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ORTHOGONAL LAURENT POLYNOMIALS
CORRESPONDING TO CERTAIN
STRONG STIELTJES DISTRIBUTIONS
WITH APPLICATIONS TO NUMERICAL QUADRATURES

C. DIAZ-MENDOZA, P. GONZALEZ-VERA, M. JIMENEZ PAIZ,
AND F. CALA RODRIGUEZ

ABSTRACT. In this paper we shall be mainly concerned with sequences of or-
thogonal Laurent polynomials associated with a class of strong Stieltjes distri-
butions introduced by A.S. Ranga. Algebraic properties of certain quadratures
formulae exactly integrating Laurent polynomials along with an application to
estimate weighted integrals on [—1, 1] with nearby singularities are given. Fi-
nally, numerical examples involving interpolatory rules whose nodes are zeros
of orthogonal Laurent polynomials are also presented.

1. INTRODUCTION

Let ¢ be a distribution function (positive measure) defined on (a,b), —0o < a <
b < oo0. That is, ¢ is a real valued, bounded nondecreasing function with infinitely
many points of increase on (a,b), such that all the moments,

b
(1.1) Ck:/ 2o (),

exist for £k = 0,1,2,.... Elsewhere in this paper, we will sometimes refer to ¢ as
a classical distribution. When the integrals (L)) also exist for k = —1,—-2,...,
¢ will be called a strong distribution. In case ¢ is absolutely continuous, i.e.,
dé(z) = w(z)dz, w will be sometimes called a strong weight function. If, in addition,
0 < a < b < oo, then we will be handling a strong Stieltjes distribution (SSD). Such
distributions were earlier introduced in 1980 by Jones et al. in their celebrated paper
A Strong Stieltjes Moment Problem [17]. After this, the theory of the so-called
orthogonal Laurent polynomials made their appearance [18] (see also [22][16[5]) and
connections were established with certain kinds of continued fractions, two-point
Padé approximants and new quadrature rules (see [20] for a survey). On the other
hand, both orthogonal Laurent polynomials and proper orthogonal polynomials
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can be considered as particular cases within a more general framework: orthogonal
rational functions with prescribed poles [I]. Thus, when all the poles are located at
the origin and infinity Laurent polynomials arise. They are functions of the form

(P, q€Z: p<q),
a
(1.2) L(z) = Zajzj, aj € R
Jj=p

We denote by A, , the space of Laurent polynomials (L-polynomials) (I2]) and by
A the space of all L-polynomials. Furthermore, for a nonnegative k, I will denote
the space of polynomials of degree at most k and II the space of all polynomials.

Now let ¢ be an SSD and consider the Hilbert space La(d¢) of real functions
for which fj |f(z)]2do(z) < 00, 0 < a < b < oco. As usual, in La(dg), we have the
inner product

<ﬁm¢=wgw5/fummmam.

Next, we need to generate a sequence of nested subspaces of L-polynomials similar
to the sequence {IIj } >0 of usual polynomials. For this purpose, we will start from
a nondecreasing sequence {p(n)},>o of nonnegative integers such that 0 < p(n) <n
and s(n) = p(n) —p(n—1) € {0,1}, and set,

Ly =A_pmn)qmn) = span(z’ : —p(n) < j < qn)), q(n)=n—p).

In this case it will be said that {p(n)},>0, as defined above, has induced an
ordering in £ = J,,5q Ln C A. Observe that Lo = span(1), dim(L,) =n +1 and
that £, C Ln1+1, n =0,1,.... Thus, according to this ordering, a unique (up to a
sign) sequence {R,, },>0 of L-polynomials can be determined so that,

(1) Rp € L\Lp—1, n=1,2,....
(2) (Rns Rm) = Enbnm, Kn > 0;m,m=0,1,....

Setting R, (z) = Zg(:nzp(n) 75,727 and defining the leading coefficient of R,, by

r = Tn,—p(n) ?f S(Tl) =1,
T'n,q(n) if S(Tl) = 07

then r, # 0. If r,, = 1 for each n, {R, },>0 will be called the monic orthogonal L-
polynomial sequence with respect to the SSD ¢ associated with the ordering induced
by {p(n)}n>0. When taking x,, = 1, it will be called an orthonormal L-polynomial
sequence denoted by {¢n }n>0-

The main aim of this paper is to characterize sequences of orthogonal Laurent
polynomials along with their corresponding quadratures for certain SSD ¢ intro-
duced by Ranga [27], i.e., ¢ satisfies

do(L) = ~Tdo(a). = € (a.b).

where v = Vab, when 0 < a < b < co. Furthermore, if a = 0, then b = co and
~v can be taken as any positive arbitrary number. Such distributions are called
~v-inversive. We shall also see that these distributions are related to the family of
classical symmetric distributions p on (—d,d) (0 < d < 00); i.e., p satisfies

dp(z) = —dp(—z), x € (—d,d).
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The paper is organized as follows. In Section 2, some properties of general se-
quences of orthogonal Laurent polynomials along with their associated quadrature
formulas are exposed. In Section 3 these properties are considered when dealing
with a 7-inversive SSD. A useful connection between the orthogonal polynomials
and the Gaussian formulas for a symmetric distribution g and certain sequences
of orthogonal Laurent polynomials and their respective quadratures for the corre-
sponding y-inversive SSD ¢ will be made in Section 4. In Section 5 some illustrative
examples are given. Applications of these quadrature formulas and the so-called in-
terpolatory rules for approximating certain weighted integrals on [—1, 1] exhibiting
singularities near the interval are given in Sections 6 and 7, respectively. Finally,
some concluding remarks are provided in Section 8.

2. PRELIMINARY RESULTS

In order to make the paper self-contained, in this section some relevant properties
of general sequences of orthogonal Laurent polynomials will be briefly summarized
(see the recent paper [§] for details). Throughout this section ¢ will represent an
SSD and {L£,},>0 a nested sequence of L-polynomial spaces induced by a given
sequence {p(n)}n>o0-

Concerning the zeros of R,,, there holds ([§]) the following theorem.

Theorem 2.1 (Zeros). For each n, let R, be an nth orthogonal L-polynomial
for an SSD ¢. Then, R, has exactly n distinct zeros on (a,b), 0 < a < b < co.
Furthermore, suppose0 < 21, < Ton < -+ < Tp, are the zeros of R,, n=1,2,....
Then

Tin < Tjn—1 < Tjt+ln, j:].,...,’n—l, n > 2.
From this theorem one sees that if we write R, (z) = Z?(:nlp(n) ;27 , then it

holds that 7, _pn)Tn,qmn) 7 0. Throughout the paper we will make use of the
normalization 7, 4,y = 1 for each n > 0, so that the sequence {R,},>0 will be
called quasi-monic. The corresponding nth L-orthonormal polynomial i, is given
by 1, = ﬂ}/an with 7721 - m

As in the polynomial situation, the orthonormal sequence {, },>0 satisfies the
following ([8]).

Theorem 2.2 (Three-term recurrence relation). Let {¢y,},>0 be the sequence of
orthonormal L-polynomials for an SSD ¢. Let s(n) = p(n) — p(n — 1) € {0,1}.
Then there exist two sequences of positive real numbers, {Qp}n>1 and {Cy}n>0,
such that for n > 1
(2.1)

Crz* " ey 1(2) = (=1)* P[220 — Q1250 (2) = Cpo1 25" Ve (2),

where

(2.2) C, = ([1 ()] — s(n)Tmp) ) Yn

Tn+1,—p(n+1) / Tn+l
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and

1—s(n
(2.3) Q, = ¢, (_Tn+1,—p(n+1)> "
Tn Tn,—p(n)

Tr—1. —p(n— 1-s(n)
—[1—=(s(n)+s(n— 1))]On_17n—1 < n—1,—p( 1)> .

n T'n,—p(n)

Formula (2.1]) generalizes some known results about orthogonal polynomials and
orthogonal L-polynomials. Indeed, setting p(n) = 0, then £,, = II,, and s(n) = 0;
hence ([21) gives

Cn'¢n+1 (Z) = (Z - Qn)wn(z) - C’nfl’@[]nfl(z)a
so that the well known three-term recurrence relation for orthonormal polynomials

is now recovered. On the other hand, take p(n) = E[(n+ 1)/2] (E[z] stands for the
integer part of ), so that there holds s(n) = 0 if n is even and s(n) = 1, otherwise.

Now (Z1) yields

(2.4) Cotbna1(2) = (1)1 = 2" Q)b (2) — Corthua ().
By writing 1, (2) = Q,(2)z ™, Q,, € II,,, one has
(25) Qn+1 = Ozn(Z - ﬂn)Qn(Z) - wnZQn—l(Z)-

Formula (24]) was earlier deduced in [18] and [I9] (see also [5]). On the other hand,
sequences of polynomials {Q,, }n>0 satisfying ([2.5) have been studied extensively
by Ranga et al. [26] 27, 28] 29, [31].

Assume now that the integral

b
(2.6) uﬁwa/fwmww, 0<a<b< oo,

is required to be computed, and suppose that an n-point quadrature rule with
distinct nodes {z; }}’:1 on (a,b) is used, i.e., an expression of the form,

n

(2.7) L(f) =Y Nif(x;).

j=1
Then, when taking as nodes the zeros of R, one has ([8]) the following.
Theorem 2.3 (L-orthogonal quadratures). Let 1 4, ..., Zn,n be the n distinct zeros
of R,,. Then, there exist positive numbers Ay p, ..., A\ n such that
(2.8)

In(f) =Y Njnf @jm) = To(F), VI € Ln - Lot = D_(yn)+p(n—1)).q(m)+a(n—1)»
j=1

with g(n) +p(n) =n, n=1,2,....

Remark 2.4. The quadrature formula (2.8) will be called an n-point L-orthogonal
formula for the SSD ¢ and the ordering induced by {p(n)},>0, and they are optimal
in the sense that there cannot exist n-point quadrature rules (Z7) to be exact
in £,L£,,. Observe that, in general, £,L,_1 # La,-1, so that the L-orthogonal
quadrature formulas do not coincide generally with the so-called L-Gaussian ones,
which are obtained by imposing that I;(f) = I,(f),Vf € La,—1. They coincide, if
and only if, {p(n)},>0 satisfies p(n) + p(n — 1) = p(2n — 1). For example, for the
above choices, p(n) = 0 and p(n) = E[(n + 1)/2], this is true.
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As for the weights {\; ,}}_; in [Z8), we have ([8]) the following.

Theorem 2.5. Let v, be the nth of orthonormal L-polynomials for the SSD ¢.
Then,

1 .
(2.9) Ajn = j=1,...,n,

0”—13:;7(:;”3(”71)7&;(xj,n)q/}nﬂ(mj,n) 7
{zjn}j—1 being the zeros of Yn, s(n) =p(n) —p(n —1) and C,, given by 2.2)).

To conclude this section, it should be remarked that the effectiveness and nu-
merical power of the quadrature rules (Z7) in order to estimate integrals like (2.0
have been displayed recently in [2,[8]. On the other hand, from the above theorems
one sees that the basis to compute L-orthogonal formulas is the knowledge of the
sequence {9y, }n>0. So it would be desirable to know explicitly (or reasonably com-
putable, at least) the coefficients €2, and C,, in the three-term recurrence relation
@I). This will be done in the Section 4, taking advantage of known results about
orthogonal polynomials with respect to a wide family of classical distributions.

3. ORTHOGONAL LAURENT POLYNOMIALS
ASSOCIATED WITH A CERTAIN STRONG STIELTJES DISTRIBUTION

Our aim in this section is to provide the characterization of sequences of orthog-
onal Laurent polynomial associated with a SSD ¢ satisfying

2
do(1) =T do(a),  w € (ab)

where v = vab when 0 < a < b < oo or 7 is any positive number when a = 0
and b = oco. Such distributions are called v-inversive and were introduced in [27]
(see also [26] 28]). There, certain sequences of varying orthogonal polynomials,
i.e., orthogonal polynomials with respect to the varying distributions d¢(x)/x™,
were studied emphasizing their connection with a class of continued fractions (M-
fractions). In this paper, we take a different approach: since we are dealing with
a strong distribution, it seams more natural to start by studying sequences of
orthogonal Laurent polynomials.

As studied in [7] and [27], the influence of the y-inversivity of ¢ gives rise to the
following.

Definition 3.1. An n-point quadrature formula I,,(f) = Z;‘L=1 Ajf(zy) for I(f)
is said to be v-inversive, if and only if
2

Y
3.1 T; = ,
(3.1) i= g
(3.2) A Aniry j=1 ...E[”“Ll].
VLj 1/xn+l—j, ’ 2

Now, concerning L-orthogonal quadrature formulas associated with a sequence
{p(n)} for ¢ ~-inversive, we can prove the following.

Theorem 3.2. Let I,(f) = Y7 Mo S (Trn) be the nth L-orthogonal quadrature
formula associated with a v-inversive SSD ¢. Then I,,(f) is y-inversive if and only

if p(n) = E[(n+1)/2].
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Proof. By [7l, Corollary 3.6], it holds that I,,(f) is y-inversive if and only if
pn+1)+p(m) =n+1, n>0,
p(0) = 0.

Clearly, the only solution of this first order difference equation with constant coef-
ficients is

pn) = 5 (L4 (™) + 3

4 2’
which can be expressed in a closed form as
n+1
p(n) = E| J- O

2

Remark 3.3. From this theorem one of the most commonly used orderings in the
literature on orthogonal L-polynomials appears (see, e.g., [20]).

Next let us see how the property of y-inversivity is now reflected on the sequence
of orthogonal L-polynomials corresponding to {p(n)},>0, such that p(n) = E[ZEL].

Theorem 3.4. Let ¢ be a y-inversive SSD and let R, be the nth quasi-monic
orthogonal L-polynomial associated with the sequence {p(n)},>0, such that p(n) =
E[2HL]. Then,

(3.3) Ro(z) = (—1)5(”) Ro(1).

Proof. One knows that fab L(t)R,(t)d¢(t) = 0, L € L,,_1. Making the change of
variables t = 1—2, it follows that

b 2 2 2
g i b
L(— — —) = L _
| 1RO 0. Lt
and by ~-inversibility of ¢,
b 2 2
/ L )R(L)2dg(@) =0,  LeLy,

Since, R, (%) € A_gn)p(n)» 4(n) = p(n—1), p(n) = g(n—1)+1, and q(n) +s(n) =
p(n), it follows that

1 72
= Rn(?) €Ly.
Hence,
b 2 2
Y 1 1 Y
a
Now,
2
Y
(3-5) LeLn1=Bpm-ngm-1) & L) €A qm-1)pm-1)
2
A L(;)xl—s(n) € A—?ﬁ,?ﬁa

where m =¢q(n—1)+1—s(n) and m =p(n—1) — 1+ s(n).
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Taking into account that p(n) + ¢(n) = n, q¢(n) = [1 — s(n)] + ¢(n — 1), and
that by hypothesis p(n) + p(n — 1) = n, it follows that m = ¢(n) = p(n — 1) and
m =p(n) — 1 = qg(n —1). Therefore,

Lyt

———c L, 1< Le En—la
z  pl=sn)

yielding
2
WRn(;)J—En—lv
with respect to d¢(z).
In a similar way, since the zeros of R,, are positive, it can be proved that
2

1 Y

WRn(;) € L \Lyp—1,

implying that
An o7
3.6 R, (z) = —2R,(—),
(3.6) (@)= S k(L)
where A,, is an appropriate nonzero constant.
Finally, setting R,,(z) = Zq(n) 75,727, and taking into account that Tn,q(n) =

Jj==p(n)
1 and, hence, 7, _p(n) = (—1)" H;;l Zjn, it can be seen by BI) that
(37) rn,fp(n) = (_’Y)n
Hence, from ([B.6) and again recalling that p(n) + p(n — 1) = n, one deduces that
A, = (=7)*™ and the proof is concluded. O
Reciprocally,

Theorem 3.5. Let {R,}n>0 be the sequence of quasi-monic orthogonal Laurent
polynomials for a the y-inversive SSD ¢ and the ordering induced by {p(n)}n>0. If

Ro(z) = (—1)5(”) Rn(%),

then p(n) = E[%E],n =0,1,....

Proof. Proceeding similarly as done in the proof of Theorem [3.4] from 3.4)-(3.3)
one deduces that

R, 1A 5 &,

where m = g(n—1)+1—s(n) and m = p(n—1)—1+s(n). Furthermore, m < p(n—1)
and m < q(n — 1) since, otherwise, R,, = 0 because it satisfies n + 1 orthogonality
conditions. Assume that m < p(n — 1), i.e, ¢gin — 1)+ 1 —s(n) < p(n — 1) or
equivalently, ¢(n — 1) < p(n — 1) — 1+ s(n). Since p(n — 1) — 1+ s(n) < q(n — 1),
a contradiction appears. Therefore, there holds g(n — 1) +1 — s(n) = p(n — 1).

In a similar way, if we assume that p(n — 1) — 1 + s(n) < g(n — 1), one deduces
that p(n — 1) < p(n —1). Hence, p(n — 1) = 1+ s(n) = q(n —1).

Now, taking into account that p(n—1)4+¢(n—1) = n—1 and p(n) = p(n—1)+s(n),
it follows that p(n) 4+ p(n — 1) = n with p(0) = 0, and the proof is concluded. O

Let us next see how relation (2I)) can now be reformulated. By Theorem 2.2
one has:
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Theorem 3.6. Let {R,},>0 be the sequence of quasi-monic orthogonal L-poly-
nomials for a y-inversive SSD ¢ with respect to an ordering induced by {p(n)}n>o,
with p(n) = E[24L]. Then,

(3.8) Rmna=4z—wfw%wawwwﬁfS%M“*mea,

where 72 = (Rn%RTJ and s(n) = p(n) — p(n —1).
Proof. By Theorem 2] one has
Cnxs(nJrl)wnJrl(x) — (_1)s(n) ($172s(n) _ Qn)xs(n)wn(x) _ Cnilxs(nfl)d]nil(x)’

with C,, and §,, given by ([2:2) and ([23), respectively. Take into account that now
s(n) + s(n —1) = 1 and that by (@7) it can be deduced that Q, = v'~2*(") and

C, = 77—7-:—17_8(”). Since v, = v, Ry, it follows that

Cn’}/n+1xs(n+1)Rn+l(x) _ (71)5(71) [x172s(n) - 7172s(n)]7nxs(n)Rn(x)
- nfl')/nflms(n_l)Rnfl(x)

2
Making x = L- by (8.3), one can write

Cn")/n+l (77)8(n+1)Rn+1(z)
2

~ 1—2s(n)
L) O ()R )

—Un-17n-1 (77)8(n71)Rn—1 (Z),

or equivalently,

72 1-2s(n) 5
Rn = (-1 s(n)r 1 _ A1-2s(n) n Rn
+1(Z) ( ) [< P ) Y ]Cn7n+1(_7)s(n+1)_s(n) (Z)
Cnflfynfl
- {wn-1(2),
Crnnt1 1( )
since s(n+1) = s(n—1) (recall that s(n) = p(n) —p(n—1) and that p(n) = [2FL]).
Now, since C), = VZ—LW_S("), one deduces that
Tn _ _ l 2
and that c
n=1Tn—1 _ TIn—1\2_ 2s(n)—1
= ’)/ .
Cn'YnJrl ( Tn )
Finally, by considering that s(n) € {0,1}, or more precisely s(n) = 0 if n is even
and s(n) = 1, otherwise, the proof follows. O

4. A CONNECTION WITH CLASSICAL SYMMETRIC DISTRIBUTIONS

In general and according to the results shown in Section 2, the calculation of the
L-orthogonal quadrature formulas (Z8]) basically depend on the computation of
the sequence { Ry, }n>0 (or {¢,, }n>0) by means of the three-term recurrence relation
@I). Thus, the recurrence coefficients C,, and €, should be efficiently computed
(see, e.g., [9] for the polynomial situation).
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However, as seen throughout Section 3, when dealing with a ~-inversive SSD,
the recursion coefficients reduce to 72 = (}%ann) and computations are extremely
well facilitated.

On the other hand, from I and 2] for a y-inversive SSD only half of the
weights and nodes needs to be computed. Furthermore, because of the intimate
connection between the vy-inversive SSD and the classical symmetric distribution,
all the involved computations are going to be greatly simplified. This is the aim of
the present section.

We denote by p a symmetric distribution on (—d,d). To fix ideas and for the
sake of simplicity, we will assume that u is absolutely continuous; i.e.,

(4.1) du(t) = o(t) dt, such that o(—t)=o0o(t) Vte (—d,d)

(0 is a weight function, i.e., o(t) > 0 a.e. on (—d,d)).

Now, according to the ideas given in [I3] (see also [I4, [15], along with [28] for
an alternative approach), where a general procedure to obtain strong distributions
is provided, let us consider the transformation

(4.2) t=V(z) = % (x - 1) :

with § and « given real positive numbers.
Thus, when d < oo, [@2) maps B = [—v/b, —v/a]U[\/a, V/b] on [—d, d] by choosing
¢ and « such that

5:@7 = ab,

where a and b are positive numbers with a < b. On the other hand, when d = oo,
then for any pair (d,v) of positive numbers, (£2) maps (—o0,0) U (0,00) onto R
(observe that V(—z) = =V (x)).

Now let us take the distribution,

(4.4) do(z) = % o(V(yr)) dz = w(zx) dz.

Then it can be easily checked that ¢ is a y-inversive SSD on (a,b), 0 < a < b < 0.
Furthermore, from the considerations above, it holds that d = oo if and only if
a=0and b= 0.

Now consider the ordering in £ induced by the sequence {p(n)},>0 such that
p(n) =E[(n+1)/2], n=0,1,2,..., let {R, },>0 denote the corresponding sequence
of quasi-monic orthogonal L-polynomials for the SSD #4]), and let {P,},>0 be
the sequence of monic orthogonal polynomials for o satisfying (£1). Under these
considerations, we have the following.

(4.3)

Proposition 4.1. It holds that R, (z) = g5 en P, (V(x)) forn=0,1,2,....
Proof. Set Qan(x) = 6" P, (V(x)). Then, by [I5] Theorem 2.2.9], Q2,, represents the
2nth quasi-monic orthogonal L-polynomial with respect to @w(x) = o(V(z)), = € B,
and the ordering induced by p(n) = E[(n+1)/2] (p(n—1) +p(n) = p(2n—1) = n);
ie., Qan € Loy = Ay p, s0 that Qon(x) =Y7_  Cop j1? (Copp = 1) and

j=-n

(4.5) /BR(QC)Q%(:U)&(;U) dz =0, VRe Lo 1=A_pn1.
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Here, B = [—V/b, —/a] U [y/a,Vb], with a and b satisfying @3) if d is finite or
B = (—00,0) U (0,00) if d = oco. Taking into account the symmetry of the domain
B (B = —B) and the symmetry of the weight function (@W(x) = @(—=x)), it follows
that

Qan(z) = (=1)"Q2n ().

Hence, it can be written
Q2TL('/I:) = ms(n)Nn(IZ), N, € ﬁn\‘cnfl-
Thus, (@3] can be now expressed as

/B R(z)z*™N, (z2)&(x) dz =0, YR E Lop_1,
or, equivalently, as
(4.6) /BL(x2) N, (2®)@(x) de =0, VLEL, ;.
Indeed,

ReLlon1 = Apn-1=8_pm)+p(n-1)),2e(n—1)+1-s(n)
= xs(n)R(,I) S A72p(n*1)72‘Z(n71)+1’

and, since N,,(2?)0(x) is an even function, when considering the odd powers, the
integral over B vanishes. Setting 22 = ¢ in ([&6), one deduces

/b LNy (H)w(t)dt =0, VL€ Loy

Since NNV, is also quasi-monic there holds
s(n)

Q2 (VT) =27 2 0" P, (V (V7). O

Now, taking into account that t = V(y/z) = § <\/— - %) represents a one-to-

s(n)
2

R, (z) = Ny(x) =2~

one map between (a,b) and (—d, d), we have

Corollary 4.2. Let {$j77l}?:1 be the n zeros of the nth quasi-monic orthogonal L-
polynomial R, with respect to the y-inversive SSD ([{4) associated with the ordering
induced by {p(n)}n>o such that p(n) = E[241] and let {t;,}}_, the zeros of P, the
nth monic orthogonal polynomial for o satisfying [@1l). Then,

2
Otip ++/(0t; )2 +4 )
(4.7) xj,n=< AR ”) S i=l...n

Let us next see the relation between the Lo-norms of R,, and P,, associated with
w and o, respectively. Indeed, by setting

(4.8) 0,%= /d P2(t)o(t) dt.
—d
and ,
= [ Ei)dota),

one has
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Proposition 4.3. Let R, be nth quasi-monic orthogonal Laurent polynomial as-
sociated with the y-inversive SSD ¢ ([E4) and the ordering induced by {p(n)}n>o0
such that p(n) = E["T'H], and let P, be the nth monic orthogonal polynomial with
respect to the symmetric distribution o [@Il). Then

1 52n+1 1

(4.9) 2 = PRONCER

where s(n) = p(n) —p(n — 1).
Proof. By Proposition E.1]
b x
’y% = / R2 (x) 70(‘/\(/_\;_))(1:5
on [* P2V (/7)) o(V (/7))
o [ BOGE 7,

x.

Now, since

r=u ==

® <6t + /(60 + 47>2
2

is the inverse transform of ¢ = V(1/z), it follows that
25u(t)dt
(0t)2 +4y

Therefore,

1

o(t)dt
7w

(0t)2 + 4y

W)~ d 1 ( &, 1> .
(0t)% 4+ 4~ 2 (0t)% 4+ 4~

In this case and since n is even, P, is an even polynomial function; hence
TRt L

(recall that o is also even). Thus, it holds that

gt

SCHEC A
Assume now that s(n) = 1, that is, n is odd. Then

u(t)l=sm-s 1(&— (5t)2+4fy>

d
gt / P2(t)u(t)—5(M3
—d

If s(n) =0, then

0

(6t)2 + 4~ 2\ —v/(6t)2 + 4y
1 ot
2y 29 /(02 + 47
Here we have made use of the fact that
(5t+ \/m)(&— m)
2

2
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Now P, is an odd polynomial function. So, proceeding as above, one deduces that
1 52n+1 1
S =g -
g v O:

Remark 4.4. From Proposition 3] the three-term recurrence relation (3.8)) now

reads

@271

52 Rn71($>7

n

with ©,, given by (£8) and, as usual, s(n) = 0 when n is even and s(n) = 1,

otherwise. Furthermore, by Proposition [l and ([@I0]), the well known recurrence

relation for the sequence {P,},>¢ is recovered. Namely,

Ppia(t) = tPu(t) — aipn—l(t)

(4.10) Rpii(x) = (& — »)z* ™7 IR, (z) — 6

with
Y AL

P ()e(t)at

2
n

(see [33)]).

Until now, we have seen how the nodes {z;,}7_; of the n-point L-orthogonal
quadrature formula for the 7-inversive SSD ¢ (&4) can be expressed in terms of
the zeros {t;,}7_; of the nth orthogonal polynomial with respect to o [@.I)); i.e., in
terms of the nodes of the n-point Gauss formula for this weight function, namely

~ n d
L) = 3 At i) = [ f@)o(@)de, VF €T,
=1 -

where the Christoffel numbers {4; ,}"_; are given by (see [33])
1
@121—1P7/L(tj,n)Pn—1(tj,n)7

In this respect, the next result allows us to express the weights {\;,}7_; in
terms of {A;,}7_;.

(4.11) Ajp =

7=1...,n.

Proposition 4.5. Let o be a symmetric weight function on (—d,d), d > 0, and
let Ay p,...,Apy be its nth Christoffel numbers. Let ¢ be a y-inversive SSD ¢
gwen by @A), and let Ain,..., Ao, be the weights of the n-point L-orthogonal
quadrature formula for ¢ associated with the ordering induced by {p(n)}n>0 such
that p(n) = E[%L]. Then

26 ,
(412) )\.77” = ]_—f—jAj’n, J = 17 .y,

where {xj’n}}‘:l 1s the set of nodes of the n-point L-orthogonal quadrature formula.
Proof. By ([29) in Theorem [Z3] and recalling that s(n) + s(n — 1) =1,
1
s(n)+s(n—1
Cromna T (2,0 Y1 (20)
1
Cnflxj,n"/n"/nflR;L(xj’n)Rnfl(x]ﬁ”) .

Ajn =
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On the other hand, x#Rn(x) = 0"P,(V(y/x)) with V(z) = = (z — 1), yielding

1
=~
2(n) n V'(\/Tjn)
z; 2 R (xjn) =0 P;L(V(vxj,n))ﬁ~

Furthermore, one knows that

5”_1P7L—1(V(\/W)) )

Rn—1($j7n) = 5(71.2—1)
Jm
Thus, since t;, = V(\/T;.n), it follows that
2

Nip = .
]7 Cnfl'yn'Ynfl(sgn_lP?{L(tjm)Pn*l(tj,n)vl(\/ xjﬂ)

Now, from ([B3) we can calculate C,,_1v,Yn—1, yielding

%21—1
(@I = s(n = D)2 +s(n— D7)

Cnflfynfynfl = -

s(n—1)

and since by @) y2_; = T5m—1 ©2_, it holds that

2
Nip = .
O P(tin) Pao1(tin) V! (VZ5n)

Finally, V'(,/Z;») = (1 + 72-), so that from (IT), the proof is concluded. [

5. EXAMPLES

In order to illustrate the above theory and taking into account the lack in the
literature of sequences of orthogonal L-polynomials similar to the known families
of classical orthogonal polynomials (Chebyshev, Legendre, etc.) that can be easily
handled, throughout this section we will deal with a certain family of y-inversive
SSD ¢ obtained from known symmetric weight functions on (—1,1). In this respect,

those examples considered in [27] (see also [26 29]) like d¢(x) = # and
do(z) = d—\/gz—: on (a,b) (0 < a < b < oo0) can now be deduced from the general

procedure introduced in Section 4.
Thus, we will concentrate on the one-parameter family of SSD, d¢H(z) =
wh(z)dzx, such that

=

(5.1) i) = LZDTE@ "

(i)

where 0 < a < b < 0o and p > —1/2. The corresponding sequence of orthogonal
L-polynomials will be called of Gegenbauer-type because (BI)) corresponds with the
so-called strong extension of a weight function, which gives rise to the well-known
Gegenbauer or ultraspherical polynomials, namely,

1
U(t) = (1 _tQ)‘u_%7 te (_171)a B>z,

2
when we consider (£4]) and ([@2)—-(@3), with d = 1.
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Let {R%” )}nzo denote the sequence of quasi-monic orthogonal L-polynomials for
(BEI). Then, making use of ([£I0) one obtains the three-term recurrence relation

: or
Rl () = (@ = a7 R (@) = LRI (@), n> L,

2
where R(()“) (z) =1, Rg”) () =1- 7 and 6551 is now explicitly given by ([33])

ei—l — n(n + 2:“‘ — 1) ., on>1
02 dn+p—1)(n+p)

On the other hand, the study of Gaussian formulas for the ultraspherical weights
o(t) = (1 —t?)*=Y2 ;1 > —1/2, has received much attention throughout the devel-
opment of the theory on orthogonal polynomials. One of the aims of these studies
consisted of giving a representation for the Christoffel numbers in terms of the ze-
ros of the Gegenbauer polynomials that was as simple as possible. In this respect,
explicit representations were obtained (see [33]) for the cases p = 0,1 and [21] for
1 = 2. Such representations were recently generalized for y = ¢, an arbitrary non-
negative integer in [24] (see also [25] for an alternative expression). Thus, making
use of these results, explicit expressions for the weights {)\;Z) 1, £=0,1,2,... of
the n-point L-orthogonal quadrature formula for the SSD (&) can now be given.
Indeed, for ¢ a given nonnegative integer, let {ty)}?:l denote the zeros of the nth

monic Gegenbauer polynomial p (t) and set

_ o (CON (=145
(5.2) N=n+/{ and a](é)—<2jj! Y , j=1,2,....

Then, making use of [24] formula (4.1)] and Proposition [£3] the following holds for
j=1,...,n,¢£=0,1,2,... and n > 1:

2(Vb— Va) © N v o) 1

()
Zj

with N and ay) given by (B.2)). Clearly, by assuming the convention that the

L . . On
summation in (5.3)) is taken as zero for £ € {0, 1}, from (5.3), the weights {A;"}}_4
(¢ =0,1) corresponding to the so called strong Chebyshev distribution of the first
and second kind are now directly recovered (compare with [28]):

/\(.0):271'5 Zj

J n ox;+7

A 2O e (TN E
J n+1 n+1) x;+7

On the other hand, for / = 2, one obtains for j =1,...,n,n > 1,

2@ — 2(\/5* Va) w (1 B (t(g))2)2 - 1 .
7 14 YE n+2 ’ (1= ) (n2 + 4n +3)
J
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Finally, the case £ = 3 reads as follows:

\®) 2Wb—va) « (1 B (t;3))2)3

J 1+;/(%_? n+3
X <1+ 3 ®)
(n+2)(n+4)(1 - (tj )2)

9
" (n+1)(n+2)(n+4)(n+5)(1— (t§3>)2)3>

2Wb—ya) 7 32,
B 14_% n+3(1_(tj)))

(n+2)(n+4)(1 - (£7)?) (n+1)(n+5)(1 - (£)2)

6. APPROXIMATE CALCULATION
OF WEIGHTED INTEGRALS WITH NEARBY SINGULARITIES

As an application of the quadrature formulas given in Section 4, suppose we are
concerned with the computation of integrals,

/_ ottt

where f is a continuous function on [—1,1] with real singularities outside this in-
terval and o is a weight function on [—1,1]. If we assume that § is one of these
singularities, then |3| > 1 and, as can be expected, when || is close to 1, the Gauss—
Christoffel quadrature rules for o should exhibit a slow convergence behaviour (as
will be checked numerically below). In order to overcome this drawback, we will
proceed as follows (see [27] for o(t) = (1 — t2)~/2 and also [6]).

Consider a and b any two positive real numbers such that (|3|+1)(|3| — 1)~ =
b/a, and set the change of variables

= hz) = _% <2xb—_ba—a> |

So,

(6.1) 1= [ o= (32 [ s

where p(z) = o(h(x)) and g(z) = f(h(x)) is a continuous function on [a,b] with
a singularity at the origin. Thus, by taking sufficiently large a, one might ini-
tially think of estimating the integral on the right hand side of (GIl) by means
of the n-point Gaussian formula for p(z). But since we are dealing with linear
transformations, this is equivalent to estimating I(f) by the corresponding n-point
Gaussian formula for o(t), and the results are extremely poor. However and be-
cause of the presence of this singularity at the origin, it seems natural to expect
somewhat good numerical results when the integral in the right hand side in (6.1))
is estimated by using an L-orthogonal quadrature formula for p.
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The numerical experiments carried out come to confirm this expectation. How-
ever, the computational cost required could now be extremely high and this dras-
tically reduces the competence of our approach. Indeed, one needs to efficiently
compute an n-point L-orthogonal formula for the strong weight function p(x), and
this should be done from the three-term recurrence relation (21). As in the poly-
nomial case, this approach could require a long computational process leading to
possible instabilities and other related problems. Fortunately, we will see that these
negative circumstances can be completely avoided for the particular case

(6.2) ot) = (1 -2 u>-—1/2

Indeed, one has

)= (2 ) (b)Y — a2,

Hence, from (6.1

1(f)

/ 11 fa(tr = [ " g(@)pla)ds

- (ﬁni ﬁ)w (ﬁi \/E> /ab Glolule)dz,

where w(z) = (Vb — /a)' =2z " [(b — )"~ /%(x — a)*~/?] and G(z) = z*g(z).
As we have seen in Sections 4 and 5, the nodes and weights for the L-orthogonal
quadrature formulas corresponding to w are easily expressed in terms of the nodes
{tjn}tj—1 and the weights {A;,}7_; of the Gauss-Christoffel formulas for o. So,
no extra computational effort needs to be done.
As for numerical experiments, we will concentrate on the weight function o =1

on (—1,1), i.e., p=1/2 in ([@2), so that

! 2 b dx
©3) 0= [ soa=(52) [ owE
with G(z) = vz f(h(z)). Thus, the integral I(f) in ([6.3) will be estimated by the

n-point Gauss—Legendre formula; the integral in the right hand side of (G3), by the
corresponding n-point L-orthogonal formula for the weight function z=1/2,
In the examples below, we compute integrals of the form

1 g

taking a = 0.01. Different choices of g; and v are shown in Table[[l The graphics
represent the relative errors, as a function of the number of nodes, both in the
Gaussian (Gauss—Legendre) formula and in the L-orthogonal quadrature formula,
when applied to both sides in (63)).

TABLE 1.
1| v gi
11 3 exp(t)
215/2 sin(t)
31 3 |exp((t+1.01)"1/2)
4| 3 log(t + 1.01)
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As could be expected from Figures [[H4, one sees that the convergence of the
Gaussian formulas is extremely slow because of the presence of a multiple pole near
the interval of integration. On the other hand, our L-orthogonal formulas provide
excellent numerical results even when the integrand f presents some kind of extra
singularities, as in functions f3 and fj.

7. AN APPLICATION TO INTERPOLATORY RULES

As is known, trying to estimate a weighted integral f; f(@)p(z)dze by means of
a classical Gaussian rule could require a long computational process if p is not a
standard weight anymore (see, e.g., [10] for details). Even more, Gaussian rules
could become meaningless if p is not a proper weight function (u(z) > 0, a.e.
on (a,b)), since now p does not give rise, in general, to an inner product and
nothing can be assured about the degree of the orthogonal polynomials and the
location of their zeros. These drawbacks have motivated a possible alternative,
the introduction of the so-called polynomial interpolatory rules, where for each n,
distinct nodes {z;,}7_; in (a,b) are given in advance and coefficients {A;,}7_,
are deduced by imposing that

b n
[ f@nte)de =Y Apnf(ejn), ¥ € Mo,
a ]71

provided that the integrals f: 2% p(x)dx are easily computable, for each nonnegative
integer k. Hence, the selection of the nodes turns out to be a crucial task in order to
guarantee both convergence, and a reasonably good accuracy in a class of functions
as large as possible. In this respect, the usage of zeros of orthogonal polynomials
with respect to an auxiliary weight function on (a,b) has become an extensively
studied strategy, giving rise to excellent numerical results (see [I1] and references
therein). In a similar way, some of the present authors have considered in the
last years, from a theoretical point of view, interpolatory rules now based upon
Laurent polynomials (L-interpolatory rules); that is, given the family of distinct
nodes {z;,}7_; on (a,b) (0 < a < b < 00), the coefficients {A;,}7_; are to be
determined from

n
= ZAj,nL(xj,n) = In(L)a VL € Ln—l = Afp(nfl),q(nfl)v

j=1

where, as usual, {p(n)},>0 denotes a nondecreasing sequence of nonnegative inte-
gers such that s(n) = p(n) — p(n — 1) € {0,1} and g(n) = n — p(n). Here again,
the crucial point is an adequate choice of the nodes. The term interpolatory is due
to the property

In(f) = Lu(Ln(f-));

with L, (f,-) € L,—1 interpolating f at the nodes {x;,}}_; (for interpolatory rules
based upon rational functions, see [I2]). The theoretical background supporting
this kind of rules is the following.
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Theorem 7.1. Let pu be an Ly-integrable function on (a,b) (0 <a <b< o0), and
let w be a strong weight function on (a,b) such that

(7.1) /b %dx < 00.

Let {Ry,}n>0 be a sequence of orthogonal Laurent polynomials with respect to w and
the ordering induced by a given sequence {p(n)}n>0, and let {x;,}7_, be the zeros of
R,. For eachn =1,2,..., set I,(f) = 2?21 Ajnf(xjn) such that I,(f) = I.(f),
Vf e L,_1. Then, it holds that

i) limy oo In(f) = Iu(f), and
i) limp oo 30y [Ajnl f(210) = [) f(2)|p(z)|de,

for any Riemann—Stieltjes integrable function with respect to w.

Remark 7.2. When dealing with a finite interval, a proof of this theorem for the
polynomial case, i.e., p(n) = 0 for each n, can be found in the excellent paper by
Sloan and Smith [32], as a culmination of a long series of previous works. This
result was extended to the Laurent situation in [4]. When concerning the interval
(0,00), see [23] for the polynomial case and [3] for the Laurent one. Here, it should
be indicated that in this case, extra conditions on the moments ¢, = [ 2*w(z)dx
are required in order to guarantee convergence (see [3] for details).

Remark 7.3. From ii) in Theorem [[T] it follows that there exists a positive constant
M, independent of n, such that

S Ajul <M, n=1.2,....
j=1

Hence, the stability of the quadrature process is guaranteed.

On the other hand, up to now, the theoretical results obtained for these L-
interpolatory rules have never been tested numerically, and this is precisely the
main aim of this section. Thus for the computation of these rules, it seems clear
that the most desirable situation could be to have at our disposal auxiliary weights
w satistying ((TI) and whose family of orthogonal Laurent polynomials is explicitly
known. In this respect, the examples given in Section 5 provide us with a list of pos-
sible good candidates by showing that the zeros of orthogonal Laurent polynomials
with respect to some of these weight functions give rise to suitable L-interpolatory
rules.

TABLE 2.
i fi T
1| exp(z —1.01) x 1
2| exp(z~1/?) z1
3 log(x) x!
4| exp(1.01 — ) | Tr(z — 1.01)
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For our purposes, we will limit ourselves to the ordering induced by p(n) =
E[(n+1)/2] and integrals of the form

b
(7.2) 1(f) = / f(@)u(x)de,

with p(z) = x~Y?sin(r(z)) (r is a polynomial or rational function), 0 < a <
b < oo and f possessing possible singularities at the origin. Setting I(f)

f: F(z)x=/2dz, we will also compute this last integral through an n-point L-
orthogonal quadrature formula with respect to the weight function w(z) = 271/2.
Now the numerical results are not, in general, as good as in Section 6 because of
the oscillating factor sin(r(x)), as can be seen from the figures. However, when
estimating I(f) in (Z2) by an n-point L-interpolatory rule taking as nodes the
same ones as in the L-orthogonal formula (that is, the zeros of the nth orthogonal
L-polynomial for w(z) = z~1/2 which are easily expressed in terms of the zeros of
Legendre polynomials), the numerical results are highly improved as displayed in
the figures. Again we see that the computational cost is quite low.
Finally, observe that the fundamental condition (ZI])

@R[ s
/aw@c)dx‘/a N

trivially holds.

The figures, as in Section 6, show the graphics of the relative error for the three
rules proposed as a function of the number of nodes n. In all of the examples
given we have taken a = 0.01, b = 2.01 and the integrals are of the form I(f) =
f; fi(@)ps(x)de = fab fi(z)z= Y2 sin(r;(z))dx, with the functions f; and r; given in
Table 2 for i = 1,2,3,4. As seen from Figures BHS, the numerical effectiveness of
our L-interpolatory rules is clearly displayed.

8. CONCLUSIONS

Gaussian formulas based upon usual polynomials have become an important
topic within the field of numerical integration because of their numerical power and
effectiveness, especially when dealing with smooth integrands. At the same time,
these quadrature formulas have received much attention in the last decades as a
result of their connection with the theory of orthogonal polynomials and related
topics as Padé approximants. On the other hand, as pointed out in Section 1,
quadrature formulas exactly integrating Laurent polynomials appeared as a working
tool related to the solution of the so-called strong moment problems. During the last
years, some of the present authors have considered such quadratures from the optic
of a numerical integration approach, carrying out a series of numerical experiments
([, 2], [B]) and emphasizing their intimate relation to the theory of orthogonal
Laurent polynomials and two-point Padé approximants. In this paper, we have
intended to follow this line so that some results as, e.g., Proposition .5 which could
have been deduced from the works by Ranga and collaborators (see, e.g., [30]), have
now been revisited starting from the theory of orthogonal Laurent polynomials. In
our opinion this approach seems more natural and appropriate for our final purpose,
which is the approximate calculation of an integral. Nevertheless, we also think that
much more work should be done in the future in order, for instance, to characterize,
if possible, the L-orthogonal formulas in terms of the classical Gaussian ones for
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other orderings different from the one induced by p(n) = E[(n + 1)/2] as done in
this paper. Here, finding an appropriate transformation like ([d.2]), seems to be the
crucial point.
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