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HIERARCHICAL DECOMPOSITION OF DOMAINS
WITH FRACTURES

SUSANNA GEBAUER, RALF KORNHUBER, AND HARRY YSERENTANT

Abstract. We consider the efficient and robust numerical solution of elliptic
problems with jumping coefficients occurring on a network of thin fractures.
We present an iterative solution concept based on a hierarchical separation
of the fractures and the surrounding rock matrix. Upper estimates for the
convergence rates are independent of the width of the fractures and of the
jumps of the coefficients. Inexact solution of the local subproblems is also
considered. The theoretical results are illustrated by numerical experiments.

1. Introduction

Saturated groundwater flow in fractured porous media can be described by linear
elliptic problems. Fractures on one or more micro scales are usually represented
by effective parameters of corresponding single or multiporosity models based on
homogenization techniques. Fractures on macro scales directly enter the geometry
of the mathematical model. For lack of data, such fracture networks are typically
generated automatically based on stochastic reasoning [20]. The permeability kF

within the fractures is usually some orders of magnitude larger than the perme-
ability of the surrounding rock matrix, while their width εF might be some orders
of magnitude smaller than the overall computational domain. Similar problems
occur in other applications: The heat transfer in the human body is dominated
by the blood vessels which, depending on their size, are represented by effective
parameters [7, 8] or have to be incorporated directly. Another example concerns
diffusion-induced drug permeation through stratum corneum [11, 16]. In this case,
the lipid “mortar” between the corneocytes plays the role of the fractures.

In order to avoid numerical troubles resulting from small width εF and large
permeability kF , fractures (or vessels) are often discretized by lower-dimensional
elements [3, 12, 13] (or [18]). However, there are also some disadvantages of this
approach. For example, outward normal flow and mass conservation across the
interface are not incorporated. This motivated recent work on equidimensional
discretizations [9, 10, 14, 15].

On this background, we consider the efficient and robust numerical solution of
elliptic problems with jumping coefficients occurring on a network of long, thin
fractures. Robustness means that the complexity should not depend on the cru-
cial parameters εF and kF . To this end, the fracture network is discretized by
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anisotropic isoparametric finite elements, while usual shape regular elements are
used elsewhere. The main part of the paper concentrates on the iterative solu-
tion of the resulting discrete problems. We introduce so-called hierarchical domain
decomposition methods (HDD) based on a hierarchical splitting of the discrete so-
lution space into three subspaces associated with the interior of the fractures, the
interface, and the surrounding rock matrix. The matrix space consists of functions
which are essentially constant across the fractures. We show that the stability of
this decomposition and therefore the convergence speed of the resulting subspace
correction method is independent of εF , kF and of the mesh size. The proof is
based on the assumption that the fractures are “almost” lower dimensional in the
sense that their resolution by isotropic elements is not desirable, e.g., for efficiency
reasons. This setting allows us to trace back the stability of the hierarchical decom-
position to the optimal stability properties of one-dimensional interpolation. As a
consequence, our approach is applicable in any space dimension. Exceptional situ-
ations like crossings of fractures or fractures ending in the computational domain
can be resolved by local estimates on the surrounding elements. The exact solution
of the three local subproblems can be replaced by suitable multigrid methods. We
present an illustrative example adapting well-known results on hierarchical bases
in Section 6. In this case, the number of refinement steps enters only polynomially
and independence of εF and, in particular, of kF is preserved. However, this par-
ticular result is restricted to two space dimensions. In our numerical experiments,
we observe similar convergence speed as for classical multigrid methods applied to
the Laplace equation.

In a sense, our approach is complementary to the algorithm presented by Heisig
et al. [11], which aims at compensating small εF by successive anisotropic refine-
ment and accounts for large kF by ILU -smoothing. Algebraic multigrid methods
(see, e.g., [5, 19] or [23] for an overview) usually work reasonably well but mostly
suffer from a certain lack of theory. Apel and Schöberl [1] consider a completely
different anisotropic problem with a tensor product structure, where line (or plane)
smoothers or semi-coarsening can be applied.

For ease of presentation, we restrict ourselves to a two-dimensional domain with
two intersecting fractures. However, the basic approach and the mathematical
analysis can be transferred to more complicated situations, not only in two, but also
in three, space dimensions. In Section 2 we describe the discretization and provide
an error estimate. The next two sections concentrate on the stable separation of
the subspaces associated with the fractures and with the interface, respectively.
These two sections form the core of the paper. In Section 5 we describe the basic
HDD algorithm and prove upper bounds for the convergence rates which are robust
with respect to εF and kF . Afterwards an example for an inexact version is given.
Numerical experiments confirm our theoretical findings.

2. A discrete elliptic problem on a domain with fractures

Let Ω ⊂ R
2 be a polygonal domain, e.g., the unit square, with the two fractures

Ωi
F = {x ∈ Ω | x = bi

F + sdi
F + tni

F , s ∈ R, t ∈ (0, εF )}, i = 1, 2,

each of which is characterized by its position vector bi
F , direction di

F , normal ni
F and

width εF > 0. We assume that the fractures cross inside of Ω, i.e., that Ωc ⊂ Ω,
Ωc = Ω1

F ∩ Ω2
F . The network of fractures is denoted by ΩF = Ω1

F ∪ Ω2
F , while
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ΩM = Ω \ ΩF and Γ = ΩM ∩ ΩF represent the rock matrix and the interface,
respectively. This leads to the decomposition

(2.1) Ω = ΩF ∪ Γ ∪ ΩM .

We consider the elliptic variational problem

(2.2) u ∈ H : a(u, v) = �(v) ∀v ∈ H

with the symmetric bilinear form

a(v, w) = (K∇u,∇v)L2(Ω)

and jumping permeability K,

(2.3) K(x) =
{

kF ≥ 1, x ∈ ΩF ,
1, x ∈ ΩM .

For simplicity, let H = H1
0 (Ω) and let � ∈ H ′ be some right-hand side. The energy

norm is denoted by ‖ · ‖ = a(·, ·)1/2.
Let P0 = T0 ∪ Q0 be a subdivision of Ω = ΩM ∪ ΩF consisting of the partitions

ΩM =
⋃

T∈T0

T, ΩF =
⋃

Q∈Q0

Q

into triangles T and trapezoidals Q, respectively. We assume that the vertices of
each trapezoidal Q ∈ Q0 lie on Γ (see the left picture in Figure 2.1). In particular,

Qc := Ωc ∈ Q0

is a parallelogram. We further assume that P0 is conforming in the sense that the
intersection of two different elements is either a common edge, a common vertex
or empty. Finally, P0 is supposed to be shape regular in the sense that all P ∈ P0

have positive area and all Q ∈ Q0 have four different vertices. Equivalently, there
are positive constants s0, γ0 ∈ R such that

(2.4) s0hQ ≤ h′
Q, ∀Q ∈ Q0 \ {Qc}, γ0 ≤ γP ≤ π − γ0 ∀P ∈ P0

holds with hQ ≥ h′
Q denoting the lengths of the two parallel edges contained in Γ

and γP being an arbitrary interior angle. Note that all edges of Qc have the same
length hQc

.
Though all results and algorithms to be presented can be directly extended to

locally refined grids, we assume for simplicity that the triangulation T1 is obtained
by uniform refinement of T0. More precisely, each triangle T ∈ T0 is subdivided into
four similar subtriangles. Connecting the resulting new midpoints of opposite edges
of each Q ∈ Q0 \ {Qc}, we get the set Q1 of anisotropically refined trapezoidals.
Reiteration of this procedure leads to a sequence of refined partitions Pj = Tj ∪Qj ,
j = 0, 1, . . . . Observe that Pj is conforming and the shape regularity (2.4) is
preserved uniformly in j. In particular, the angle condition in (2.4) implies

(2.5) hQ − h′
Q ≤ εF

(sin γ0)2
= O(εF ) ∀Q ∈ Qj

so that the elements of Qj tend to (highly anisotropic) parallelograms as εF tends
to zero.

We assume that the fractures are long, thin objects in the sense that the resolution
of the corresponding anisotropy of the elements Q ∈ Q0 by the above refinement
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Figure 2.1. Initial partition P0 and refined partition P12

procedure is not desirable, e.g., for efficiency reasons. More precisely, we impose
the condition

(2.6) εF ≤ C0hQ ∀Q ∈ Qj

which means that the width of the fractures is bounded by the size of the surround-
ing mesh.

Anisotropic refinement of Qj in the other direction is performed by bisecting and
connecting the midpoints of all edges not contained in Γ. Application of k steps of
this procedure to Pj provides the partition Pjk = Tj ∪ Qjk (see the right picture
of Figure 2.1 for j = 1, k = 2). The refined partitions Pjk are conforming, and the
shape regularity (2.4) holds uniformly in j, k ∈ N. Finally note that Pjk does not
depend on the order of the above two types of refinement steps.

For given j, k, let Sjk ∈ H1
0 (Ω) be the subspace of functions v such that v|T is

linear and v|Q is isoparametric bilinear for all T ∈ Tj and Q ∈ Qjk, respectively.
Then the corresponding finite element discretization of the continuous problem (2.2)
reads as follows:

(2.7) ujk ∈ Sjk : a(ujk, v) = �(v) ∀v ∈ Sjk.

In preparation for an error estimate, we introduce the weighted Sobolev norms

(2.8) ‖v‖m,K =
∑

|α|≤m

∫
Ω

K(x)(Dαv(x))2 dx,

for m = 0, 1, . . . , using standard multi-index notation (cf., e.g., [6, Chapter 1]).
The obvious norm equivalence

‖v‖Hm(Ω) ≤ ‖v‖m,K ≤ kF ‖v‖Hm(Ω)

directly extends to the corresponding intermediate norms ‖v‖Hs(Ω) ‖v‖s,K , s ∈ R,
as obtained by interpolation (cf. Bergh and Löfström [4] or Brenner and Scott [6,
Chapter 12]).

Proposition 2.1. Assume that u ∈ H1+s(Ω) with 0 < s ≤ 1. Then the finite
element solution ujk satisfies the error estimate

(2.9) ‖u − ujk‖ ≤ Chs
jk‖u‖1+s,K , hjk = max

P∈Pjk

diam P,

with a constant C = C(s0, γ0) depending only on the shape regularity (2.4) of P0.
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Proof. Utilizing the Lax–Milgram lemma together with standard estimates of the
interpolation error on isotropic triangles or trapezoidals and the results of Žeńı̌sek
and Vanmaele [22] for the anisotropic case, we obtain the estimate

‖u − ujk‖ ≤ chjk‖u‖2,K ,

provided that u ∈ H2(Ω). Here, the constant c depends only on the shape regularity
of P ∈ Pjk and therefore of P0. Now the desired estimate (2.9) follows from
standard results on interpolated Sobolev spaces [4], [6, Chapter 12]. �

3. Separation of the fractures

We consider the direct splitting

(3.1) Sjk = SM
j ⊕ SF

jk

of the finite element space Sjk into the fracture space

(3.2) SF
jk =

{
v ∈ Sjk | v|ΩM

= 0
}

and its complement SM
j consisting of all v ∈ Sjk such that v|Q is isoparametric

bilinear for all Q ∈ Qj . The construction is illustrated in Figure 3.1.
The stability of the splitting (3.1) is equivalent to the stability of the interpolation

operator IM
jk : Sjk → SM

j defined by

IM
jk v(p) = v(p), p ∈ NM

j .

Here, NM
j denotes the set of all the vertices of P ∈ Pjk which lie in ΩM . Stability of

IM
jk will be shown by local estimates. To this end, we first consider transformations

to suitable reference elements.
The nodes of Q = (p1, . . . , p4) ∈ Qj are ordered anticlockwise and, for Q �= Qc,

in such a way that the lengths hQ, h′
Q of the edges [p1, p2], [p3, p4] lying in Γ satisfy

h′
Q ≤ hQ. With each Q �= Qc we associate the reference element Q̂ = [0, 1] × [0, ε],

where ε = εF /hQ. Observe that we always have ε ≤ C0 by (2.6), but ε → 0 occurs
for εF → 0. For the isotropic crossing Qc we select the canonical reference element

Figure 3.1. The nodes of SM
j and the splitting (3.1) in one dimension
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Q̂c = [0, 1]2. Let FQ : Q̂ → Q denote the bijective bilinear mapping such that the
ordering of the vertices is preserved and FQ(0, 0) = p1.

Throughout this paper, we write a 
 b for a ≤ Cb and a � b for cb ≤ a ≤ Cb
with some c, C depending only on the constants s0, γ0 and C0 from (2.4) and (2.6),
respectively.

Lemma 3.1. Let Q ∈ Qj. Each v ∈ H1(Q) and its transformation v̂,

v̂ = v(FQ(·)) : Q̂ → R,

satisfy the norm equivalence

(3.3) ‖∇v‖L2(Q) � ‖∇v̂‖L2(Q̂).

Proof. As the assertion is well known for Q = Qc, we only have to consider the
remaining case Q �= Qc. The chain rule yields

∇v̂ = ∇vBQ

denoting BQ = F ′
Q. Elementary calculations utilizing (2.4) and (2.5) provide

|BQ| 
 (1 + hQ−h′
Q

εF
)max{hQ,

εF

ε
} = hQ,

where | · | is the spectral norm. Similarly, we get

|B−1
Q | 
 (1 + hQ−h′

Q

εF
)max{h−1

Q ,
ε

εF
} 
 h−1

Q

and, in addition,

| detBQ| ≤ hQ
εF

ε
= h2

Q, | detB−1
Q | 
 h−1

Q

ε

εF
= h−2

Q ,

so that the assertion follows from the substitution rule for integrals. �

The constants in the norm equivalence (3.3) depend only on the geometric simi-
larity between the elements Q and Q̂ in terms of the regularity of the transformation
FQ, but not on the shape regularity of these elements.

The following technical lemma allows us to extend basic arguments from one-
dimensional intervals to anisotropic elements in higher dimensions. In this sense,
it is crucial for the rest of this paper.

Lemma 3.2. Let w : Q̂ = [0, 1] × [0, ε] → R be such that w(ξ, ·) is absolutely
continuous for each fixed ξ ∈ [0, 1], w(·, η) is linear for each fixed η ∈ [0, ε], and
w(ξ, 0) = w(ξ, ε) = 0 holds for all ξ ∈ [0, 1]. Then

(3.4) ‖∇w‖2
L2(Q̂)

≤ (1 + 12ε2)‖ ∂
∂η w‖2

L2(Q̂)
.

Proof. The assertion will be proved in three steps. First, let f : [0, ε] → R be
absolutely continuous and let f(0) = 0. Then the fundamental theorem of calculus
together with Cauchy’s inequality yields

(3.5)
∫ ε

0

(f(η))2 dη =
∫ ε

0

(∫ η

0

1 · f ′(s) ds

)2

dη ≤ ε2

∫ ε

0

(f ′(s))2 ds.

Next, let g : [0, 1] → R be linear. Then elementary calculation leads to

(3.6) (g(1) − g(0))2 ≤ 12
∫ 1

0

(g(ξ))2 dξ,
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where, in particular, the binomial estimate

(a − b)2 ≤ 4(a2 + ab + b2) ∀a, b ∈ R

has been used. Inserting f(η) = w(1, η) − w(0, η) and g(ξ) = ∂
∂η w(ξ, η) for fixed η,

in (3.5) and (3.6), respectively, the assertion follows from∫ ε

0

∫ 1

0

(
∂
∂ξ w(ξ, η)

)2

dξ dη =
∫ ε

0

(w(1, η) − w(0, η))2 dη

≤ ε2

∫ ε

0

(
∂
∂η (w(1, η) − w(0, η))

)2

dη ≤ 12ε2

∫ ε

0

∫ 1

0

(
∂
∂η w(ξ, η)

)2

dξ dη.

�

The proof of Lemma 3.2 solely relies on the assumption that the considered
functions are linear in the direction orthogonal to the “small” edge of length ε.
Therefore the estimate (3.4) directly extends to abitrary space dimensions. The
constant does not deteriorate as the length ε of one (or more) edges tends to zero.

Now we can state a local estimate for anisotropic elements Q �= Qc.

Lemma 3.3. The estimate

(3.7) ‖∇IM
jk v‖L2(Q) 
 ‖∇v‖L2(Q)

holds for all v ∈ Sjk and Q ∈ Qj \ {Qc}.

Proof. Transformation of IM
jk v to the reference element Q̂ = [0, 1] × [0, ε] provides

Î v̂, where v̂ is the transformation of some v ∈ Sjk and Î denotes the bilinear
interpolation at the vertices of Q̂. It is easily checked that w = v̂ − Î v̂ satisfies the
assumptions of Lemma 3.2. Hence,

‖∇(v̂ − Î v̂)‖2
L2(Q̂)

≤ (1 + 12ε2)‖ ∂
∂η (v̂ − Î v̂)‖2

L2(Q̂)
.

Using the orthogonality ∫ ε

0

∂
∂η (v̂ − Î v̂) ∂

∂η Î v̂ dη = 0

we get
‖ ∂

∂η (v̂ − Î v̂)‖2
L2(Q̂)

≤ ‖ ∂
∂η v̂‖2

L2(Q̂)
,

so that the assertion follows from Lemma 3.1. �

The proof of Lemma 3.3 extends the stability of nodal interpolation from intervals
to anisotropic elements. The stability of nodal interpolation on anisotropic elements
in arbitrary space dimensions can be derived in the same way.

The above technique cannot be applied to the isotropic crossing Qc. The basic
idea to treat such exceptional elements is first to estimate the norm of IM

jk v on Qc

by the norm of IM
jk v on a neighboring element Q ∈ Qj \ Qc and then to apply the

preceding Lemma 3.3. Observe that v|Qc
does not enter the resulting upper bound.

Lemma 3.4. There is a neighboring element Q ∈ Qj of Qc such that the estimate

(3.8) ‖∇IM
jk v‖L2(Qc) 
 ‖∇v‖L2(Q)

holds for all v ∈ Sjk.
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Proof. Let ŵ be a bilinear function on Q̂ = [0, 1] × [0, ε] interpolating the values
w1, . . . , w4 in the vertices (0, 0), (1, 0), (1, ε), (0, ε). Elementary calculation yields
(3.9)

‖∇ŵ‖2
L2(Q̂)

= 1
3ε

(
(w2 − w1)2 + (w3 − w4)2 + (w2 − w1)(w3 − w4)

)
+1

3ε−1
(
(w4 − w1)2 + (w3 − w2)2 + (w4 − w1)(w3 − w2)

)
.

Hence, the binomial estimate

(3.10) 4
3 (a2 + b2 + ab) ≥ a2 ∀a, b ∈ R

provides

(3.11) 4ε‖∇ŵ‖2
L2(Qc)

≥ max{(w4 − w1)2, (w3 − w2)2}.

Replacing Q̂ by Q̂c = [0, 1]2, formula (3.9) obviously holds with ε = 1. Using
ab ≤ 1

2 (a2 + b2) we easily get

(3.12) ‖∇ŵ‖2
L2(Qc)

≤ 2 max
l=1,...,4

(wl+1 − wl)2,

denoting w5 = w1.
Now let v ∈ Sjk and w = IM

jk v. Using (3.12) together with Lemma 3.1 we obtain
without loss of generality

‖∇w‖2
L2(Qc)


 max
l=1,...,4

(wl+1 − wl)2 = (w4 − w1)2.

In this case, we select Q = (p1, p2, p3, p4) ∈ Qj of Qc such that p1, p4 ∈ Q ∩ Qc.
Then (3.11) and Lemma 3.1 provide the estimate

‖∇w‖L2(Qc) 
 ‖∇w‖L2(Q),

and the assertion follows from the preceding Lemma 3.3. �

Again the idea of the proof of Lemma 3.8 extends directly to arbitrary space
dimensions. Estimates of the norm of IM

jk v on other exceptional elements occurring,
e.g., at the end of a fracture, by its norm on neighboring elements can be derived
in a similar way. We also refer to the proof of Proposition 4.1 later on.

We are ready for the main result of this section.

Proposition 3.1. For each v ∈ Sjk the decomposition v = vF + vM into vF ∈ SF
jk

and vM ∈ SM
j satisfies

(3.13) ‖vF ‖2 + ‖vM‖2 
 ‖v‖2.

Proof. As a consequence of Lemma 3.3 and Lemma 3.4 we obtain

‖IM
jk v‖2 =

∑
T∈Tj

‖∇v‖2
L2(T ) +

∑
Q∈Qj

kF ‖∇IM
jk v‖2

L2(Q) 
 ‖v‖2,

so that the assertion follows with vM = IM
jk v and vF = v − IM

jk v. �

The gradient of a function v ∈ SM
j with fixed nodal values typically becomes

arbitrarily large as εF → 0. This causes problems with the robustness of iterative
solvers for local subproblems on SM

j with respect to small εF . As a remedy, we now
consider a further splitting of SM

j into a space of functions living on the interface Γ
and another space of functions which are essentially constant across the fractures.
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Figure 4.1. The nodes of SΓ0
j and the splitting (4.1) in one dimension

4. Separation of the interface

In the preceding section, we have separated the unknowns inside of the fracture
ΩF from the remaining unknowns living on the interface Γ and inside the rock
matrix ΩM . The next step is to identify the unknowns on both sides of the fractures.
In such a way fractures are reduced to lower-dimensional objects which make sense
even in the limit case ε = 0. This leads to robustness of the resulting iterative
solvers for fractures of arbitrary small width ε.

More precisely, we decompose the interface Γ = Γ0 ∪ Γ1 into its “lower” and
“upper” parts consisting of Γl = {x ∈ Ω | x = bi

F + sdi
F + lni

F , s ∈ R, i = 1, 2} with
l = 0 and l = 1, respectively. Let NΓ0

j = Nj ∩ Γ0 and EF
j = Ej ∩ Ω

F
, with Nj

and Ej denoting the sets of interior vertices and edges of P ∈ Pj , respectively. We
consider the direct splitting

(4.1) SM
j = SM

j ⊕ SΓ0
j

into the interface space

(4.2) SΓ0
j =

{
v ∈ SM

j | v(p) = 0 ∀p /∈ NΓ0
j

}
,

and its complement SM
j consisting of all v ∈ SM

j such that v|E is constant for all
edges E ∈ EF

j . The construction is illustrated in Figure 4.1.
The splitting (4.1) is induced by the interpolation operator IM

j : SM
j → SM

j

defined by
IM
j v(p) = v(p), p ∈ Nj \ NΓ0

j .

If p∈NΓ0
j , then IM

j v(p)=v(p∗), where p∗ is the vertex of the edge E=(p, p∗)∈EF
j

or the vertex of Qc which is not contained in NΓ0
j . In particular, IM

j v is constant
on Qc.

We proceed with local stability estimates on T ∈ Tj and Q ∈ Qj , respectively.

Lemma 4.1. The estimate

(4.3) ‖∇IM
j v‖2

L2(T ) 
 ‖∇v‖2
L2(T ) +

3∑
i=1

(
IM
j v(pi) − v(pi)

)2

holds for all v ∈ SM
j and all T = (p1, p2, p3) ∈ Tj.
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Proof. We set w = IM
j v and ŵ, v̂ denote the usual transformations of w, v to the

reference element T0 = ((0, 0), (1, 0), (0, 1)). Elementary calculations provide

‖∇ŵ‖2
L2(T0)

= 1
2

(
(w2 − w1)2 + (w3 − w1)2

)
≤ 2‖∇v̂‖2

L2(T0)
+ 4

∑3
i=1 (wi − vi)

2 ,

and the assertion follows from the well-known estimates ‖∇w‖L2(T ) 
 ‖∇ŵ‖L2(T0)

and ‖∇v̂‖L2(T0) 
 ‖∇v‖L2(T ). �

Lemma 4.1 simply expresses the fact that the H1-seminorm of a linear function
over the reference element can be rewritten in terms of scaled differences of her
values along the edges. The proof of the following lemma is based on the same
dimension-independent arguments as were already used in Lemma 3.4.

Lemma 4.2. The estimates

(4.4) ‖∇IM
j v‖L2(Q) 
 ‖∇v‖L2(Q), max

i=1,...,4

(
IM
j v(pi) − v(pi)

)2 
 ‖∇v‖2
L2(Q)

hold for all v ∈ SM
j and all Q = (p1, p2, p3, p4) ∈ Qj.

Proof. We set w = IM
j v and let ŵ, v̂ denote the transformed functions on the

reference element Q̂ = [0, 1] × [0, ε]. In light of Lemma 3.1 it is sufficient to show
that

(4.5) ‖∇ŵ‖L2(Q̂) 
 ‖∇v̂‖L2(Q̂), max
i=1,...,4

(wi − vi)
2 
 ‖∇v̂‖2

L2(Q̂)
,

respectively. Here we have set wi = w(pi), vi = v(pi). As v̂ is bilinear on Q̂, we
can use (3.11) to obtain

4ε‖∇v̂‖2
L2(Q̂)

≥ max{(v4 − v1)2, (v3 − v2)2} = max
i=1,...,4

(wi − vi)2

which is the right estimate in (4.4). Note that

‖∇ŵ‖2
L2(Q̂)

= ε(w2 − w1)2 ≤ ε max
i,l=1,...,4

(vi − vl)2 ≤ 4ε max
l=1,...,4

(vl+1 − vl)2,

where we have set v5 = v1. Using the binomial estimate (3.10) and the representa-
tion (3.9) of ‖∇v̂‖2

L2(Q̂)
, we further get

ε max
l=1,...,4

(vl+1 − vl)2 ≤ 4(1 + ε2)‖∇v̂‖2
L2(Q̂)

which proves the assertion for Q �= Qc. In the case Q = Qc the left estimate in
(4.4) is trivial and the right one follows by similar arguments as before. �

Now we are ready to prove stability of the splitting (4.1).

Proposition 4.1. For each v ∈ SM
j the decomposition v = vM +vΓ0 into vM ∈ SM

j

and vΓ0 ∈ SΓ0
j satisfies

(4.6) ‖vM‖2 + ‖vΓ0‖2 
 ‖v‖2.

Proof. Let v ∈ SM
j . We set vM = IM

j v and vΓ
0 = v − IM

j v. Utilizing Lemma 4.1
and Lemma 4.2 we get

‖∇vM‖2
L2(T ) 
 ‖∇v‖2

L2(T ) +
∑

Q∈Qj(T )

‖∇v‖2
L2(Q) ∀T ∈ Tj ,



HIERARCHICAL DOMAIN DECOMPOSITION 83

denoting Qj(T ) = {Q ∈ Qj | Q ∩ T �= ∅}. As a consequence of the minimal angle
condition (2.4) we have∑

T∈Tj

∑
Q∈Qj(T )

‖∇v‖2
L2(Q) 


∑
Q∈Qj

‖∇v‖2
L2(Q).

Together with kF ≥ 1 and Lemma 4.2 these estimates provide

‖vM‖2 =
∑

T∈Tj

‖∇vM‖2
L2(T ) +

∑
T∈Qj

kF ‖∇vM‖2
L2(Q) 
 ‖v‖2.

The assertion now follows from the triangle inequality. �

Note that Proposition 4.1 implies the stability of the overlapping splitting

(4.7) SM
j = SM

j + SΓ
j ,

where SΓ0
j is replaced by the larger space

(4.8) SΓ
j =

{
v ∈ SM

j | v(p) = 0 ∀p ∈ Nj ∩ ΩM

}
.

Utilizing Proposition 3.1, we also get the stability of the decomposition

Sjk = SM
j + SF

jk, SF
jk = SF

jk + SΓ
j .

In three space dimensions the interface space can be separated by similar argu-
ments as mentioned above. In this case, both one- or two dimensional objects can
occur as the width of the fractures tends to zero.

5. A hierarchical domain decomposition method

Now we are ready to derive and analyse iterative schemes for the discrete prob-
lem (2.7). To this end, we use the general framework of multiplicative subspace
correction methods (cf. Xu [24] or Yserentant [26]). These methods are based on a
decomposition

S = W0 + W1 + · · · + WJ , Wl ⊂ S,

of the discrete solution space S = Sjk and symmetric, positive definite bilinear
forms bl(·, ·) on Wl. Starting with some given iterate w−1 = uν ∈ S, a sequence of
intermediate iterates wl, l = 0, . . . , J , is computed according to

(5.1)
vl ∈ Wl : bl(vl, v) = �(v) − a(wl−1, v) ∀v ∈ Wl,

wl+1 = wl + vl,

and uν+1 = wJ is the subsequent iterate. Hierarchical domain decomposition meth-
ods are obtained from decompositions as presented in the preceding sections.

Theorem 5.1. Select the splitting

(5.2) Sjk = SM
j + SΓ

j + SF
jk

with SM
j , SΓ

j and SF
jk defined in (4.1), (4.8) and (3.2), respectively, and the bilinear

form a(·, ·) on all these three spaces.
Then the iterates uν

jk of the resulting hierarchical domain decomposition method
converge to the exact solution ujk of (2.7) and satisfy the error estimate

(5.3) ‖ujk − uν+1
jk ‖2 ≤ ρ‖ujk − uν

jk‖2, ν = 0, 1, . . . ,
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with ρ < 1 depending only on the shape regularity (2.4) of the initial partition P0

and on the constant C0 in (2.6) relating the width εF of the fractures to the size of
the triangles.

Proof. The proof follows from general convergence results for subspace correction
methods (cf. Xu [24] or Yserentant [26]). More precisely, we can apply Theorem 5.1
in [26] with ω = 1, K1 
 1 (cf. Propositions 3.1, 4.1) and K2 = 3. �

We emphasize that Theorem 5.1 implies robust convergence with respect to arbi-
trary large permeability kF and arbitrary small width εF of the fractures. These re-
sults are not restricted to two space dimensions. Utilizing the techniques presented
in the preceding sections, robust HDD algorithms with mesh-independent conver-
gence rates can be derived for three space dimensions and for more complicated
geometries, such as multiple crossings or fractures ending in the computational
domain.

6. An inexact version

The HDD algorithm presented in Theorem 5.1 requires the solution of an aniso-
tropic subproblem on SF

jk (without jumping coefficients), a lower dimensional sub-
problem on SΓ

jk, and a subproblem with jumping coefficients on SM
jk (without

anisotropies). Thus we have separated the main difficulties of the original discrete
problem (2.7). Now existing strategies can be used to derive multilevel methods
for the subproblems that allow us to extend the robust convergence (5.3) to corre-
sponding inexact HDD algorithms, where the exact solution of the subproblems is
replaced by one or more multigrid steps.

As an example, we analyze the multigrid solution of the subproblem on SM
j

adapting well-known results on hierarchical bases. We emphasize that these con-
siderations are limited to two space dimensions.

Successive refinement in the rock matrix gives rise to the sequence of nested
subspaces

(6.1) SM
0 ⊂ · · · ⊂ SM

j−1 ⊂ SM
j ,

where SM
l consists of all functions v ∈ H1

0 (Ω) such that v|T is linear for all T ∈ Tl,
v|Q is isoparametric bilinear for all Q ∈ Ql, and v|E is constant for all edges E ∈ El.
Recall that El and Nl are denoting the sets of interior edges and vertices of P ∈ Pl,
respectively. The underlying refinement rules imply

c2−l ≤ diam(T ) ≤ C2−l ∀T ∈ Tl

with constants c, C depending only on the initial triangulation T0. From now on
constants hidden by the shortcuts ′ �′ and ′ 
′ may additionally depend on c, C.

The nodal interpolation Il : Sj → Sl defined by

(6.2) Ilv(p) = v(p), p ∈ Nl,

gives rise to the direct splitting

(6.3) SM
j = V0 ⊕ V1 ⊕ · · · ⊕ Vj

into the subspaces

(6.4) V0 = SM
0 , Vl = (Il − Il−1)SM

j , l = 1, . . . , j.
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We state a variant of the well-known stability result of Yserentant [25]. Recall the
weighted L2-norm ‖ · ‖0,K defined in (2.8).

Proposition 6.1. For each v ∈ SM
j the decomposition v =

∑j
l=0 vl into vl ∈ Vl

satisfies

(6.5) ‖v0‖2 +
j∑

l=1

4l‖vl‖2
0,K 
 (1 + j)2‖v‖2.

Proof. Let v ∈ SM
j . First note that

4l‖(Il − Il−1)v‖2
0,K 
 ‖Ilv‖2, l = 1, . . . , j,

can be shown by transformation to reference elements T̂ or Q̂ and exploiting the
equivalence of norms on 2- or 5-dimensional quotient spaces. Hence, it is sufficient
to prove

(6.6) ‖Ilv‖2 
 (1 + j − l)‖v‖2, l = 0, . . . , j.

Obviously, (6.6) is a consequence of the local estimate

‖∇Ilv‖2
L2(P ) 
 (1 + j − l)‖∇v‖2

L2(P ) ∀P ∈ Pl = Tl ∪Ql,

which is well known for T ∈ Tl (cf. Yserentant [25]). In order to show

(6.7) ‖∇Ilv‖2
L2(Q) 
 ‖∇v‖2

L2(Q) ∀Q ∈ Ql,

we set w = Ilv and let ŵ, v̂ denote the transformed functions on the reference
element Q̂ = [0, 1] × [0, ε]. As ∂

∂η ŵ = ∂
∂η v̂ = 0 the orthogonality∫ 1

0

∂
∂ξ ŵ ∂

∂ξ (v̂ − ŵ) dξ

implies
‖∇v̂‖2

L2(Q̂)
= ‖∇ŵ‖2

L2(Q̂)
+ ‖∇(v̂ − ŵ)‖2

L2(Q̂)
≥ ‖∇ŵ‖2

L2(Q̂)

so that (6.7) follows from Lemma 3.1. This proves the assertion. �

Next we extend a strengthened Cauchy–Schwarz inequality from classical finite
element spaces to SM

l . Recall the weighted L2-norm ‖ · ‖0,K as introduced in (2.8).

Proposition 6.2. Let 0 ≤ k < l ≤ j. Then the estimate

(6.8) a(v, w) 

(

1√
2

)l−k

‖v‖2l‖w‖0,K

holds for all v ∈ SM
k and w ∈ SM

l .

Proof. It is sufficient to show the local estimate

(6.9) (∇v,∇w)L2(P ) 
 (
1√
2
)l−k‖∇v‖L2(P )2l‖w‖L2(P ) ∀P ∈ Tk ∪Qk.

As (6.9) is well known for T ∈ Tl (cf., e.g., [26, p. 313]), we only have to consider
the case P = Q ∈ Qk. Then the transformation to the associated reference element
Q̂ leads to

(∇v,∇w)L2(Q) = ε

∫ 1

0

α(ξ)v̂ξŵξ dξ
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because v and w are constant along edges E ∈ Ek. Here α(ξ) is a quadratic
polynomial with the properties

α(ξ) � 1, |α′(ξ)| 
 1 ∀ξ ∈ [0, 1].

Now (6.9) follows from a one-dimensional version of the arguments used in the proof
of Lemma 6.1 in [26]. �

We now present an inexact variant of HDD which requires a multigrid V -cycle
and the exact solution of local problems on SΓ

j and SF
jk in each iteration step.

Theorem 6.1. Select the splitting

Sjk =

(
j∑

l=0

SM
l

)
+ SΓ

j + SF
jk

with SM
l , SΓ

j and SF
j defined in (6.1), (4.8), and (3.2), respectively. Let bl(·, ·), be

generated by symmetric Gauß–Seidel smoothers on SM
l , l = 1, . . . , j, and choose

the bilinear form a(·, ·) on the three remaining spaces.
Then the iterates uν

jk of the resulting hierarchical domain decomposition method
converge to the exact solution ujk of (2.7) and satisfy the error estimate

‖ujk − uν+1
jk ‖2 ≤

(
1 − C(1 + j)−3

)
‖ujk − uν

jk‖2, ν = 0, . . . ,

with C depending only on the initial partition P0 and the constant C0 from (2.6).

Proof. We select the direct splitting

(6.10) Sjk = V0 ⊕ V1 ⊕ · · · ⊕ VJ , J = j + 2,

into the subspaces Vl ⊂ Wl, l = 0, . . . , j, defined in (6.4), and Vj+1 = SΓ0
j ⊂ Wj+1

and Vj+2 = SF
jk = Wj+2, defined in (4.2) and (3.2), respectively. The smoothing

property (2.33) in [26] holds with ω = 1 for the Gauß–Seidel smoothers bl(·, ·),
l = 1, . . . , j, and is trivial otherwise. The stability (5.2) in [26] of the decomposition
(6.10) with K1 
 (1 + j)2 follows from Propositions 3.1, 4.1, and 6.1, utilizing the
norm equivalence

(6.11) bl(v, v) � 4l‖v‖2
0,K ∀v ∈ SM

l , l = 1, . . . , j.

Note that the refinement condition (2.6) is used in the proof of (6.11). Inserting
(6.11) into (6.8) and using the smoothing property, we obtain the Cauchy–Schwarz-
type inequality

a(wk, wl) 
 (
1√
2
)|l−k|bk(wk, wk)

1
2 bl(wl, wl)

1
2 ∀wk ∈ Wk, wl ∈ Wl.

This inequality directly leads to

‖
j∑

l=0

wl‖2 

j∑

l=0

bl(wl, wl) ∀wl ∈ Wl, l = 0, . . . , j,

and the Cauchy-Schwarz inequality provides condition (5.7) in [26] with K2 
 1.
Now the assertion follows from Theorem 5.4 in [26]. �

The proof of Theorem 6.1 directly applies to other smoothers satisfying (6.11).
Even suitable nonsymmetric smoothers, e.g., the Gauß–Seidel method, are allowed
(cf. Neuss [17]).
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According to Theorem 6.1 the inexact version of HDD preserves robustness with
respect to εF and, as a consequence of the local properties of the interpolation
operators Il, also with respect to kF . On the other hand, the stability of Il and
therefore Theorem 6.1 is restricted to two space dimensions. Replacing Il by L2-
type projections, similar results can be obtained for three dimensions at the expense
of robustness with respect to kF . More sophisticated techniques for elliptic problems
with jumping coefficients in three space dimensions can be found in [21].

The exact solution of the local subproblems associated with the fracture space
SF

jk can also be replaced by one step of a multigrid method. Indeed, Lemma 3.2
provides the stability of an hierarchical splitting of the fracture space SF

jk into
subspaces of SF

jl , l = 0, . . . , k, of functions v ∈ SF
jk which are linear on all edges

E ∈ Ejl ∩ Ω
F
. Here, Ejl denotes the edges of P ∈ Pjl. The convergence rate of the

resulting hierarchical multigrid method with line Gauß–Seidel smoother is robust
for ε → 0 and independent of the mesh size. For similar results we refer to Bramble
and Zhang [2] and the references cited therein.

Finally note that the “robust” smoothers proposed by Gebauer et al. [10] for the
multigrid solution of problems on SM

j = SΓ
j + SM

j can be interpreted in terms of a
suitable multilevel splitting of SΓ.

7. Numerical results

We consider the model problem

(7.1) ∇ · (K∇u) = 0 on Ω = (0, 6) × (0, 6)

with K defined in (2.3), u(0, y) = 2, u(6, y) = 1 for y ∈ [0, 6] and homogeneous
Neumann data elsewhere. Obviously, (7.1) can be written in weak form (2.2) with
suitable H and �. The fracture network ΩF , together with the initial partition P0,
is shown in the left picture of Figure 2.1 for a comparatively large width εF = 0.2.
Corresponding partitions for smaller εF are obtained by shifting the nodes lying on
the interface Γ towards the centerlines of the fractures. In the limit case εF = 0
the fractures disappear and the problem reduces to the Laplace equation.

In order to illustrate the robustness of the hierarchical domain decomposition
method presented in Theorem 6.1, we consider the corresponding discretized prob-
lem (2.7) for j = 6 and k = 2. In the left picture of Figure 7.1 we depict the
convergence rates for fixed εF = 10−5 and increasing permeability kF . More pre-
cisely, the convergence rates are approximated by

ρ =
‖uν0+1

jk − uν0
jk‖

‖uν0
jk − uν0−1

jk ‖
,

where ν0 is chosen such that ‖uν0+1
jk − uν0

jk‖ ≤ 10−12. As expected from the theo-
retical findings, the convergence speed is hardly influenced by the size of the jump.
The right picture shows (approximate) convergence rates for fixed kF = 1 and de-
creasing εF . The convergence rates are almost the same for 10−9 ≤ εF ≤ 10−2.
They scarcely differ from the convergence rates of classical multigrid for the re-
duced Laplace problem which are indicated by the horizontal line. Note that we
have C0 ≈ 40 in condition (2.6) for εF = 10−1, which explains the unsatisfying
convergence speed for this value.
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Figure 7.1. Robustness with respect to increasing kF and van-
ishing εF
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Figure 7.2. Influence of large εF /hQ and small interior angles γ

We now compare the convergence rates for fixed kF = 106 and increasing number
of refinement steps j. The left picture in Figure 7.2 shows that the convergence
speed rapidly deteriorates for “large” εF = 10−1 (upper curve) and is hardly af-
fected for “small” εF = 10−5 (lower curve). Note that C0 ≈ 2 · 10−3 in the latter
case. The right picture illustrates the influence of decreasing interior angles. The
length of an edge E ∈ Γ of an element Q ∈ Q0 is shifted by a fixed factor s (inde-
pendent of εF ). This leads to an interior angle γ ≈ arctan(εF /s) which obviously
tends to zero for increasing s and small εF . It is interesting to see how convergence
rates branch off for increasing s or, equivalently, for γ becoming too small. These
two experiments complement our analysis in the sense that moderate constants in
the conditions (2.4) and (2.6) also seem to be necessary for fast convergence.

Let us remark in closing that comparisons with the algebraic multigrid method
by Ruge and Stüben [19] in Gebauer [9] confirm the superiority of hierarchical
domain decomposition not only from a theoretical but also from a practical point
of view.
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