
MATHEMATICS OF COMPUTATION
Volume 75, Number 253, Pages 385–393
S 0025-5718(05)01776-X
Article electronically published on September 12, 2005

THE TRACE OF TOTALLY POSITIVE ALGEBRAIC INTEGERS

JULIÁN AGUIRRE, MIKEL BILBAO, AND JUAN CARLOS PERAL

Abstract. For all totally positive algebraic numbers α except a finite number
of explicit exceptions, the following inequality holds:

1

d
(α1 + · · · + αd) > max(1.780022,1.66 + α1),

where d is the degree of α and 0 < α1 < · · · < αd its conjugates. This improves
previous results of Smyth, Flammang and Rhin.

1. Introduction and main result

Let α be a totally positive algebraic number of degree d, and let 0 < α1 < · · · <
αd be its conjugates. Define the mean trace of α as

tr(α) =
1
d

d∑
i=1

αi.

For each odd prime p, θp = 4 cos2(π/p) is a totally positive algebraic integer of
degree (p− 1)/2 such that tr(θp) = 2(p− 2)/(p− 1). Thus, 2 is a limit point of the
set

T = { tr(α) : α is a totally positive algebraic integer }.
It is an open question whether it is the smallest limit point, that is, whether (0, 2)∩T
is a discrete set. One way to try to answer this question is to find lower bounds for
the mean trace of totally positive algebraic integers. Previous such bounds, holding
for all but finitely many explicit exceptions, are√

e, Schur (1918),
1.733, Siegel (1945),
1.7719, Smyth (1984),
1.6 + α1, Flammang, Rhin, Smyth (1997).

See [Si, Sm2, FRS]. In the last paper the authors state that it should be possible
to improve the constant 1.6 in the last inequality to at least 1.65. We go a little
bit further and prove that the inequality is valid with 1.66, and at the same time
we obtain a new lower bound on the smallest limit point of T .

Theorem. For all totally positive algebraic numbers α, except a finite number of
explicit exceptions, the following inequalities hold:

tr(α) > 1.780022,(1)

tr(α) > 1.66 + α1.(2)

Received by the editor July 2, 2004 and, in revised form, October 27, 2004.
2000 Mathematics Subject Classification. Primary 11R06, 11-04.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

385



386 J. AGUIRRE, M. BILBAO, AND J. C. PERAL

The idea of the proof is quite simple, and is based on the principle of auxiliary
functions as in [Sm2]. For each z ≥ 0 find a polynomial Q ∈ Z[x] and constants
a > 0, b such that

(3) x − a log |Q(x)| ≥ b ∀x > z.

Averaging (3) over the conjugates of a totally positive algebraic integer α with
minimal polynomial P and α1 ≥ z yields

tr(α) ≥ b + a

∂α∑
i=1

log |Q(αi)| = b + a log |Resultant(P, Q)|.

If Q(α) �= 0, then the resultant of P and Q is a nonzero integer, and it follows that
tr(α) ≥ b. For instance, if Q(x) = x7(x − 1)9 and a = 1/10, an easy calculation
shows that x − a log |Q(x)| > 1.46 for all x > 0, and hence tr(α) > 1.46 for all
totally positive algebraic integers except α = 1. In order to prove inequalities (1)
and (2), we shall use different (and more complicated) polynomials Q, which turn
out to be connected t o the so-called integer Chebyshev polynomials.

Given a positive integer d, let Zd be the set of all nonzero polynomials with
integer coefficients of degree less than or equal to d, and let I ⊂ R be a bounded,
closed interval. A polynomial Pd ∈ Zd such that

sup
x∈I

|Pd(x)| = inf
p∈Zd

sup
x∈I

|p(x)|

is called an integer Chebyshev polynomial or a polynomial of minimal diophantine
deviation from zero in I. Moreover, limd→∞ supx∈I |Pd(x)|1/d = tZ(I) exists, and
is called the integer transfinite diameter of I. A lower bound on the trace of totally
positive algebraic integers was obtained in [BE] from estimates on tZ([ 0, 1/m ]),
m ∈ N, while in [FRS] inequalities such as (1) and (2) are used to get estimates on
tZ(I) for small intervals I.

The polynomials Q used in our computations have a structure similar to that
of the integer Chebyshev polynomials in [ 0, 1 ]. Aparicio [A] showed that for suffi-
ciently large d, Pd has a factor of the form xe1(1− x)e2(2 x− 1)e3(5 x2 − 5 x + 1)e4

with the exponents ei growing linearly with d. Borwein and Erdélyi [BE] found six
more irreducible polynomials that are factors of all Pd provided d is large enough.
The roots of all these factors are real and in the interval [ 0, 1 ]. Habsieger and
Salvy [HS] determined Pd for 1 ≤ d ≤ 75 and found a new irreducible factor which
surprisingly has complex roots.

For each z ≥ 0, we fix a finite set of irreducible polynomials P(z) ⊂ Z[x] and let

Q =
∏

q∈P(z)

qeq , eq ∈ N.

This leads to the following optimization problem: maximize the function

(4) Λ(aq|q ∈ P(z)) = inf
x>z

(
x −

∑
q∈P(z)

aq log |q(x)|
)

over all aq > 0, q ∈ P(z). There are heuristic rules to determine the polynomials
in P(z):

(1) All its roots should be positive. This is in accordance with the fact that all
known irreducible factors of integer Chebyshev polynomials in [ 0, 1 ], with
the one exception noted above, have their roots in [ 0, 1 ].
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(2) If β is the smallest (positive) root of q ∈ P(z), then β should be close to z.
(3) With β as above, tr(β) − β should be as small as possible. The reason for

this is the following: if we want to prove the inequality tr(α) < α1 +γ, then
all polynomials such that tr(β) < β + γ must be factors of the polynomial
Q.

In all, we use 91 polynomials Qj , 1 ≤ j ≤ 91, listed in Table 1. Thirty of
them are among the 36 used in [FRS]. The rest were selected using the above
heuristic criteria from a collection found by an exhaustive search. All of them are
monic and have all their roots in the interval (0,∞), except for Q38, which has two
complex roots and corresponds to the polynomial A8 in [HS] after a suitable change
of variable.

On the other hand, by a result of J.P. Serre (see the Note Added in Proof in
[Sm3]), if Q ∈ Z[x], a > 0 and b ∈ R are such that

x − a log |Q(x)| > b ∀x > 0,

then b ≤ 1.898302. One immediate consequence is the impossibility of proving by
this method that 2 is the smallest limit point of T .

2. Proof of the main result

In this section we prove the theorem stated in the Introduction. First of all, we
remark that by considering α−
α1�, we may assume that 0 < α1 < 1. Given z ≥ 0,
let I(z) ⊂ { 1, . . . , 91 } be the set of indexes such that P(z) = {Qj : j ∈ I(z) } and
define the function µ : [ 0, 1) → R by

µ(z) = sup
aj>0

{
inf
x>z

(x −
∑

j∈I(z)

aj log |Qj(x)|)
}
.

If α is a totally positive algebraic integer such that Qj(α) �= 0 for j ∈ I(z), then

(5) tr(α) ≥ µ(α1).

The only totally positive algebraic integers for which inequality (5) can fail are the
roots of the polynomials Qj , 1 ≤ j ≤ 91, and their translates by positive integers.
The theorem will be proved once we establish the following lemma.

Lemma.
µ(z) > max(1.780022, 1.66 + z), 0 ≤ z < 1.

Proof. To prove inequality (1) it is enough to estimate µ(0). We found a set of 24
polynomials P(0) = {Qj : j ∈ I(0) } and 24 numbers aj > 0, j ∈ I(0), such that

x −
∑

j∈I(0)

aj log |Qj(x)| > 1.780022 ∀x > 0.

The indexes in I(0) and the values of the aj are given in Table 3 at the end of this
paper.

To prove that µ(z) > 1.66 + z, we construct a partition z0 = 0 < z1 < · · · <
z20 < z21 = 1 of [ 0, 1 ] into 21 subintervals such that µ(zi) > 1.66+zi+1, 1 ≤ i ≤ 20,
and µ(0) > 1.780022 > 1.66 + z1. Since µ is nondecreasing, the lemma follows. In
the last section we explain how we found the zi. �
Remark. The values if zi and the corresponding indexes I(zi) are listed in Table 2
at the end of this paper. The complete data for the computation of µ(zi) can be
downloaded as a PDF document from www.ehu.es/mat/pdf/DataAlgInt.pdf.
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Remark. There are only 14 exceptions to inequality (1), the roots of Qi for i =
2, 5, 12, 25, 26. As for inequality (2), the exceptions are the roots of Qi for i =
2, 5, 7, 12, 18, 22, 25, 26, 31 (for a total of 26), and those obtained from them by
adding a positive integer.

Table 1. Polynomials Qi

i Qi

1 x

2 −1 + x

3 −2 + x

4 −3 + x

5 1 − 3 x + x2

6 1 − 4 x + x2

7 2 − 4 x + x2

8 2 − 5 x + x2

9 3 − 5 x + x2

10 5 − 5 x + x2

11 7 − 6 x + x2

12 −1 + 6 x − 5x2 + x3

13 −1 + 5 x − 6x2 + x3

14 −1 + 7 x − 6x2 + x3

15 −1 + 8 x − 6x2 + x3

16 −2 + 8 x − 6x2 + x3

17 −1 + 9 x − 6x2 + x3

18 −3 + 9 x − 6x2 + x3

19 −4 + 11x − 7x2 + x3

20 −5 + 12x − 7x2 + x3

21 −5 + 13x − 7x2 + x3

22 −7 + 14x − 7x2 + x3

23 −10 + 18x − 8x2 + x3

24 −13 + 19x − 8x2 + x3

25 1 − 7 x + 13 x2 − 7x3 + x4

26 1 − 8 x + 14 x2 − 7x3 + x4

27 1 − 8 x + 15 x2 − 8x3 + x4

28 1 − 8 x + 16 x2 − 8x3 + x4

29 2 − 12 x + 18 x2 − 8x3 + x4

30 9 − 28 x + 26 x2 − 9x3 + x4

31 11 − 31x + 27 x2 − 9 x3 + x4

32 13 − 37x + 32 x2 − 10 x3 + x4

33 14 − 38x + 32 x2 − 10 x3 + x4

34 15 − 39x + 32 x2 − 10 x3 + x4

35 16 − 41x + 33 x2 − 10 x3 + x4

36 17 − 42x + 33 x2 − 10 x3 + x4

37 19 − 45x + 34 x2 − 10 x3 + x4

38 −1 + 10x − 25x2 + 22 x3 − 8 x4 + x5
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Table 1. Polynomials Qi (continued)

39 −1 + 11x − 29x2 + 26 x3 − 9 x4 + x5

40 −1 + 12x − 31x2 + 27 x3 − 9 x4 + x5

41 −1 + 13x − 32x2 + 27 x3 − 9 x4 + x5

42 −1 + 15x − 35x2 + 28 x3 − 9 x4 + x5

43 −1 + 10x − 30x2 + 29 x3 − 10x4 + x5

44 −1 + 11x − 34x2 + 31 x3 − 10x4 + x5

45 −1 + 11x − 35x2 + 31 x3 − 10x4 + x5

46 −3 + 20x − 41x2 + 32 x3 − 10x4 + x5

47 −1 + 12x − 40x2 + 33 x3 − 10x4 + x5

48 −3 + 20x − 42x2 + 33 x3 − 10x4 + x5

49 −3 + 21x − 43x2 + 33 x3 − 10x4 + x5

50 −4 + 25x − 47x2 + 34 x3 − 10x4 + x5

51 −5 + 29x − 51x2 + 35 x3 − 10x4 + x5

52 −7 + 36x − 61x2 + 41 x3 − 11x4 + x5

53 −9 + 41x − 64x2 + 41 x3 − 11x4 + x5

54 −11 + 49x − 72x2 + 43 x3 − 11x4 + x5

55 −17 + 66x − 89x2 + 50 x3 − 12x4 + x5

56 −53 + 144x − 141x2 + 63 x3 − 13x4 + x5

57 −64 + 175x − 168x2 + 72 x3 − 14x4 + x5

58 −66 + 176x − 168x2 + 72 x3 − 14x4 + x5

59 −67 + 177x − 168x2 + 72 x3 − 14x4 + x5

60 −67 + 185x − 174x2 + 73 x3 − 14x4 + x5

61 −73 + 190x − 175x2 + 73 x3 − 14x4 + x5

62 −89 + 210x − 183x2 + 74 x3 − 14x4 + x5

63 1 − 12 x + 45 x2 − 67x3 + 42 x4 − 11x5 + x6

64 1 − 12 x + 46 x2 − 68x3 + 42 x4 − 11x5 + x6

65 1 − 13 x + 47 x2 − 68x3 + 42 x4 − 11x5 + x6

66 1 − 13 x + 50 x2 − 72x3 + 43 x4 − 11x5 + x6

67 1 − 14 x + 55 x2 − 74x3 + 43 x4 − 11x5 + x6

68 1 − 15 x + 59 x2 − 78x3 + 44 x4 − 11x5 + x6

69 1 − 18 x + 63 x2 − 79x3 + 44 x4 − 11x5 + x6

70 1 − 11 x + 42 x2 − 67x3 + 45 x4 − 12x5 + x6

71 1 − 12 x + 48 x2 − 75x3 + 48 x4 − 12x5 + x6

72 5 − 38 x + 96 x2 − 103x3 + 52 x4 − 12x5 + x6

73 13 − 73x + 149x2 − 138x3 + 62 x4 − 13x5 + x6

74 19 − 96x + 177x2 − 151x3 + 64 x4 − 13x5 + x6

75 −1 + 14x − 66x2 + 136x3 − 131x4 + 61 x5 − 13x6 + x7

76 −1 + 14x − 67x2 + 138x3 − 132x4 + 61 x5 − 13x6 + x7

77 −1 + 15x − 71x2 + 142x3 − 133x4 + 61 x5 − 13x6 + x7

78 −1 + 14x − 67x2 + 140x3 − 135x4 + 62 x5 − 13x6 + x7

79 −1 + 14x − 68x2 + 142x3 − 136x4 + 62 x5 − 13x6 + x7

80 −1 + 15x − 71x2 + 144x3 − 136x4 + 62 x5 − 13x6 + x7

81 −1 + 15x − 72x2 + 146x3 − 137x4 + 62 x5 − 13x6 + x7

82 −1 + 15x − 73x2 + 147x3 − 137x4 + 62 x5 − 13x6 + x7
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Table 1. Polynomials Qi (continued)

83 −1 + 15x − 75x2 + 153x3 − 142x4 + 63 x5 − 13x6 + x7

84 −1 + 16x − 78x2 + 157x3 − 143x4 + 63 x5 − 13x6 + x7

85 −1 + 17x − 81x2 + 158x3 − 143x4 + 63 x5 − 13x6 + x7

86 −1 + 17x − 82x2 + 159x3 − 143x4 + 63 x5 − 13x6 + x7

87 −2 + 24x − 102x2 + 189x3 − 166x4 + 71 x5 − 14x6 + x7

88 1 − 15 x + 83 x2 − 220x3 + 303x4 − 220x5 + 83 x6 − 15x7 + x8

89 1 − 24 x + 206x2 − 813x3 + 1662x4 − 1920x5 + 1320x6

−549 x7 + 135x8 − 18x9 + x10

90 1 − 19 x + 145x2 − 575x3 + 1289x4 − 1683x5 + 1289x6

−575 x7 + 145x8 − 19x9 + x10

91 −1 + 26x − 279x2 + 1625x3 − 5702x4 + 12694x5 − 18464x6

+17848 x7 − 11549x8 + 4980x9 − 1401x10 + 245x11

−24 x12 + x13

3. About the computations

In this section we comment on how we carried out the computations. All were
done using Mathematica� on a Power Macintosh G4 at 400 Ghz.

3.1. The zi. We found the points in the partition used to prove the inequality
µ(z) > 1.66 + z recursively. The first step was to find z20 as the smallest value
of z such that µ(z) > 2.66. In [FRS] one finds µ(0.91) > 2.6615. Starting from
here and adding new polynomials to those used in [FRS], we were able to get
µ(0.8878) > 2.66. This process is iterated as follows: Once zi+1 has been found,
we look for zi as the smallest z such that µ(z) > 1.66 + zi+1. The computations
are started using all the polynomials in P(zi+1) together with new ones chosen
according to the heuristics in the Introduction.

3.2. The function Λ. To compute the function Λ defined by equation (4) we use
the symbolic capabilities and the high precision routines of Mathematica�. For
the sake of simplicity, let us assume that we have selected a set of irreducible
polynomials { q1, . . . , qJ } ⊂ Z[x] with all their roots real and nonnegative, and let
d be the sum of the degrees of the qj . Given aj > 0, 1 ≤ j ≤ J , we want to calculate

Λ(a1, . . . , aJ) = inf
x>z

f(x), where f(x) = x −
J∑

j=1

aj log |qj(x)|.

The function f is unbounded on a neighbourhood of the roots of the qj and
at infinity. Hence, it has d local minima, which are found solving the equation
f ′(x) = 0. For this we compute

g(x) =
( J∏

j=1

qj

)(
1 −

J∑
j=1

aj

q′j
qj

)
.

The function g is a polynomial of degree d with d positive roots { ξ1, . . . , ξd }, each
corresponding to a local minimum of f . We compute them with the command
NSolve[g[x]==0,prec], where prec, the number of significative digits, depends
on d. Then Λ(a1, . . . , aJ) = minξk>z f(ξk). This is the more time consuming
part of the computations, especially for large values of d. The most difficult case
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corresponds to the evaluation of µ(0); then d = 110, prec = 80 and it took 196
seconds to compute Λ.

3.3. The optimization. To maximize Λ(a1, . . . , aJ ) for aj > 0, we use two opti-
mization techniques. The first one is a variant of the second Remes algorithm [R].
As observed above, the function f has d local minima { ξ1, · · · , ξd }, and in general
the values of f(ξj) will be different. By analogy with the problem of uniform poly-
nomial or rational approximation, we expect that when the maximum value of Λ
is achieved, there will be a set of J local minima at which f takes precisely that
value. Our implementation of the algorithm is as follows:

(1) Start with a given set of coefficients a1, . . . , aJ , and find the local minima
{ ξ1, · · · , ξd } of f .

(2) Among the { ξk : 1 ≤ k ≤ J } such that ξk > z, select the J + 1 points
{ η1, . . . , ηJ+1 } at which f takes the smallest values. They are called control
points.

(3) Solve the linear system of J + 1 equations in the J + 1 unknowns āj and δ,

ηk −
J∑

j=1

āj log |qj(ηk)| = δ, 1 ≤ k ≤ J + 1.

(4) Go back to step (1) with ā1, . . . , āJ as new values of the coefficients.

Most of the times three to four iterations are sufficient to get a solution. However,
sometimes the algorithm does not give an answer. It may happen for instance that
one of the coefficients āj is negative. Then we turn to a different method.

The first steps of the second optimization algorithm are the same as above,
except that now we choose only J control points, and order them in such a way
that f(η1) ≤ f(η2) ≤ · · · ≤ f(ηJ ). Then we solve 35 linear systems of J equations
in the variables āj

ηk −
J∑

j=1

āj log |qj(ηk)| = f(ηk) + εk, 1 ≤ k ≤ J,

where

εk =

{
ε, 0 or − ε if 1 ≤ k ≤ 5,

0 if 5 < k ≤ J,

and ε > 0 is a small parameter (10−6 at the beginning of the algorithm). Among
the solutions, we select the one that gives the largest value of Λ(ā1, . . . , āJ). If
this is greater than Λ(a1, . . . , aJ), we repeat the process with the new coefficients
and a larger value of ε. Otherwise, we repeat the computations with the original
coefficients and a smaller value of ε. In practice, since computing 35 times the
function Λ takes too long, we maximize an approximate function

Λ∗(ā1, . . . , āJ) = min
ξk>z

(
ξk −

J∑
j=1

āj log |qj(ξk)|
)
.

In order to solve the systems efficiently, we use the routines LUDecomposition and
LUBackSubstitution.
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Table 2. Values of zi such and sets of indexes I(zi)

zi Indexes in I(zi)

0.0000 1, 2, 3, 5, 6, 7, 12, 15, 17, 25, 26, 39, 40, 41, 42, 65, 68, 69, 83, 84, 85, 86, 88, 89

0.1200 1, 2, 3, 5, 6, 12, 15, 17, 25, 26, 38, 39, 40, 63, 65, 66, 67, 77, 80, 81, 82, 84

0.1284 1, 2, 3, 5, 6, 7, 12, 15, 25, 26, 38, 39, 40, 47, 63, 64, 66, 76, 78, 81, 82, 91

0.1379 1, 2, 3, 5, 6, 7, 12, 15, 25, 26, 38, 39, 47, 63, 64, 75, 76, 78, 82, 83, 91

0.1469 1, 2, 5, 12, 25, 26, 38, 44, 45, 47, 63, 64, 75, 76, 78, 79, 82, 88, 91

0.1602 1, 2, 5, 6, 12, 13, 14, 25, 26, 28, 45, 64, 88

0.1862 2, 3, 5, 6, 12, 13, 25, 26, 27, 28, 43, 64, 71, 90

0.2236 2, 3, 5, 6, 12, 13, 25, 29, 46, 49, 70, 87

0.2632 2, 3, 5, 6, 7, 12, 13, 16, 18, 25, 46, 48, 50, 51, 72

0.3027 2, 3, 5, 7, 12, 13, 16, 18, 25, 46, 48, 51

0.3542 2, 3, 5, 7, 13, 16, 18, 25, 52

0.4305 2, 3, 5, 7, 8, 18, 21, 31, 53, 54, 73, 74

0.4609 2, 3, 5, 7, 13, 18, 19, 21, 30, 53, 54, 73, 74

0.5074 2, 3, 5, 7, 18, 21, 30, 31, 53, 73, 74

0.5412 2, 3, 7, 19, 30, 31, 53, 73, 74

0.5703 2, 3, 7, 19, 20, 22, 31, 33, 53

0.6209 2, 3, 7, 9, 20, 22, 31, 32, 33, 55

0.6803 2, 3, 4, 7, 9, 22, 31, 33, 34, 35, 42, 55

0.7243 2, 3, 4, 10, 22, 34, 35, 36, 60

0.8008 2, 3, 4, 10, 22, 23, 36, 37, 57

0.8878 2, 3, 4, 10, 11, 24, 56, 58, 59, 61, 62

Table 3. Coefficients used in the computation of µ(0)

i ai i ai i ai

1 0.557759018834 17 0.003606632908 68 0.002310519546
2 0.517434403724 25 0.030260150191 69 0.003689991355
3 0.084850396449 26 0.028691767226 83 0.000649281270
5 0.198286275885 39 0.012740975114 84 0.004596641527
6 0.021810634685 40 0.014443618843 85 0.003440013771
7 0.015104653966 41 0.005890655111 86 0.001631544175

12 0.086757831518 42 0.016499770947 88 0.004321000270
15 0.009979630762 65 0.000839860439 89 0.002111633764
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