�,∇z) = 〈�, z〉 for all z ∈ H1
0(Ω) .

We claim that

(4.5) ∇× T 1∇× v = ∇× e .

Indeed, e −∇ψ ∈ H1
0(Ω) by (4.3), and therefore

e −∇ψ = T 1(−∆(e −∇ψ)) = T 1(τ−2 e + ∇∆ψ)) .

The result follows by applying the curl operator to both sides.
Let τ2

h and eh be the eigenvalue and eigenvector approximations to τ2 and e,
respectively. Set u = (e, τ−1S1e)t and uh = (eh, τ−1

h Sh,1eh)t. We assume that u
and uh are scaled so that ‖u‖ = ‖uh‖ = 1, where ‖ · ‖ denotes the square root of
the sum of the squares of the L2(Ω)-norms on the two components. We then have
B̃u = τu and B̃huh = τhuh, where

B̃ ≡
(

0 S2

S1 0

)
and B̃h ≡

(
0 S∗

h,1

Sh,1 0

)
.

Simple algebraic manipulations show that

τ − τh = ((τI − B̃)(u − uh), u − uh)

− ((B̃ − B̃h)(u + uh), u − uh) + ((B̃ − B̃h)u, u) .

Note that eigenvector convergence implies that

‖u − uh‖ ≤ Ch.

In addition, ‖B̃ − B̃h‖ ≤ Ch, so it will be enough to get a higher order bound for
the term ((B̃ − B̃h)u, u).

Let x1 = S1e and xh,1 = Sh,1e. Then ((B̃ − B̃h)u, u) = 2(x1 − xh,1, h̃) where
h̃ = τ−1S1e = τ∇× e.
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Introduce BV
h,1 as the map of Xh into V ∗

h,1 defined by

〈BV
h,1x, vh〉 = (x,∇× vh) for all vh ∈ V h,1.

Similarly, let T V
h,1 : V ∗

h,1 �→ V h,1 be defined by

(4.6) (∇T V
h,1�,∇vh) = 〈�, vh〉 for all vh ∈ V h,1 .

We assume that T V
h,1 is used to define the V h,1 component in the definition of

Sh,1. It follows that for any vh ∈ Xh, T h,1Bh,1vh consists of two components
T V

h,1B
V
h,1vh and TH

h,1B
H
h,1vh, where TH

h,1 is the H1 part of T h,1 and BH
h,1 is the H1

part or Bh,1, i.e.,

〈BH
h,1x, hh〉 = (x,∇hh) for all hh ∈ Hh,1.

The definition of xh,1 states that
(4.7)
(xh,1,∇×T V

h,1B
V
h,1vh)+ (xh,1,∇TH

h,1B
H
h,1vh) = (e, T V

h,1B
V
h,1vh) for all vh ∈ Xh.

Note that we used the fact that Qh,1e = 0 above.
Using (4.7), the definition of x1 and (4.5) gives

(4.8)
(x1 − xh,1, h̃) = τ (x1 − xh,1,∇× T 1∇× v −∇× T V

h,1B
V
h,1vh)

− τ (x1 − xh,1,∇TV
h,1B

V
h,1vh)

for any vh ∈ Xh. The first term in (4.8) can be estimated by

Ch ‖e‖
{
‖T V

h,1

(
∇× v − BV

h,1vh

)
‖1 + ‖

(
T 1 − T V

h,1

)
∇× v‖1

}
.

We then have

‖� V
h,1

(
∇× � −�V

h,1�h

)
‖1 ≤ sup

�∈� h,1

〈∇ × � −�V
h,1�h,�〉

‖�‖1
= sup
�∈� h,1

(� − �h,∇× �)

‖�‖1

≤ inf
�h∈�h

‖� − �h‖ ≤ Ch1−ε‖�‖1−ε

and
‖(T 1 − T V

h,1)∇× v‖1 ≤ Ch1−ε‖∇ × v‖−ε ≤ Ch1−ε‖v‖1−ε.

Finally, the second term in (4.8) is the same as

τ (x1 − xh,1,∇TV
h,1(∇ · v − BV

h,1vh)) ≤ Ch sup
φ∈Hh,1

((∇ · v − BV
h,1vh), φ)

‖φ‖1

= Ch sup
φ∈Hh,1

(v − vh,∇φ)
‖φ‖1

≤ Ch2−ε‖v‖1−ε.

Combining the above results, we conclude that |(x1 −xh,1, h)| ≤ C(τ ) h2−ε for any
0 < ε < 1

2 and, therefore, we proved the following improved convergence estimate.

Theorem 4.3. Assume that Ω is a convex polyhedron, ε = µ = 1, T h,1 is defined
in terms of the direct solve (4.6), and the eigenvectors are such that e ·n ∈ H3/2(Γ)
for each face Γ of ∂Ω.

Let λ = iω be a fixed eigenvalue of (2.1), τ2 = ω−2, and {τ2
i (h)}k

i=1 be the
eigenvalues of S∗

h,1Sh,1 that are an approximation of τ2. Fix 0 < ε < 1
2 . Then,

there exists a positive constant C = C(λ) independent of h such that for all i =
1, . . . , k,

|τ2 − τ2
i (h)| ≤ Ch2−ε .
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5. The general domain case

In this section, we discuss the modifications necessary to deal with nonsimply
connected domains and domains with multiply connected boundary components.
The only essential difference is that we shall have to increase the spaces H1 and H2

used above with an analogous increase in their discrete counterparts.
Our assumptions on the topology of the domains are identical to those in [2]

(see, e.g., [2, Hypothesis 3.3]). This allows the introduction of cutting surfaces
Σj , j = 1, . . . , J so that the domain Ω0 = Ω \ (

⋃
Σj) is simply connected. We

also denote the connected components of ∂Ω by Γi, i = 0, . . . , I with Γ0 being the
outermost boundary. There are two finite-dimensional spaces associated with the
above.

First, we define Wn to be the space spanned by the functions {ζj} satisfying

−∇ · µ∇ζj = 0 on Ω0,

µ
∂ζj

∂n
= 0 on ∂Ω,

[ζj ]i = δij and
[
µ

∂ζj

∂n

]
i

= 0 on Σi.

Here [·]i denotes the jump across Σi and δij denotes the Kronecker delta. Let

Θ = {φ ∈ H1(Ω0) : [φ]j = constant, j = 1, . . . J}.
The solution ζj (up to an additive constant) of the above problem is uniquely
determined in Θ. Indeed, if ζ0

j satisfies [ζ0
j ]i = δij , then ζj = ζ0

j + ζ1
j where ζ1

j

solves
(µζ1

j , φ) = −(µζ0
j , φ)

for all φ ∈ H1(Ω). Let ∇̃ζj denote the distributional gradient of ζj with respect to
Ω0. It follows from [ζj ] = δij on Σi that ∇̃ζj is in H(curl) (cf., [2, Lemma 3.11])
and (e, h) ≡ (0, ∇̃ζj) satisfies (2.1) with λ = 0.

The second finite-dimensional space is defined as follows. For each i = 1, . . . , I,
we define ψi to be the function in H1(Ω) satisfying

−∇ · ε∇ψi = 0, in Ω,

ψi = δij , on Γj ,

and we set Wd to be the span of {ψi}. We note that ∇ψ is in H0(curl) and
(e, h) ≡ (∇ψi,0) satisfies (2.1) with λ = 0.

As discussed in [12], for the inf-sup condition (2.9) to hold in the case of non-
simply connected domains, we need to increase the space H1, specifically, we set
H1 = H1(Ω) ⊕ Wn and replace ∇h in the definition of b1 with ∇̃h. In the case of
multiply connected boundary components, we set H2 = H1

0 (Ω) ⊕ Wd.
The analysis in Section 2 still goes through with these definitions. Let (e, h)

satisfy (2.1) with nonzero λ. Then, by (2.3),

0 = (∇× e, ∇̃ζj) = −λ(µh, ∇̃ζj).

Similarly,
0 = (∇× h,∇ψi) = λ(εe,∇ψi).

Thus, the eigenvectors of (2.1) with nonzero eigenvalues still satisfy (2.11) with Sk

defined with Hk as above and Theorem 2.1 holds as well.



APPROXIMATION OF MAXWELL’S EIGENVALUES 1589

We next consider discretization. Without loss of generality, we may assume that
the cuts {Σi} align with the mesh. It is easy to see that H1 and Θ coincide. Thus,
to define Hh,1, we start with the usual approximation space for H1(Ω) and append
functions which are discontinuous on the cuts. Specifically, we add basis functions
which are one on the nodes on one side of Σi and vanish on all remaining nodes
(including those on the opposite side of Σi).

The discrete inf-sup condition still holds. Indeed, the strategy employed in [12]
proceeds as follows. The continuous inf-sup condition implies that for x ∈ Xh,
there is a (v, h) ∈ Y1 satisfying

‖x‖L2(Ω) ≤ C
b1(x, (v, h))
‖(v, h)‖Y1

.

One then constructs a pair (vh, hh) ∈ Yk,h satisfying

(5.1) b1(x, (vh, hh) = b1(x, (v, h))

and
‖(vh, hh)‖Y1 ≤ C‖(v, h)‖Y1 .

The construction proceeds by first using a stable approximation operator Ih as
an initial approximation and using the bubble functions to enforce (5.1) on the
remainder (see [12]). We simply use a modified approximation operator for H1.
Specifically, let Ĩh be a stable approximation operator into the subspace of piecewise
linear functions with arbitrary discontinuities across the cuts and define Ihh equal
to Ĩhh on the nodes not on the cut and by a boundary averaging operator (on each
side of the cut) such as that given in [37] to define the nodes on the cut. This
results in a stable approximation operator. Moreover, since h differs by a constant
on each side of the cut and the boundary averaging operator preserves constants,
Ihh is in Hh,1 and has the same jumps as h. Using Ih, the remainder of the proof
in [12] goes through.

We note that
H2 = {φ ∈ H1(Ω) : φ|Γi

= constant}.
In this case, we start with the finite-element approximation to H1

0 (Ω) and append
basis functions which are one on a given connected component of the boundary and
vanish at all remaining nodes. To prove the discrete inf-sup condition, we are again
left with the construction of a suitable stable approximation operator. If Ĩh denotes
a stable approximation operator into the finite-element subspace with arbitrary
boundary values, we set Ihh to be Ĩhh at the interior nodes and interpolate h at
the boundary nodes. It is easy to prove that Ih is a stable interpolation operator
which reproduces h on ∂Ω. With this operator the proof in [12] carries over.

6. Numerical experiments

In this section we report results from some numerical experiments with the least-
squares method for the problem (2.15). We concentrate on the case of a simply
connected polyhedral domain in R3.

The eigenvalues {λi} of (2.1) are purely imaginary and {|λi|2} = {ω2
i } where

{ω2
i } are the eigenvalues of the curl-curl operator, which are customarily reported

in the literature. Specifically, {ω2
i } are real, nonnegative, and satisfy ∇×µ−1∇×e =

ω2εe, ∇ · εe = 0, with boundary conditions e × n = 0. Our analysis implies that
ω2

i = τ−2
i .
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We report computations involving both tetrahedral and hexahedral meshes. Al-
though there are many analyses available for tetrahedral meshes using methods
based on curl conforming finite-element approximations [6, 29, 32, 31], very little
has been done for general hexahedral meshes. In contrast, the analysis presented
in this paper easily extends to general hexahedral meshes.

The outline of our computational approach is as follows. We start with a coarse
mesh and apply few levels of uniform refinement. We use piecewise constant vector
functions for the space Xh and piecewise linear plus face bubble vector functions
for each component of Yh,k. These are described in more detail in [12], where it is
shown that such a pair of spaces satisfy the inf-sup condition (3.1). On each mesh
level we compute a number of the largest eigenvalues and corresponding eigenfunc-
tions of S∗

h,1Sh,1 using a slightly modified version of the Locally Optimal Block
Preconditioned Conjugate Gradient Method (LOBPCG), (see [28]). The actions of
T h,k for k = 1, 2 are implemented using a two-level algorithm involving a Gauss-
Seidel sweep over the bubble functions and a V-cycle multigrid preconditioner for
the remaining piecewise linear functions. We take ε = µ = 1.

The first test problem is posed on the unit cube partitioned into a uniform tetra-
hedral mesh. The eigenvalues and eigenfunctions of this problem can be computed
exactly. The eigenfunctions are tensor products of trigonometric functions. Eigen-
values are of the form {τ2

i } = { 1
kπ2 }, where k = k2

1 + k2
2 + k2

3 and {ki}3
i=1 are

nonnegative integers satisfying k1k2 + k2k3 + k3k1 > 0. Triplets with k1k2k3 > 0
generate two linearly independent eigenfunctions.

Figure 1 gives the eigenvalues of S∗
h,1Sh,1 (approximating those of S2S1) as

a function of the number of mesh refinement levels. Observe that the method
performs well with multiple eigenvalues. In addition, the eigenvalue convergence
appears to be monotone.
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Figure 1. Unit cube: eigenvalue convergence
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Figure 2. Unit cube: approximation error

Figure 2 presents the same results in different formats. On the top we show the
approximation in the error for each {τ2

i }. We note that the approximation becomes
slightly worse with the increase of the eigenvalue number. This is further examined
on the bottom,where we are looking at the error in three representative eigenvalues,
τ2
1 , τ2

5 and τ2
9 , on the different levels of approximation. As expected, (see Section

4) we have almost quadratic convergence for the eigenvalues.
Our second example is the computation of the eigenmodes of the unit sphere.

The eigenvalues and eigenfunctions are known, but they are not as simple as in the
previous test.
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Table 6.1. Unit sphere: exact eigenvalues

i ω2
i type

1 7.5279e+00 TM (ω̂2
11)

2 1.4979e+01 TM (ω̂2
21)

3 2.0191e+01 TE (ω2
11 )

4 2.4735e+01 TM (ω̂2
31)

5 3.3217e+01 TE (ω2
21 )

6 3.6747e+01 TM (ω̂2
41)

7 3.7415e+01 TM (ω̂2
12)

Specifically, the eigenvalues {ω2
i } = {ω2

mn, ω̂2
mn : m, n = 1, 2, . . . } are split into

two groups:

• Transverse Electric (TE), which satisfy

jm(ω2
mn) = 0 ,

and
• Transverse Magnetic (TM), which satisfy

jm(ω̂2
mn) + ω̂2

mn j′m(ω̂2
mn) = 0 .

Here jm is the mth order spherical Bessel function and j′m is its derivative. The
numerical values for the first few of them (without accounting for their multiplicity)
are given in Table 6.1.

We used a set of hexahedral meshes starting with the coarse mesh shown in Figure
3. Their characteristics together with the number of iterations of the eigensolver
are given in Table 6.2.

Table 6.2. Unit sphere: test meshes and number of LOBPCG iterations

level hmin hmax #vertices #faces #elements nit

1 0.109665 0.255241 976 2700 875 22
2 0.046295 0.124278 9736 28314 9317 13
3 0.023515 0.066545 66256 195804 64827 13

Figure 3. Unit sphere: initial mesh
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Figure 4. Unit sphere: eigenvalue convergence

We proceeded to compute the first ten eigenfunctions. The approximation errors
for the eigenvalues of (2.1) and S∗

h,1Sh,1 are presented in Figure 4. The results are
similar to the previous test problem.

Our third example is the computation of the eigenvalues in the Fichera corner
[−1, 1]3 \ [−1, 0]3. The exact eigenfunctions are not known, but some of them have
singularities at the origin which makes the problem difficult to approximate. We
will compare our results with the ones from Table 6.3 which are taken from M.
Dauge’s benchmark website [16].

Two tests were performed for this problem using unstructured tetrahedral and
uniform hexahedral meshes. The initial meshes are shown in Figure 5. The compu-
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Table 6.3. Fichera corner, benchmark results from [16]

i ω2
i reliable digits conjectured eigenvalue

1 3.31381e+00 1 3.2???e+00
2 5.88635e+00 3 5.88??e+00
3 5.88635e+00 3 5.88??e+00
4 1.06945e+01 4 1.0694e+01
5 1.06945e+01 4 1.0694e+01
6 1.07006e+01 2 1.07??e+01
7 1.23345e+01 3 1.232?e+01
8 1.23345e+01 3 1.232?e+01

Figure 5. Fichera corner: initial meshes

tations were performed on refined grids consisting of 28489 vertices, 323072 faces
and 159744 tetrahedra and 31841 vertices, 89088 faces and 28672 hexahedra, re-
spectively.

The results of the eigenvalue approximations for the first eight eigenfunctions in
each case are reported on Table 6.4.

We note that the hexahedral mesh offers comparable approximation with sig-
nificantly less memory usage. This can be explained by the fact that the mesh is
uniform and that the dimensions of Xh and Yh,k are balanced better in this case.

Our final problem involves complicated geometry modeled with fine hexahedral
mesh. It is a linear accelerator induction cell taken from Lawrence Livermore

Table 6.4. Fichera corner: results for tetrahedral mesh (columns
2 and 3) and hexahedral mesh (column 4)

i ω2
h,i |ω2

i − ω2
h,i| |ω2

i − ω2
h,i|

1 3.23432e+00 7.94855e-02 2.63062e-02
2 5.88267e+00 3.67742e-03 1.69117e-02
3 5.88371e+00 2.64462e-03 1.69511e-02
4 1.06789e+01 1.55709e-02 6.22111e-02
5 1.06832e+01 1.12777e-02 6.22377e-02
6 1.06945e+01 6.08114e-03 1.03244e-01
7 1.23653e+01 3.07189e-02 1.20678e-01
8 1.23723e+01 3.77137e-02 1.22141e-01
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Figure 6. Accelerator induction cell: eigenfunctions 1,2, 4 and 8

National Laboratory’s EMSolve project; see [1]. The mesh has 46382 vertices,
128992 faces, and 41344 elements and comes form a real-world application.

Our code successfully computed the first ten eigenvalues of this difficult problem.
Some of the computed eigenfunctions are shown in Figure 6.

Finally, we want to mention that further numerical experiments seem to suggest
that the use of the projectors Qh,k and the stabilizing face bubble functions are
essential for the convergence and cannot be avoided.

In conclusion, the experiments show that the new method performs quite well in a
variety of applications. Let us stress again that spurious eigenmodes are completely
avoided. We also conclude that LOBPCG seems to be a good choice for eigensolver,
yielding a constant number of iterations in the tests presented.

7. Appendix

In this appendix, we will provide a regularity estimate for the solution of (4.4).
Assume that the domain Ω is convex. Let f ∈ H−1(Ω) and ∇ · f = 0 in the sense
of distributions. As discussed earlier, the div-curl system

(7.1)

∇× x = f in Ω,

∇ · x = 0 in Ω,

x · n = 0 on ∂Ω

has a unique “weak” solution x ∈ L2(Ω) satisfying

(7.2) b1(x, (v, h)) = 〈f , v〉 for all (v, h) ∈ Y1 .

For ε ∈ [0, 1], define Hε
0(Ω) = [L2(Ω), H1

0 (Ω)]ε—the interpolation space between
L2(Ω) and H1

0 (Ω). Recall that H−ε(Ω) is the dual of Hε
0(Ω), and H−ε(Ω) =

(H−ε(Ω))3.
For g ∈ (Hε(Ω))∗, consider the problem of finding ψ ∈ H1−ε

0 (Ω) such that

(7.3) 〈−∆θ, ψ〉 = 〈g,∇θ〉 for all θ ∈ H1
0 (Ω) ∩ H1+ε(Ω).

This problem has a unique solution since the operator −∆ defines an isomorphism
of H1

0 (Ω) ∩ H1+ε(Ω) onto H−1+ε(Ω). Additionally, we have

‖∇ψ‖H−ε(Ω) ≤ ‖ψ‖H1−ε
0 (Ω) ≤ C ‖g‖(Hε(Ω))∗ ,

and therefore by setting Q1g = ∇ψ we get the unique continuous extension of Q1

as an operator from (Hε(Ω))∗ to H−ε(Ω). Thus, in particular,

‖Q1g‖H−1(Ω) ≤ C ‖g‖(H1(Ω))∗ .
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Analogous to the definition in §2, let S1 be the solution operator defined as
S1g = x, where x solves (7.2) with data f = (I − Q1)g.

Lemma 7.1. For any ε ∈ [0, 1], S1 : (Hε(Ω))∗ �→ H1−ε(Ω) is a bounded linear
operator.

Proof. For any g ∈ (Hε(Ω))∗ we have that (I − Q1)g ∈ H−1(Ω) and

(7.4) 〈(I − Q1)g,∇θ〉 = 0

for arbitrary θ ∈ D(Ω). Therefore, the compatability condition (2.8) is satisfied,
and S1g is well defined. Moreover, the convexity of Ω and the inf-sup condition
(2.9) imply that

‖S1g‖1 ≤ C ‖(I − Q1)g‖0 and ‖S1g‖0 ≤ C ‖(I − Q1)g‖H−1 ,

for g ∈ L2(Ω) and g ∈ (H1(Ω))∗, respectively. Using the boundedness of Q1 we
get

‖S1g‖1 ≤ C ‖g‖0 and ‖S1g‖0 ≤ C ‖g‖(H1(Ω))∗ .

Thus, by interpolation,

‖S1g‖1−ε ≤ C ‖g‖(Hε)∗ for all g ∈ (Hε(Ω))∗ . �

Corollary 7.1. Let ε ∈
(
0, 1

2

)
. There exists C = C(ε) > 0, such that for data

f ∈ H−ε(Ω), with ∇ · f = 0, the solution of (7.2) is in H1−ε(Ω) and we have the
stability estimate

(7.5) ‖x‖1−ε ≤ C‖f‖−ε .

Proof. Since ε < 1
2 , we have H−ε(Ω) = (Hε(Ω))∗. By (7.3) and the fact that D(Ω)

is dense in H1
0 (Ω) ∩ H1+ε(Ω), it follows that Q1f = 0 when f ∈ H−ε(Ω) and

∇ · f = 0. For such f , S1f coincides with the solution x of (7.2). The corollary
follows from Lemma 7.1. �

Remark 7.1. When f ∈ (Hε(Ω))∗ with ε ∈
[
1
2 , 1

]
, the condition Q1f = 0 implies

∇ · f = 0 by (7.4). The converse is false. Indeed, for example, let ε = 1 and
φ ∈ L2(Ω) be a nonconstant harmonic function. Define f ∈ (H1(Ω))∗ by

〈f , v〉 = −(φ,∇ · v) for all v ∈ H1(Ω) .

Clearly ∇ · f = 0. On the other hand, (7.3) implies that Q1f = f |H−1 = ∇φ 
= 0.
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