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AN OLD CONJECTURE OF ERDŐS–TURÁN
ON ADDITIVE BASES

PETER BORWEIN, STEPHEN CHOI, AND FRANK CHU

Abstract. There is a 1941 conjecture of Erdős and Turán on what is now
called additive basis that we restate:

Conjecture 0.1 (Erdős and Turán). Suppose that 0 = δ0 < δ1 < δ2 < δ3· · ·
is an increasing sequence of integers and

s(z) :=
∞∑

i=0

zδi .

Suppose that

s2(z) :=
∞∑

i=0

biz
i.

If bi > 0 for all i, then {bn} is unbounded.

Our main purpose is to show that the sequence {bn} cannot be bounded
by 7. There is a surprisingly simple, though computationally very intensive,
algorithm that establishes this.

1. Introduction

Suppose that 0 = δ0 < δ1 < δ2 < δ3 · · · is an increasing sequence of integers and

s(z) =
∞∑

i=0

zδi

and

s2(z) :=
∞∑

i=0

biz
i

with bi > 0 for all i. Then the set A := {δ1 < δ2 < δ3 · · · } is called a basis of order
two, or simply a basis (that is, every natural number can be written as a sum of
two elements of A). Hence the Erdős and Turán conjecture can be rephrased: for
any basis, the number of representations is unbounded.

We prove, as our main result, the following theorem.

Theorem 1.1. Suppose that each ai is a nonnegative integer, and

f(z) :=
∞∑

i=0

aiz
i.

Received by the editor September 28, 2004 and, in revised form, November 15, 2004.
2000 Mathematics Subject Classification. Primary 11B83, 05B20; Secondary 94A11, 68R05.
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Suppose that

f2(z) :=
∞∑

i=0

biz
i.

If bi > 0 for all i, then sup{bi} ≥ 8. In other words, the maximum number of
representations of any basis is ≥ 8.

This improves a previous result by Grekos, Haddad, Helou and Pihko in [5], where
they prove that the maximum number of representations of any basis is ≥ 6. The
method we employ is surprisingly simple, though computationally very intensive.
The methods in [5] involve considerably more analysis and less computation.

Erdős and Turán [3] raised this problem in a 1941 paper on Sidon sets and related
problems and not in the language of additive basis.

On page 48 of “Old and New problems and results in combinatorial number
theory”, by Erdős and Graham [4], the conjecture is one of the open problems,
and there is a $500 prize offered. (The problem is described in terms of bases of
order 2 after a discussion of bases.) Erdős and Graham [4] also ask for an explicit
construction where

1 ≤ bi = o(iε)
for all positive ε.

If the sequence of δi is allowed to include negative integers, then the conjecture
is false. This is due to Nathanson [6]. In this case there is a simple explicit
construction. For other related problems, we refer to [1], [2] and [7].

2. Erdős–Turán conjecture

This old conjecture restates in a number of ways.

Conjecture 2.1 (Erdős and Turán—original version). Suppose that each ai is a
nonnegative integer, and

f(z) :=
∞∑

i=0

aiz
i.

Suppose that

f2(z) :=
∞∑

i=0

biz
i.

If bi > 0 for all but finitely many i, then {bn} is unbounded.

This is in fact equivalent to the (apparently stronger) statement below. This
follows from noticing that adding any finite number of positive terms to the sum
f(z) does not change the boundedness of {bn}.

Conjecture 2.2 (Erdős and Turán—version 2). Suppose that each ai is a nonneg-
ative integer, and

f(z) :=
∞∑

i=0

aiz
i.

Suppose that

f2(z) :=
∞∑

i=0

biz
i.

If bi > 0 for all i, then {bn} is unbounded.
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In this conjecture, in consideration of what happens if each positive integer ai

in a minimal example is replaced by 1, it is obviously necessary and sufficient to
consider series of the form

s(z) :=
∞∑

i=0

zδi ,

where 0 = δ0 < δ1 < δ2 < δ3 · · · and each δi is an integer. This is the form of the
conjecture we analyze.

Conjecture 2.3 (Erdős and Turán—version 3). Suppose that 0 = δ0 < δ1 < δ2 <
δ3 · · · is an increasing sequence of integers, and

s(z) =
∞∑

i=0

zδi .

Suppose that

s2(z) :=
∞∑

i=0

biz
i.

If bi > 0 for all i, then {bn} is unbounded.

From now on we suppose that 0 = δ0 < δ1 < δ2 < δ3 · · · is an increasing sequence
of integers.

Lemma 2.4. For n ≥ 0 let

sn(z) :=
n∑

i=0

zδi

and let (the finite sum)

s2
n(z) :=

∞∑

i=0

Bi(n)zi.

Then we have Bi(n) ≤ Bi(n + 1) for all i ≥ 0 and Bi(n) = Bi(n + 1) for i =
0, 1, . . . , δn.

Proof. It follows easily from

Bi(n) = #{δj + δl = i : 0 ≤ j, l ≤ n},
and {δn} is a strictly increasing sequence. �

Corollary 2.5. Suppose that

s(z) =
∞∑

i=0

zδi

and suppose that

s2(z) =
∞∑

i=0

biz
i

has each
bi > 0.

Then

sn(z) =
n∑

i=0

zδi



478 PETER BORWEIN, STEPHEN CHOI, AND FRANK CHU

and

s2
n(z) =

∞∑

i=0

Biz
i

satisfy
Bi > 0, i = 0, 1, . . . , δn,

and
max{Bi} ≤ max{bi}.

Proof. In view of Lemma 2.4, Bi ≤ bi for all i ≥ 0 and Bi = bi for i = 0, 1, . . . , δn.
The corollary follows. �
Lemma 2.6. Fix k and let En(k) denote the set of polynomials of the form

sn(z) =
n∑

i=0

zδi ,

where 0 = δ0 < δ1 < δ2 < · · · < δn and where

s2
n(z) =

∞∑

i=0

Biz
i

with
Bi > 0, i = 0, 1, . . . , δn,

and
max{Bi} ≤ k.

Then each element of p(z) ∈ En(k) is an extension of an element of q(z) ∈ En−1(k)
of at most one more than twice the degree, in the sense that

p(z) := zγ + q(z),

where
degree(q) < γ ≤ 2 degree(q) + 1.

In particular, the largest degree of p(z) in En(k) is at most n2 + 2n − 2 and

(2.1) |En(k)| ≤ (n2 − 2)|En−1(k)|.
Proof. If sn(z) = 1+zδ1 + · · ·+zδn ∈ En(k) with 0 = δ0 < δ1 < · · · < δn, then from
Lemma 2.4, we have Bi(n− 1) ≤ Bi(n) ≤ k for all i and Bi(n− 1) = Bi(n) > 0 for
i = 0, 1, . . . , δn−1. Hence sn−1(z) belongs to En−1(k) and sn(z) = zδn + sn−1(z).
Furthermore, if δn > 2δn−1 + 1, then δi + δj �= 2δn−1 + 1 for 0 ≤ i, j ≤ n and hence

B2δn−1+1(n) = #{δi + δj = 2δn−1 + 1 : 0 ≤ i, j ≤ n} = 0.

This contradicts sn(z) ∈ En(k). Thus, we have

(2.2) δn−1 < δn ≤ 2δn−1 + 1.

On the other hand, we have

(n + 1)2 = sn(1)2 =
2δn∑

i=0

Bi

≥ (B0 + · · · + Bδn
) + Bδn+1 + B2δn

.

If sn(z) ∈ En(k), then B0, . . . , Bδn
≥ 1 and clearly B2δn

= 1 and Bδn+1 ≥ 1
because δ1 always equals 1. Thus for n ≥ 1, we have

(2.3) δn ≤ (n + 1)2 − 3 = n2 + 2n − 2.
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Now since sn(z) = zδn + sn−1(z), we have

|En(k)| ≤ (n2 − 2)|En−1(k)|
by (2.2) and (2.3). �

From (2.1), if there is some n0 such that En0(k) = ∅, then En(k) = ∅ for all
n ≥ n0.

The utility is that it suggests an algorithm for generating

E(k) := E0(k) ∪ E1(k) ∪ E2(k) ∪ E3(k) . . .

that terminates exactly when En(k) is empty for some n. Hence we have the
following result.

Theorem 2.7. In the notation of the previous corollary, if, for some n, En(k) is
empty or equivalently, E(k) is finite, then no series of the form

s(z) :=
∞∑

i=0

zδi ,

where

s2(z) :=
∞∑

i=0

biz
i,

has each
bi > 0

and
max{bi} ≤ k

can exist. Furthermore, if for every k, E(k) is finite, then the Erdős and Turán
conjecture is true.

Proof. Since E(k) is finite if and only if, for some n, En(k) is empty, so the theorem
follows from Lemma 2.6. �

3. Computations

Each element of p ∈ En(k) is an extension of an element of q ∈ En−1(k) of at
most twice the degree plus one. So En(k) can be generated readily from En−1(k)
in at most NM steps, where N is the size of En−1(k) and M is one more than the
largest degree of an element of En−1(k).

So for example E(3) is
{
1, x + 1, x2 + x + 1, x3 + x + 1, x4 + x2 + x + 1, x5 + x2 + x + 1, x5 + x3 + x + 1,

x7 + x4 + x2 + x + 1, x8 + x5 + x2 + x + 1
}

.

Here

E0(3) = {1},
E1(3) = {x + 1},

E2(3) = {x2 + x + 1, x3 + x + 1},
E3(3) = {x4 + x2 + x + 1, x5 + x2 + x + 1, x5 + x3 + x + 1},

and
E4(3) = {x7 + x4 + x2 + x + 1, x8 + x5 + x2 + x + 1}.

Note how the elements extend. Also En(3) = ∅ for all n > 4.
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It is a computation that E(4) contains exactly 404 elements all of degree 40 or
less, and E(5) contains exactly 6355 elements all of degree 52 or less. A typical
element is

t := x41 + x36 + x30 + x27 + x21 + x15 + x13 + x8 + x5 + x4 + x3 + x + 1

with

t2 := x82 + 2 x77 + x72 + 2 x71 + 2 x68 + 2 x66 + 2 x63 + 2 x62 + x60 + 4 x57 + 2 x56

+ 3 x54 + 4 x51 + 4 x49 + 2 x48 + 2 x46 + 4 x45 + 4 x44 + 2 x43 + 5 x42 + 4 x41

+ 4 x40 + 2 x39 + 2 x38 + 2 x37 + 4 x36 + 4 x35 + 4 x34 + 2 x33 + 2 x32 + 4 x31

+ 5 x30 + 2 x29 + 4 x28 + 2 x27 + 3 x26 + 2 x25 + 2 x24 + 2 x23 + 2 x22 + 4 x21

+ 2 x20 + 2 x19 + 4 x18 + 2 x17 + 5 x16 + 2 x15 + 2 x14 + 4 x13 + 2 x12 + 2 x11

+ x10 + 4 x9 + 5 x8 + 2 x7 + 3 x6 + 4 x5 + 4 x4 + 2 x3 + x2 + 2 x + 1.

A first attempt at computing E(6) shows very quickly that it is much larger than
that of E(5). So the straightforward breadth first search has to be optimized in
several ways to compute E(6) and E(7).

First, the search needs to be depth first, because the intermediate sets En(6) are
large. (A trial execution of the breadth-first algorithm showed us that E17(6) has
as many as 200 million sets! This is clearly a memory-wise problem.)

Another key optimization is to prune the search during an extension, as the
following lemma allows.

Lemma 3.1. Let sn(z) ∈ En(k) so

sn(z) =
n∑

i=0

zδi ,

where 0 = δ0 < δ1 < δ2 < · · · < δn and where

s2
n(z) =

∞∑

i=0

Biz
i

with
Bi > 0, i = 0, 1, . . . , δn,

and
max{Bi} ≤ k.

Suppose φ is the first index such that Bφ = 0. Then

δn < φ ≤ 2δn + 1,

and any extension sn+1(z) ∈ En+1(k) of sn(z) is of the form

sn+1(z) = sn(z) + zγ ,

where
γ ≤ φ.

Proof. The proof is similar to Lemma 2.4. �
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Table 1. Results of computation

k |E(k)| maxlength(k) maxdegree(k)

2 3 3 3

3 9 5 8

4 404 12 40

5 6, 355 14 52

6 11, 482, 910, 373 35 264

7 1, 268, 361, 281, 038 41 328

These optimizations are only heuristics and do not better the time complexity
of the algorithm. However, they prove to be valuable in speeding up the searches
and make the computation of E(6) and E(7) feasible.

We give the size of E(k) in Table 1, and the complete results in Table 3. To
present our results, we define

maxlength(k) = sup{n + 1 : sn ∈ E(k)}

and
maxdegree(k) = sup{deg(sn) : sn ∈ E(k)}.

E(6) was computed in approximately 6.5 hours on a personal computer with
clock speed about 2.2GHz. The size of E(7) was evidently too large for a single
computer to handle. To aid the computation, we used XGrid, Apple’s distributed
system.

XGrid is a software that lets us turn our cluster of Apple G4’s into a parallel
distributed system. It provides parallel computation by queuing multiple jobs and
distributing them to the cluster when there are free resources. Our algorithm lends
itself nicely to distributed computing, as searches starting on different elements of
the same size are completely independent.

So, to distribute E(7), we first compute E6(7), which has 65 elements. We then
submit a job to XGrid for each of these 65 elements (we had 65 G4’s at our disposal),
using it as a starting point of the search. We then combine the results of each of
these jobs.

The current design of XGrid will run each job independently, on an individual
computer at a given time. Thus, the power we harnessed from XGrid was equiv-
alent to 65 G4’s running individually. The total time it took XGrid to finish its
computations was about one month.

We see, from the results, a dramatic increase in size between E(5) (around 7
thousand) and E(6) (around 11 billion). If the growth rate maintains, then the
size of E(7) should have been at least a million times larger than that of E(6).
However, that is not the case.

This behavior is tied to the parity of k. We believe that when going from an
even value of k to an odd value of k, the increase in size will not be as dramatic as
going from an odd value to an even value. The argument is that the Bi’s in s2

n(z)
will increase by 2 when some distinct pair zj , zk is in sn(z) where j + k = i, and
only by 1 if the pair is not distinct. The latter case is much less frequent than the
first. As such, when k is small (say < 15), the parity of k is likely to have a big
effect on the size of E(k).
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Table 2. Lower bound on maxlength for 6 ≤ k ≤ 11

k min maxlength(k)

6 35

7 39

8 70

9 76

10 127

11 134

It is likely that this parity argument will break down when k is large. However,
as for our case, it is a legitimate conjecture, as reflected in the size of E(7). The
size of E(7) is only about 100 times bigger than E(6), and maxlength(7) is also not
much greater than maxlength(6). We have even stronger support for this argument
in our preliminary results for E(8) and up in Table 2.

The results in Table 2 were obtained by running our algorithm for one hour and
collecting the largest polynomial we discover. As can be seen, there is a much bigger
difference when going from an odd k to an even k, than from an even k to an odd
k. Although these results give only the lower bound, the pattern it exhibits is far
from being coincidental. At the very least, |E(8)| is quite a few magnitudes larger
than |E(7)|, and we believe our current algorithm will not be able to compute E(k)
for k ≥ 8 in any reasonable amount of time. It seems reasonable to believe that the
size of E(k) grows exponentially, or even faster, with respect to k.

Table 3 shows data for the size of En(k). Note that for each value of k, the En(k)
values follow an interesting pattern. The number of digits seem to grow linearly
with respect to n, until in the middle, when it starts to fall linearly again.

Table 3. Complete results

k 3 4 5

|E(k)| 9 404 6, 355

maxlength(k) 5 12 14

maxdegree(k) 8 40 52

|E1(3)| = 1
|E2(3)| = 1
|E3(3)| = 2
|E4(3)| = 3
|E5(3)| = 2

|E1(4)| = 1
|E2(4)| = 1
|E3(4)| = 2
|E4(4)| = 5
|E5(4)| = 15
|E6(4)| = 38
|E7(4)| = 89
|E8(4)| = 122
|E9(4)| = 86
|E10(4)| = 38
|E11(4)| = 6
|E12(4)| = 1

|E1(5)| = 1
|E2(5)| = 1
|E3(5)| = 2
|E4(5)| = 5
|E5(5)| = 17
|E6(5)| = 60
|E7(5)| = 201
|E8(5)| = 552
|E9(5)| = 1, 100
|E10(5)| = 1, 568
|E11(5)| = 1, 580
|E12(5)| = 937
|E13(5)| = 285
|E14(5)| = 46



ERDŐS AND TURÁN CONJECTURE 483

Table 3. (continued)

k 6 7

|E(k)| 11, 482, 910, 373 1, 268, 361, 281, 038

maxlength(k) 35 41

maxdegree(k) 264 328

|E1(6)| = 1
|E2(6)| = 1
|E3(6)| = 2
|E4(6)| = 5
|E5(6)| = 17
|E6(6)| = 65
|E7(6)| = 287
|E8(6)| = 1, 321
|E9(6)| = 6, 343
|E10(6)| = 30, 221
|E11(6)| = 139, 151
|E12(6)| = 603, 811
|E13(6)| = 2, 426, 694
|E14(6)| = 8, 860, 674
|E15(6)| = 28, 978, 826
|E16(6)| = 83, 731, 261
|E17(6)| = 211, 235, 073
|E18(6)| = 460, 185, 450
|E19(6)| = 857, 598, 737
|E20(6)| = 1, 354, 122, 593
|E21(6)| = 1, 797, 582, 753
|E22(6)| = 1, 989, 846, 915
|E23(6)| = 1, 821, 587, 616
|E24(6)| = 1, 369, 557, 963
|E25(6)| = 839, 984, 280
|E26(6)| = 417, 713, 111
|E27(6)| = 167, 597, 147
|E28(6)| = 53, 944, 794
|E29(6)| = 13, 841, 595
|E30(6)| = 2, 817, 369
|E31(6)| = 453, 040
|E32(6)| = 57, 203
|E33(6)| = 5, 615
|E34(6)| = 412
|E35(6)| = 27

|E1(7)| = 1
|E2(7)| = 1
|E3(7)| = 2
|E4(7)| = 5
|E5(7)| = 17
|E6(7)| = 65
|E7(7)| = 292
|E8(7)| = 1, 417
|E9(7)| = 7, 378
|E10(7)| = 39, 477
|E11(7)| = 210, 874
|E12(7)| = 1, 094, 795
|E13(7)| = 5, 399, 767
|E14(7)| = 24, 895, 176
|E15(7)| = 105, 687, 436
|E16(7)| = 407, 526, 539
|E17(7)| = 1, 411, 405, 293
|E18(7)| = 4, 344, 872, 108
|E19(7)| = 11, 776, 406, 154
|E20(7)| = 27, 875, 217, 790
|E21(7)| = 57, 185, 490, 034
|E22(7)| = 100, 976, 600, 458
|E23(7)| = 152, 386, 266, 107
|E24(7)| = 195, 293, 555, 650
|E25(7)| = 211, 272, 996, 767
|E26(7)| = 191, 754, 175, 058
|E27(7)| = 145, 199, 909, 103
|E28(7)| = 91, 265, 176, 047
|E29(7)| = 47, 338, 748, 249
|E30(7)| = 20, 167, 141, 016
|E31(7)| = 7, 024, 029, 669
|E32(7)| = 1, 989, 639, 547
|E33(7)| = 456, 172, 652
|E34(7)| = 84, 420, 512
|E35(7)| = 12, 546, 383
|E36(7)| = 1, 495, 308
|E37(7)| = 142, 467
|E38(7)| = 10, 732
|E39(7)| = 677
|E40(7)| = 14
|E41(7)| = 1
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