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AN OBSERVATION ON KORN’S INEQUALITY
FOR NONCONFORMING FINITE ELEMENT METHODS

KENT-ANDRE MARDAL AND RAGNAR WINTHER

Abstract. By utilizing a simple observation on traces of rigid motions we
are able to strengthen a result of Brenner (2004) on Korn’s inequality for
nonconforming finite element methods. The approach here is tightly connected
to the theory developed in Brenner’s work. Our motivation for the analysis
was the desire to show that a robust Darcy–Stokes element satisfies Korn’s
inequality, and to achieve this the stronger result seems necessary.

1. Introduction

In [4] a robust and nonconforming finite element method for a family of singular
perturbation problems in two space dimensions was discussed. These problems cor-
respond to linear Stokes-like problems when the perturbation parameter is bounded
away from zero, but degenerates to Darcy flow as the parameter is set equal to zero.
The discrete velocity fields are chosen as piecewise cubic vector fields with respect
to a triangulation of the domain such that the normal component of the fields are
continuous over the interelement edges, but the tangential components are only
weakly continuous. Hence the space of discrete velocity fields, V h, is a subspace of
H (div), but not of H 1.

A key issue related to such nonconforming approximations of H 1 vector fields is
whether Korn’s inequality holds for the discrete spaces. Since V h is not a subset
of H 1, this inequality may fail on V h. The purpose of this paper is to show that
Korn’s inequality is indeed true for the finite element space V h introduced in [4].
Furthermore, as a by–product of the approach we strengthen a general result of
Brenner [1] on Korn’s inequality for piecewise H 1 vector fields.

2. Korn’s inequality for piecewise H 1
vector fields

Let Ω be a bounded polygonal domain in R
d, d ≥ 1. Furthermore, L2 = L2(Ω) is

the standard space of square integrable vector fields, and the subspace H 1 = H 1(Ω)
is the Sobolev space of vector fields with all first-order derivatives in L2. We will
use ‖ · ‖0 to denote the L2 norm and ‖ · ‖1 the norm on H 1, while | · |1 is the
corresponding seminorm derived from all the first-order derivatives.
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Korn’s inequality, which is frequently referred to as Korn’s second inequality,
states that there is a positive constant C = C(Ω) such that

(1) |u |1 ≤ C(‖ε(u)‖0 + ‖u‖0), ∀u ∈ H 1.

Here, ε(u) = 1/2(gradu + (gradu)T ) denotes the symmetric gradient of u . The
kernel of ε in H 1 is the space of rigid motions,

RM = {a + bx : a ∈ Rd and b ∈ Sd},
where Sd is the space of anti-symmetric d× d matrices. An equivalent formulation
of Korn’s inequality, up to a compactness argument, is the statement that

‖u‖1 ≤ C‖ε(u)‖0, ∀u ∈ Ĥ
1
,

where Ĥ
1

is the orthogonal complement of RM in H 1.
When we consider Korn’s inequality for nonconforming spaces, or for piecewise

H 1 vector fields, the terms ‖u‖1 and ‖ε(u)‖0 should be replaced by the corre-
sponding broken norms, i.e., the differential operators involved are defined locally
on each element. In [3] Falk analyzed Korn’s inequality for some nonconforming
two-dimensional finite element spaces. In particular, he showed that the celebrated
Crouzeix–Raviart element (cf. [2]) did not satisfy such an inequality. The coun-
terexample constructed in [3] is based on composing local rigid motions into a global
function which is not rigid. This is possible due to the weak continuity required for
functions in the Crouzeix–Raviart space.

On the other hand, Brenner [1] recently established that a sufficient criteria for
Korn’s inequality on nonconforming spaces is

(2)
∫

f

[u ]f · l dxf = 0, ∀f ∈ Fh, l ∈ (P1(f))d;

cf. [1, Theorem 3.1]. Here Fh is the set of d − 1-dimensional interelement faces of
the mesh, (P1(f))d is the space of linear functions on f with values in R

d, and [u ]f
denotes the jump of u across the face f . This criteria is not met by the Crouzeix–
Raviart space. The weak continuity condition of this space only requires that (2)
holds for constant test functions, i.e., for l ∈ (P0(f))2.

The nonconforming finite element space V h introduced in [4] is composed of
functions which are cubic vector fields with constant divergence on each triangle,
and with linear normal component on each edge. On each triangle this is a space
of dimension 9, and the degrees of freedom, indicated by Figure 1, consists of the
two lowest-order moments of the normal component and zero-order moment of the

Figure 1. The degrees of freedom of the robust Darcy–Stokes element.
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Table 1. Calculated values of ρh for decreasing values of h.

h 1
2

1
4

1
8

1
16

1
24

ρh 1.94 3.56 4.40 4.71 4.78

tangential component of the vector fields on each edge. Hence, the vector fields in
V h do not satisfy the criteria (2). On the other hand, if u ∈ V h is composed of
local rigid motions, then the tangential components of u is constant on each edge,
and hence u is continuous. Therefore u ∈ RM , i.e., u is a global rigid motion.
This shows that a counterexample of the form given in [3] for the Crouzeix–Raviart
element cannot be constructed in this case.

To investigate further if Korn’s inequality holds or not for the space V h, we
perform a numerical experiment with the domain Ω taken as the unit square. We
estimate

ρh = sup
0�=u∈V h

‖u‖1/(‖ε(u)‖2
0 + ‖u‖2

0)
1/2

for different meshes. Define an operator Ah : V h �→ V h by

(Ahu , v)1 = (ε(u), ε(v)) + (u , v), ∀u , v ∈ V h,

where (·, ·) and (·, ·)1 denote the inner products of L2 and H 1, respectively. Then

ρh =
√

κ(Ah),

where κ(Ah) is the condition number of Ah. The counterexample for the Crouzeix–
Raviart element given in [3] utilized grids with a particular structure. The simplest
example of such a grid is shown in the leftmost picture in Figure 2. Our numerical
experiments are also on such grids. In Table 1 we give values for ρh, calculated by
Matlab, for decreasing values of the mesh parameter h, referring to the spacing on
the axis. The results seems to indicate that ρh is bounded independently of the
mesh size.

These computational results indicate that Korn’s inequality is valid for this el-
ement even if it does not satisfy condition (2). This has led us to re-examine

Figure 2. Plot of the two coarsest grids with some of the local
rigid motions that are possible for the Crouzeix–Raviart elements.
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Brenner’s argument. By using her approach, but by utilizing the fact that the tan-
gential component of traces of rigid motions corresponds to d− 1-dimensional rigid
motions on the interfaces, and not full linears, we have been able to strengthen her
result. Basically, we show that it is sufficient that

(3)
∫

f

[u ] · l ds = 0, ∀f ∈ Fh, l ∈ P1,−(f),

where P1,−(f) is defined by

P1,−(f) = {l ∈ (P1(f))d : l t ∈ RM (f)},

where l t denote the tangential component of the vectorfield l . In two space di-
mensions this means that the normal direction is continuous with respect to linear
polynomials, whereas continuity with respect to constants is sufficient in the tan-
gential direction. The element in [4] has this property. In three space dimensions
the number of required continuity conditions is reduced from nine to six conditions
on each interface.

3. The main result

In this section we state our main result, which is a strengthened version of
Theorem 3.1 in [1].

Let {Th} be a shape regular family of simplicial triangulations of Ω, where h is a
parameter indicating the mesh size. If T ∈ Th is a simplex the projection operator
ΠT from H 1(T ) onto RM (T ) is defined by∫

T

u − ΠTudx = 0, ∀u ∈ H 1(T ),∫
T

curl(u − ΠTu)dx = 0, ∀u ∈ H 1(T ),

where curlu is the antisymmetric part of the gradient of u . Following [1] this
projection operator has the approximation properties

|u − ΠTu |1,T ≤ C‖ε(u)‖0,T ,(4)
‖u − ΠTu‖0,T ≤ ChT |u − ΠTu |1,T ,(5)

where hT is the diameter of T . The corresponding global projection operator Π =
Πh is defined as

(Πu)|T = ΠTu , ∀T ∈ Th.

Let the space H 1
h be defined by

H 1
h = {u ∈ L2(Ω) : u |T ∈ H 1(T ), ∀T ∈ Th},

with corresponding norm

‖u‖1,h =

( ∑
T∈Th

‖u‖2
1,T

)1/2

.
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The broken seminorm | · |1,h is defined similarly. We will also need the fact (cf. [1,
Lemma 2.2]) that for all piecewise linear vector fields,

(6) |u |21,h ≤ C

⎛
⎝‖ε(u)‖2

0 + ‖u‖2
0 +

∑
f∈F (Th)

hd−2
f

∑
p∈V(f)

|[u ]2f (p)|

⎞
⎠ ,

where F (Th) is the set of d−1-dimensional interelement faces of Th, V(f) is the set
of vertices on the face f , and hf is the diameter of f . Furthermore, [u ]f (p) is the
jump in u at vertex p across the face f . Finally, πf : L2(f) �→ P1,−(f) is the L2

projection.
Our main result is the following theorem which shows, in particular, that the

robust Darcy–Stokes element satisfies Korn’s inequality.

Theorem 3.1. There exists a constant C, depending on the domain Ω and the
shape regularity of the triangulation, such that

|u |21,h ≤ C

⎛
⎝‖ε(u)‖2

0 + ‖u‖2
0 +

∑
f∈F (Th)

h−1
f ‖[πfu ]‖2

0,f

⎞
⎠ , ∀u ∈ H 1

h.

Proof. By using the decomposition

|u |1,h ≤ |u − Πu |1,h + |Πu |1,h,

and the fact that Πu is piecewise linear with ε(Πu) = 0, we obtain from (4) and
(6) that

(7) |u |21,h ≤ C

⎛
⎝‖ε(u)‖2

0 + ‖Πu‖2
0 +

∑
f∈F (Th)

hd−2
f

∑
p∈V(e)

|[Πu ](p)|2
⎞
⎠ .

Furthermore, from (4) and (5), we obtain

‖Πu‖0 ≤ ‖u − Πu‖0 + ‖u‖0 ≤ C(‖ε(u)‖0 + ‖u‖0).

Hence, it only remains to estimate the jump terms in (7).
Fix a face f ∈ F (Th). Since [Πu ]f is a linear function on f and πf [Πu ]f = [Πu ]f ,

we have

|[Πu ]f (p)|2 ≤2(|πf [u ]f (p)|2 + |πf [u − Πu ]f (p)|2)
≤Ch1−d

f (‖πf [u ]f‖2
0,f + ‖πf [u − Πu ]‖2

0,f ).

Finally, utilizing the trace theorem with proper scaling, (4) and (5), we obtain

‖πf [u − Πu ]f‖2
0,f ≤‖[u − Πu ]f‖2

0,f

≤C
∑

T∈M(f)

(hf |u − ΠTu |21,T + h−1
f ‖u − ΠTu‖2

0,T )

≤Chf

∑
T∈M(f)

‖ε(u)‖2
0,T .
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Here M(f) is the set of the two simplexes meeting f , and we have used that hT /hf

is bounded for T ∈ M(f) by shape regularity. Hence, we conclude that

∑
f∈F (Th)

hd−2
f

∑
p∈V(e)

|[Πu ](p)|2 ≤ C

⎛
⎝‖ε(u)‖2

0 +
∑

f∈F (Th)

h−1
f ‖[πfu ]‖2

0,f

⎞
⎠ ,

and together with (7) this implies the desired inequality. �
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