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THE MULTI-SYMPLECTICITY
OF PARTITIONED RUNGE-KUTTA METHODS

FOR HAMILTONIAN PDES

JIALIN HONG, HONGYU LIU, AND GENG SUN

Abstract. In this article we consider partitioned Runge-Kutta (PRK) meth-
ods for Hamiltonian partial differential equations (PDEs) and present some
sufficient conditions for multi-symplecticity of PRK methods of Hamiltonian

PDEs.

1. Introduction

It has been widely recognized that the symplectic integrator has the numeri-
cal superiority when applied to solving Hamiltonian ODEs. A systemic theory of
symplectic integrators for Hamiltonian ODEs has been established by some authors.
The Runge-Kutta methods play an important role in numerically solving differential
equations (see [1],[3],[4],[6]–[16] and the references therein). The symplectic con-
dition of Runge-Kutta methods was found independently by Lasagni, Sanz-Serna
and Suris in 1988 (see [10],[12],[15] and the references therein). The numerical
analysis has been investigated and developed by some authors (see [4],[6],[7],[10]–
[16] and the references therein). Some characterizations of symplectic partitioned
Runge-Kutta methods, which are very useful for the construction of symplectic
schemes for solving numerical Hamiltonian problems, were obtained by Sanz-Serna
in [10], Sun in [13],[14] and Suris in [16] and recently discussed by Marsden and
West in [8]. Reich in [9] considered Hamiltonian wave equations and showed that the
Gauss-Legendre discretization applied to the scalar wave equation (and Schrödinger
equation) in both the time and space directions leads to a multi-symplectic integra-
tor. Motivated by [6],[7],[9],[11],[13],[14],[16], we considered the following questions.
Are there any multi-symplectic partitioned Runge-Kutta methods for Hamilton-
ian PDEs? What is the characterization of multi-symplectic partitioned Runge-
Kutta methods for the general case of Hamiltonian PDEs? The answer to the first
question is obviously affirmative. The last question is closely related to the con-
struction of higher-order multi-symplectic schemes for Hamiltonian PDEs. In this
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article we consider the general case of Hamiltonian PDEs, investigate the multi-
symplecticity of partitioned Runge-Kutta methods, and then present some condi-
tions for multi-symplectic partitioned Runge-Kutta methods. In the rest of this
section we introduce some basic concepts on multi-symplectic discretization and
multi-symplecticity of Hamiltonian PDEs and give an extension version of Reich’s
result on the multi-symplecticity of Gauss-Legendre methods for the general case
of Hamiltonian PDEs. In section 2 we present conditions for multi-symplecticity
of partitioned Runge-Kutta methods when applied to a Hamiltonian PDE. In sec-
tion 3, the multi-symplecticity of partitioned Runge-Kutta methods for the wave
equation is discussed. In section 4 we investigate conservative properties of energy
and momentum for Runge-Kutta methods of linear Hamiltonian PDEs. In what
follows we assume that all numerical methods proposed are numerically solvable
and only focus on the multi-sympleciticity of methods.

Consider the Hamiltonian partial differential equation

(1.1) Mzt + Kzx = ∇zS(z), (x, t) ∈ Ω ⊂ R2,

where M and K are skew-symmetric matrices and S is a real smooth function of
the variable z. As is well known, some very important partial differential equations
can be rewritten in this form (see [2],[9] and the references therein). The following
is its multi-symplectic conservation law

(1.2)
∂ω(U, V )

∂t
+

∂κ(U, V )
∂x

= 0,

where

ω(U, V ) = UT MT V, κ(U, V ) = UT KT V,

and U(x, t) and V (x, t) are solutions of the variational equation

(1.3) Mdzt + Kdzx = DzzS(z)dz.

In order to study the multi-symplecticity-preserving Runge-Kutta method, we
introduce a uniform grid (xj , tk) ∈ R2 with mesh length ∆t in the t direction
and mesh length ∆x in the x direction. The value of the function ψ(x, t) at the
mesh point (xj , tk) is denoted by ψj,k. The equations (1.1), (1.2), and (1.3) can be,
respectively, schemed numerically as

M∂j,k
t zj,k + K∂j,k

x zj,k = (∇zSj,k)j,k,(1.4)

∂j,k
t ωj,k + ∂j,k

x κj,k = 0,(1.5)

M∂j,k
t (dz)j,k + K∂j,k

x (dz)j,k = (Dj,k
zz Sj,k)(dz)j,k,(1.6)

where Sj,k = S(zj,k, xj , tk),

ωj,k = 〈MUj,k, Vj,k〉, κj,k = 〈KUj,k, Vj,k〉,

Uj,k and Vj,k are solutions of (1.6), and ∂j,k
t , ∂j,k

x are discretizations of the deriva-
tives ∂t and ∂x, respectively. The following definition is from [2].

Definition 1.1. The numerical scheme (1.4) is called multi-symplectic if (1.5) is
a discrete conservation law of (1.4).
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To simplify notation, let the starting point (x0, t0)=(0, 0) in the numerical meth-
ods proposed throughout this paper. The Runge-Kutta method for equation (1.1)
is

Zmk = z0
m + ∆t

∑r

j=1
akj∂tZmj ,(1.7)

z1
m = z0

m + ∆t
∑r

k=1
bk∂tZmk,(1.8)

Zmk = zk
0 + ∆x

∑s

n=1
ãmn∂xZnk,(1.9)

zk
1 = zk

0 + ∆x
∑s

m=1
b̃m∂xZmk,(1.10)

M∂tZmk + K∂xZmk = ∇zS(Zmk),(1.11)

where the notation used is as follows: Zmk ≈ z(cm∆x, dk∆t), z0
m ≈ z(cm∆x, 0),

∂tZmj ≈ ∂tz(cm∆x, dk∆t), ∂xZmj ≈ ∂xz(cm∆x, dk∆t), z1
m ≈ z(cm∆x, ∆t). zk

0 ≈
z(0, dk∆t), zk

1 ≈ z(∆x, dk∆t), and

cm =
s∑

n=1

ãmn, dk =
r∑

j=1

akj .

Corresponding variational equations to (1.7)–(1.11), respectively, are

dZmk = dz0
m + ∆t

∑r

j=1
akjd(∂tZmj),(1.12)

dz1
m = dz0

m + ∆t
∑r

k=1
bkd(∂tZmk),(1.13)

dZmk = dzk
0 + ∆x

∑s

n=1
ãmnd(∂xZnk),(1.14)

dzk
1 = dzk

0 + ∆x
∑s

m=1
b̃md(∂xZmk),(1.15)

M∂tdZmk + K∂xdZmk = DzzS(Zmk)dZmk,(1.16)

where DzzS(Zmk) is a symmetric matrix.

Theorem 1.2. If in the method (1.7)–(1.11)

bkbj − bkakj − bjajk = 0(1.17)

and b̃mb̃n − b̃mãmn − b̃nãnm = 0(1.18)

hold for k, j = 1, 2, . . . , r and m, n = 1, 2, . . . , s, then the method (1.7)–(1.11) is
multi-symplectic with the conservation law

∆x
s∑

m=1

b̃m((d̃z1
m)T MT (dz1

m) − (d̃z0
m)T MT (dz0

m))

+ ∆t

r∑
k=1

bk((d̃zk
1)T KT (dzk

1) − (d̃zk
0)T KT (dzk

0)) = 0,

(1.19)

where

{d̃z1
m, d̃z0

m, d̃zk
1 , d̃zk

0, ˜dZmk, ˜d(∂xZmk), ˜d(∂tZmk)}
and {dz1

m, dz0
m, dzk

1 , dzk
0, dZmk, d(∂xZmk), d(∂tZmk)}

are solutions of the variational equation (1.12)–(1.16).
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Proof. Let

{d̃z1
m, d̃z0

m, d̃zk
1, d̃zk

0 , ˜dZmk, ˜d(∂xZmk), ˜d(∂tZmk)},
{dz1

m, dz0
m, dzk

1, dzk
0 , dZmk, d(∂xZmk), d(∂tZmk)}

be solutions of the variational equation (1.12)–(1.16). It follows from (1.12)–(1.16)
and (1.17)–(1.18) that

(d̃z1
m)T MT (dz1

m) − (d̃z0
m)T MT (dz0

m)

= ∆t

r∑
k=1

bk( ˜d(∂tZmk)
T

MT (dZmk) + ˜(dZmk)
T

MT d(∂tZmk))

+ (∆t)2
r∑

j,k=1

(bkbj − bkakj − bjajk) ˜d(∂tZmk)
T

MT d(∂tZmk)

= ∆t

r∑
k=1

bk( ˜d(∂tZmk)
T

MT (dZmk) + ˜(dZmk)
T

MT d(∂tZmk))

(1.20)

and

(d̃zk
1)T KT (dzk

1) − (d̃zk
0)T KT (dzk

0)

= ∆x
s∑

m=1

b̃m( ˜d(∂xZmk)
T

KT (dZmk) + ˜(dZmk)
T

KT d(∂xZmk)).
(1.21)

Using (1.16) and the symmetry of the matrix DzzS(Zmk) produces

˜d(∂tZmk)
T

MT (dZmk) + ˜(dZmk)
T

MT d(∂tZmk)

+ ˜d(∂xZmk)
T

KT (dZmk) + ˜(dZmk)
T

KT d(∂xZmk) = 0.

(1.22)

Combining (1.20), (1.21), and (1.22), the proof of the theorem is completed. �

Remark 1.3. This theorem can be extended to the Hamiltonian partial differential
equation with varying coefficients

(1.23) M(x)zt + K(t)zx = ∇zS(z, x, t),

where M(x) and K(t) are skew-symmetric matrices and smooth in x and t, respec-
tively, and S(z, x, t) is a smooth real function.

The following corollary is a natural extension of the result in [9].

Corollary 1.4. If in (1.7)–(1.11), the method applied to both the time direction
and the space direction is Gauss-Legendre, then the method (1.7)–(1.11) is a multi-
symplectic integrator.

2. Partitioned Runge-Kutta methods

We consider the blocked Hamiltonian partial differential equation

(2.1)
(

M1 M0

−MT
0 M2

) (
pt

qt

)
+

(
K1 K0

−KT
0 K2

) (
px

qx

)
=

(
∇pS(p, q)
∇qS(p, q)

)
,

where Mτ , Kτ (τ = 1, 2) are α × α skew-symmetric matrices, M0, K0 are α × α
matrices, and S(p, q) is a smooth real function in p = (p1, p2, . . . , pα)T and
q = (q1, q2, . . . , qα)T .
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The corresponding multi-symplectic conservation law is

(2.2)
∂ω(U, V )

∂t
+

∂κ(U, V )
∂x

= 0,

where

ω(U, V ) = UT

(
M1 M0

−MT
0 M2

)T

V, κ(U, V ) = UT

(
K1 K0

−KT
0 K2

)T

V,

U(x, t) and V (x, t) are solutions of the variational equation

(2.3)
(

M1 M0

−MT
0 M2

)
dzt +

(
K1 K0

−KT
0 K2

)
dzx = DzzS(z)dz

and z = (p1, p2, . . . , pα, q1, q2, . . . , qα)T . Now we apply the partitioned Runge-Kutta
method to the equation (2.1):

Pmk = p0
m + ∆t

∑r

j=1
a
(1)
kj ∂tPmj ,(2.4)

Qmk = q0
m + ∆t

∑r

j=1
a
(2)
kj ∂tQmj ,(2.5)

p1
m = p0

m + ∆t
∑r

k=1
b
(1)
k ∂tPmk,(2.6)

q1
m = q0

m + ∆t
∑r

k=1
b
(2)
k ∂tQmk,(2.7)

Pmk = pk
0 + ∆x

∑s

n=1
ã(1)

mn∂xPnk,(2.8)

Qmk = qk
0 + ∆x

∑s

n=1
ã(2)

mn∂xQnk,(2.9)

pk
1 = pk

0 + ∆x
∑s

m=1
b̃(1)
m ∂xPmk,(2.10)

qk
1 = qk

0 + ∆x
∑s

m=1
b̃(2)
m ∂xQmk,(2.11) (

M1 M0

−MT
0 M2

) (
∂tPmk

∂tQmk

)
+

(
K1 K0

−KT
0 K2

)(
∂xPmk

∂xQmk

)
=

(
∇pS(Pmk, Qmk)
∇qS(Pmk, Qmk)

)
,(2.12)

where we make use of the notation

p0
m ≈ p(cm∆x, 0), p1

m ≈ p(cm∆x, ∆t),

pk
0 ≈ p(0, dk∆t), pk

1 ≈ p(∆x, dk∆t),

q0
m ≈ q(cm∆x, 0), q1

m ≈ q(cm∆x, ∆t),

qk
0 ≈ q(0, dk∆t), qk

1 ≈ q(∆x, dk∆t),

Pmk ≈ p(cm∆x, dk∆t), Qmk ≈ q(cm∆x, dk∆t),

∂tPmk ≈ ∂p

∂t
(cm∆x, dk∆t), ∂xPmk ≈ ∂p

∂x
(cm∆x, dk∆t),

∂tQmk ≈ ∂q

∂t
(cm∆x, dk∆t), ∂xQmk ≈ ∂q

∂x
(cm∆x, dk∆t)

under the assumption that

(2.13)
s∑

n=1

ã(1)
mn =

s∑
n=1

ã(2)
mn = cm,

r∑
j=1

a
(1)
kj =

r∑
j=1

a
(2)
kj = dk.
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The system of variational equations of the method (2.4)–(2.12) corresponding to
(1.6) is

dPmk = dp0
m + ∆t

r∑
j=1

a
(1)
kj d∂tPmj ,(2.14)

dQmk = dq0
m + ∆t

r∑
j=1

a
(2)
kj d∂tQmj ,(2.15)

dp1
m = dp0

m + ∆t
r∑

k=1

b
(1)
k d∂tPmk,(2.16)

dq1
m = dq0

m + ∆t
r∑

k=1

b
(2)
k d∂tQmk,(2.17)

dPmk = dpk
0 + ∆x

s∑
n=1

ã(1)
mnd∂xPnk,(2.18)

dQmk = dqk
0 + ∆x

s∑
n=1

ã(2)
mnd∂xQnk,(2.19)

dpk
1 = dpk

0 + ∆x
s∑

m=1

b̃(1)
m d∂xPmk,(2.20)

dqk
1 = dqk

0 + ∆x

s∑
m=1

b̃(2)
m d∂xQmk,(2.21)

Md(∂tZmk) + Kd(∂xZmk) = Amkd(Zmk),(2.22)

where

d(Zmk) =
(

dPmk

dQmk

)
,

d(∂tZmk) =
(

d∂tPmk

d∂tQmk

)
,

d(∂xZmk) =
(

d∂xPmk

d∂xQmk

)
,

Amk =
(

DppS(Pmk, Qmk) DpqS(Pmk, Qmk)
DqpS(Pmk, Qmk) DqqS(Pmk, Qmk)

)
,

M =
(

M1 M0

−MT
0 M2

)
, K =

(
K1 K0

−KT
0 K2

)
.

Obviously, Amk is a symmetric matrix. Now we let

{dp1
m, dp0

m, dpk
1, dpk

0, dPmk, d∂tPmk, d∂xPmk,

dq1
m, dq0

m, dqk
1, dqk

0, dQmk, d∂tQmk, d∂xQmk},

{d̃p1
m, d̃p0

m, d̃pk
1, d̃pk

0, ˜dPmk, ˜d∂tPmk, ˜d∂xPmk,

d̃q1
m, d̃q0

m, d̃qk
1, d̃qk

0, ˜dQmk, ˜d∂tQmk, ˜d∂xQmk}
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be solutions of the variational equations (2.14)–(2.22), and

δtωm = (d̃p1
m

T
, d̃q1

m

T
)MT

(
dp1

m

dq1
m

)
− (d̃p0

m

T
, d̃q0

m

T
)MT

(
dp0

m

dq0
m

)
,(2.23)

δxκk = (d̃pk
1

T

, d̃qk
1

T

)KT

(
dpk

1

dqk
1

)
− (d̃pk

0

T

, d̃qk
0

T

)KT

(
dpk

0

dqk
0

)
.(2.24)

By a straightforward calculation, we have

δtωm = ∆t

r∑
k=1

(
˜dPmk

T

, ˜dQmk

T

)MT

(
b
(1)
k d∂tPmk

b
(2)
k d∂tQmk

)

+ (b(1)
k

˜d∂tPmk

T

, b
(2)
k

˜d∂tQmk

T

)MT

(
dPmk

dQmk

) )

+ (∆t)2
r∑

j,k=1

((b(1)
k a

(1)
kj +b

(1)
j a

(1)
jk −b

(1)
k b

(1)
j ) ˜d(∂tPmj)

T

M1d(∂tPmk)

+ (b(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ) ˜d(∂tQmj)

T

M2d(∂tQmk)

+ (b(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ) ˜d(∂tPmj)

T

M0d(∂tQmk)

+ (b(2)
j b

(1)
k − b

(2)
j a

(1)
jk − b

(1)
k a

(2)
kj ) ˜d(∂tQmj)

T

M0d(∂tPmk))

(2.25)

and

δxκk = ∆x

s∑
m=1

(
(˜dPmk

T

, ˜dQmk

T

)KT

(
b̃
(1)
k d∂xPmk

b̃
(2)
k d∂xQmk

)

+ (b̃(1)
k

˜d∂xPmk

T

, b̃
(2)
k

˜d∂xQmk

T

)KT

(
dPmk

dQmk

) )

+ (∆x)2
s∑

m,n=1

((b̃(1)
m ã(1)

mn+b̃(1)
n ã(1)

nm−b̃(1)
m b̃(1)

n ) ˜d(∂xPnk)
T

K1d(∂xPmk)

+ (b̃(2)
m ã(2)

mn + b̃(2)
n ã(2)

nm − b̃(2)
m b̃(2)

n ) ˜d(∂xQnk)
T

K2d(∂xQmk)

+ (b̃(2)
m ã(1)

mn + b̃(1)
n ã(2)

nm − b̃(2)
m b̃(1)

n ) ˜d(∂xPnk)
T

K0d(∂xQmk)

+ (b̃(2)
n b̃(1)

m − b̃(1)
m ã(2)

mn − b̃(2)
n ã(1)

nm) ˜d(∂xQnk)
T

K0d(∂xPmk).

(2.26)

If for k = 1, 2, . . . , r and m = 1, 2, . . . , s,

(2.27) b
(1)
k = b

(2)
k = bk, b̃(1)

m = b̃(2)
m = b̃m,

then the multi-symplectic conservation law of the method (2.4)–(2.12) correspond-
ing to (1.5) is

(2.28) ∆x
s∑

m=1

b̃mδtωm + ∆t
r∑

k=1

bkδxκk = 0.
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Consequently, in this case, it is sufficient for (2.28), which holds, that

(2.29) I1 = 0 and I2 = 0,

where

I1 = (∆t)2
r∑

j,k=1

(
(b(1)

k a
(1)
kj + b

(1)
j a

(1)
jk − b

(1)
k b

(1)
j ) ˜d(∂tPmj)

T

M1d(∂tPmk)

+ (b(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ) ˜d(∂tQmj)

T

M2d(∂tQmk)

+ (b(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ) ˜d(∂tPmj)

T

M0d(∂tQmk)

+ (b(2)
j b

(1)
k − b

(2)
j a

(1)
jk − b

(1)
k a

(2)
kj ) ˜d(∂tQmj)

T

M0d(∂tPmk)

)

(2.30)

and

I2 = (∆x)2
s∑

m,n=1

(
(b̃(1)

m ã(1)
mn + b̃(1)

n ã(1)
nm − b̃(1)

m b̃(1)
n ) ˜d(∂xPnk)

T

K1d(∂xPmk)

+ (b̃(2)
m ã(2)

mn + b̃(2)
n ã(2)

nm − b̃(2)
m b̃(2)

n ) ˜d(∂xQnk)
T

K2d(∂xQmk)

+ (b̃(2)
m ã(1)

mn + b̃(1)
n ã(2)

nm − b̃(2)
m b̃(1)

n ) ˜d(∂xPnk)
T

K0d(∂xQmk)

+ (b̃(2)
n b̃(1)

m − b̃(1)
m ã(2)

mn − b̃(2)
n ã(1)

nm) ˜d(∂xQnk)
T

K0d(∂xPmk)

)
.

(2.31)

We let

(µ1)kj = b
(1)
k a

(1)
kj + b

(1)
j a

(1)
jk − b

(1)
k b

(1)
j ,

(µ2)kj = b
(2)
k a

(2)
kj + b

(2)
j a

(2)
jk − b

(2)
k b

(2)
j ,

(µ3)kj = b
(2)
k a

(1)
kj + b

(1)
j a

(2)
jk − b

(2)
k b

(1)
j ,

(ν1)mn = b̃(1)
m ã(1)

mn + b̃(1)
n ã(1)

nm − b̃(1)
m b̃(1)

n ,

(ν2)mn = b̃(2)
m ã(2)

mn + b̃(2)
n ã(2)

nm − b̃(2)
m b̃(2)

n ,

(ν3)mn = b̃(2)
m ã(1)

mn + b̃(1)
n ã(2)

nm − b̃(2)
m b̃(1)

n .

Then this leads to the following result.

Theorem 2.1. In the method (2.4)–(2.12), suppose that (2.13) and (2.27) hold.
The method (2.4)–(2.12) is multi-symplectic, with discrete multi-symplectic law
(2.28), if one of following conditions holds.

(1) for τ = 1, 2, 3,

(2.32) (µτ )kj = 0 (k, j = 1, 2, . . . , r) and (ντ )mn = 0 (m, n = 1, 2, . . . , s),

when Mλ �= 0, Kλ �= 0 (λ = 1, 2), M0 �= 0 and K0 �= 0;
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(2) for τ = 1, 2, 3,

(µ1)kj = (µ2)kj = 0 (k, j = 1, 2, . . . , r)

(resp. (µτ )kj = 0 (k, j = 1, 2, . . . , r)),(2.33)

(ντ )mn = 0 (m, n = 1, 2, . . . , s)

(resp. (ν1)mn = (ν2)mn = 0 (m, n = 1, 2, . . . , s)),(2.34)

when M0 = 0 (resp. K0 = 0);
(3) for τ = 1, 2, (µτ )kj = 0 (k, j = 1, 2, . . . , r) and (ντ )mn = 0 (m, n =

1, 2, . . . , s), when M0 = 0 and K0 = 0;
(4) (µ3)kj = (ν3)mn = 0, for k, j = 1, 2, . . . , r, m, n = 1, 2, . . . , s, when Mτ =

Kτ = 0 for τ = 1, 2 (this is a typical multi-symplectic partitioned condition);
(5) for τ = 1, 2, (µ3)kj = (ντ )mn = 0, for k, j = 1, 2, . . . , r, m, n = 1, 2, . . . , s,

when Mσ = K0 = 0 for σ = 1, 2;
(6) for τ = 1, 2, (µτ )kj = (ν3)mn = 0, for k, j = 1, 2, . . . , r, m, n = 1, 2, . . . , s,

when M0 = Kσ = 0 for σ = 1, 2;
(7) (µ1)kj = (ν3)mn = 0, for k, j = 1, 2, . . . , r, m, n = 1, 2, . . . , s, when M0 =

M2 = Kσ = 0 for σ = 1, 2;
(8) (µ3)kj = (ν1)mn = 0, for k, j = 1, 2, . . . , r, m, n = 1, 2, . . . , s, when Mσ =

K0 = K2 = 0 for σ = 1, 2.

Now we give some remarks.

Remark 2.2. In Theorem 2.1 we list only eight conditions for multi-symplecticity
of the partitioned Runge-Kutta method of (2.4)–(2.12). By using I1 = 0 and
I2 = 0, we can conclude more conditions for multi-symplectic partitioned Runge-
Kutta methods. This theorem can be extended naturally to the case of Hamiltonian
partial differential equations with varying coefficients.

Remark 2.3. It is trivial and apparent to extend Theorem 1.2 and Theorem 2.1 to
the Hamiltonian partial differential equation with higher spatial dimension

(2.35) Mzt +
ι∑

τ=1

Kτzxτ
= ∇zS(z),

where ι ≥ 2, M and Kτ (τ = 1, 2, . . . , ι) are skew-symmetric matrices, and S is a
smooth function.

Remark 2.4. In Theorem 2.1 the condition (1) implies a
(1)
kj = a

(2)
kj for k, j = 1, 2, . . . r

and ã
(1)
mn = ã

(2)
mn for m, n = 1, 2, . . . , s. In fact, in this case only one symplectic

Runge-Kutta method is applied in each direction.

Remark 2.5. Consider the nonlinear Schrödinger equation

(2.36) i
∂ψ

∂t
+

∂2ψ

∂x2
+ |ψ|2ψ = 0.

Let ψ(x, t) = u(x, t) + iv(x, t). Then the equation (2.36) is read as

(2.37)

{
−∂v

∂t + ∂2u
∂x2 + (u2 + v2)u = 0,

∂u
∂t + ∂2v

∂x2 + (u2 + v2)v = 0.

We take z = (u, v, ux, vx)T . Then the equation (2.37) can be rewritten as

(2.38) M
∂z

∂t
+ K

∂z

∂x
= ∇zS(z, t),
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where

M =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ ,

and
S(z, t) = −1

4
(u2 + v2)2 − 1

2
(u2

x + v2
x).

The equation (2.38) is in accordance with the case of condition (7) in Theorem 2.1.
Thus the partitioned Runge-Kutta (2.4)–(2.12) method can be applied to the equa-
tion (2.38).

Remark 2.6. We consider the nonlinear Dirac equation

(2.39) ψt = Aψx + if(|ψ1|2 − |ψ2|2)Bψ,

where ψ = (ψ1, ψ2)T , i =
√
−1, f(s) is a real function of a real variable s, matrices

A and B are
(

0 −1
−1 0

)
and

(
−1 0
0 1

)
, respectively, and ϕ = (ϕ1, ϕ2)T is

sufficiently smooth. Let ψj = uj + ivj (j = 1, 2) and z = (u1, v1, u2, v2)T . Then the
equation (2.39) can be written as

(2.40) Mzt + Kzx = ∇zS(z),

where

M =

⎛⎜⎜⎝
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎠ , K =

⎛⎜⎜⎝
0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

and
S(z) =

−1
2

F (u2
1 + v2

1 − u2
2 − v2

2),

where the real smooth function F (ζ) satisfies d
dζ F (ζ) = f(ζ).

The equation (2.40) is in the case of condition (6) in Theorem 2.1.
Now denoting z = (u1, u2, v1, v2), the equation (2.39) can be rewritten as

(2.41) M̂ ẑt + K̂ẑx = ∇ẑS(ẑ),

where

M̂ =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , K̂ =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞⎟⎟⎠ .

The equation (2.41) is in the case of condition (4) in Theorem 2.1.

3. Hamiltonian wave equations

In this section we consider the scalar wave equation

(3.1) utt = uxx − G′(u), (x, t) ∈ Ω ⊂ R2,

where G : R → R is a smooth function. The investigation on symplectic integration
for the equation (3.1) can be found in [4] and the references therein.

Let ẑ = (u, p, v, w)T , ut = v, ux = w. Then the equation (3.1) can be written as

(3.2) Mẑt + Kẑx = ∇ẑS(ẑ),
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where

M =

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

⎞⎟⎟⎠ K =

⎛⎜⎜⎝
0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠ .

The case (4) in Theorem 2.1 is suitable for the equation (3.2).
In [9], the following result is given by Reich.

Proposition 3.1. Let (3.1) be discretized in space and in time by a pair of Gauss-
Legendre collocation methods with stages s, r, respectively. Then the resulting
discretization is a multi-symplectic integrator.

This result has fundamental importance for the multi-symplectic methods of
Hamiltonian PDEs. It implies the possibility of constructing higher-order multi-
symplectic schemes.

Now we investigate the multi-symplecticity of partitioned Runge-Kutta methods
for the equation (3.1) by using the multi-symplectic conservation law (see [9])

(3.3) ∂t(du ∧ dut) = ∂x(du ∧ dux).

The partitioned Runge-Kutta method applied to the equation (3.1) is

Umk = uk
0 + ∆x

∑s

n=1
ã(1)

mn∂xUnk,(3.4)

Wmk = uk
0 + ∆x

∑s

n=1
ã(2)

mn∂xWnk,(3.5)

Umk = u0
m + ∆t

∑r

j=1
a
(1)
kj ∂tUmj ,(3.6)

Vmk = v0
m + ∆t

∑r

j=1
a
(2)
kj ∂tVmj ,(3.7)

uk
1 = uk

0 + ∆x
∑s

m=1
b̃(1)
m ∂xUmk,(3.8)

wk
1 = wk

0 + ∆x
∑s

m=1
b̃(2)
m ∂xWmk,(3.9)

u1
m = u0

m + ∆t
∑r

k=1
b
(1)
k ∂tUmk,(3.10)

v1
m = v0

m + ∆t
∑r

k=1
b
(2)
k ∂tVmk,(3.11)

∂tUmk = Vmk, ∂xUmk = Wmk,(3.12)

∂tVmk = ∂xWmk − G′(Umk),(3.13)

under the assumption that

r∑
j=1

a
(1)
kj =

r∑
j=1

a
(2)
kj = dk,(3.14)

s∑
n=1

ã(1)
mn =

s∑
n=1

ã(2)
mn = cm.(3.15)
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Here the notation in the following sense is

Umk ≈ u(cm∆x, dk∆t),

∂tUmk ≈ ∂tu(cm∆x, dk∆t), ∂xUmk ≈ ∂xu(cm∆x, dk∆t),

uk
0 ≈ u(0, dk∆t), uk

1 ≈ u(∆x, dk∆t),

u0
m ≈ u(cm∆x, 0), u1

m ≈ u(cm∆x, ∆t).

Theorem 3.2. In the method (3.4)–(3.13), assume that (3.14), (3.15) and

b
(1)
k = b

(2)
k = bk, b̃(1)

m = b̃(2)
m = b̃m,(3.16)

b̃(1)
m b̃(2)

n − b̃(1)
m ã(2)

mn − b̃(2)
n ã(1)

nm = 0,(3.17)

b
(1)
k b

(2)
j − b

(1)
k a

(2)
kj − b

(2)
j a

(1)
jk = 0(3.18)

hold for m, n = 1, 2, . . . , s, k, j = 1, 2, . . . , s. Then the method (3.4)–(3.13) is multi-
symplectic with a discrete multi-symplectic conservation law

(3.19) ∆t
r∑

k=1

bk(duk
1 ∧ dwk

1 − duk
0 ∧ dwk

0) = ∆x
s∑

m=1

b̃m(du1
m ∧ dv1

m − du0
m ∧ dw0

m).

Proof. It follows from (3.4)–(3.13) and the conditions (3.14)–(3.18) that

duk
1 ∧ dwk

1 − duk
0 ∧ dwk

0

= ∆x
s∑

m=1

b̃m(dUmk ∧ d(∂xWmk))
(3.20)

and

du1
m ∧ dv1

m − du0
m ∧ dv0

m

= ∆t

r∑
k=1

bk(dUmk ∧ d(∂tVmk)).
(3.21)

On the other hand, (3.13) implies that

(3.22) dUmk ∧ d(∂xWmk) = dUmk ∧ d(∂tVmk).

From (3.20), (3.21), and (3.22), the discrete conservation law (3.19) is proved. This
completes the proof. �

Remark 3.3. (3.12) and (3.13) imply that (3.14) and (3.15), in essence, are not nec-
essary for the characterization (3.16)–(3.18) of multi-symplectic partitioned Runge-
Kutta methods (3.4)–(3.13).

4. The conservation of energy and momentum

It has been shown, by S. Reich in [9] (also see [2]), that multi-symplectic Gauss-
Legendre schemes preserve both the discrete energy and momentum conservation
laws exactly for linear Hamiltonian PDEs. In this section we show that the scheme
(1.7)–(1.11) preserves the discrete energy and momentum conservation laws exactly
for linear Hamiltonian PDEs

(4.1) Mzt + Kzx = ∇zS(z),
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where M and K are skew-symmetric matrices, S(z) = 1
2zT Az, and A is a symmetric

matrix. The equation (4.1) has the energy conservation law

∂tE(z) + ∂xF (z) = 0,(4.2)

∂tI(z) + ∂xG(z) = 0,(4.3)

where

E(z) =
1
2
zT Az − 1

2
∂xzT KT z,

F (z) =
1
2
∂tz

T KT z,

G(z) =
1
2
zT Az − 1

2
∂tz

T MT z,

I(z) =
1
2
∂xzT MT z.

Theorem 4.1. Under the assumptions of Theorem 1.2, if the matrices of RK
methods in the method (1.7)–(1.11) are invertible, then the method (1.7)–(1.11) has
a discrete energy conservation law

(4.4) ∆x

s∑
m=1

b̃m(E(z1
m) − E(z0

m)) + ∆t

r∑
k=1

bk(F (zk
1) − F (zk

0)) = 0

and a discrete momentum conservation law

(4.5) ∆x

s∑
m=1

b̃m(I(z1
m) − I(z0

m)) + ∆t

r∑
k=1

bk(G(zk
1) − G(zk

0)) = 0.

Proof. First of all, we introduce the system

∂xZmk = (∂xz)0m + ∆t

r∑
j=1

akj∂t(∂xZmj),(4.6)

(∂xz)1m = (∂xz)0m + ∆t

r∑
k=1

bk∂t(∂xZmk),(4.7)

∂tZmk = (∂tz)k
0 + ∆x

s∑
n=1

ãmn∂x(∂tZnk),(4.8)

(∂xz)k
1 = (∂xz)k

0 + ∆x

r∑
m=1

b̃m∂x(∂tZmk),(4.9)

where (∂xz)0m and (∂tz)k
0 satisfy

z0
m = z0

0 + ∆x

s∑
n=1

ãmn(∂xz)0n,(4.10)

zk
0 = zk

0 + ∆t

r∑
j=1

akj(∂tz)k
0,(4.11)

respectively, and

∂t(∂xZmk) ≈ ∂txz(cm∆x, dk∆t),

∂x(∂tZmk) ≈ ∂xtz(cm∆x, dk∆t).
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Because matrices A = (akj)r×r and Ã = (ãmn)s×s are invertible, we have

(4.12) ∂t(∂xZmk) = ∂x(∂tZmk).

In fact, (1.9), (4.6), and (4.10) imply that

(4.13) Zmk = zk
0 + z0

m − z0
0 + ∆x∆t

r∑
j=1

s∑
n=1

akj ãmn∂t(∂xZnj).

Similarly, (1.7), (4.8), and (4.11) imply that

(4.14) Zmk = z0
m + zk

0 − z0
0 + ∆x∆t

r∑
j=1

s∑
n=1

akj ãmn∂x(∂tZnj).

From (4.13) and (4.14), we conclude that (4.12) holds for m = 1, 2, . . . , s and
k = 1, 2, . . . , r.

From the assumptions, we have

1
2
(zk

1)T KT (∂tz)k
1 =

1
2
(zk

0)T KT (∂tz)k
0

+
∆x

2

s∑
m=1

b̃m(Zmk)T KT ∂x(∂tZmk) +
∆x

2

s∑
m=1

b̃m∂x(Zmk)T KT (∂tZmk).
(4.15)

Therefore,

F (zk
1) − F (zk

0)
∆x

=
1
2

s∑
m=1

b̃m(Zmk)T KT ∂x(∂tZmk)

+
1
2

s∑
m=1

b̃m∂x(Zmk)T KT (∂tZmk).

(4.16)

A similar (but a little bit tedious) calculation leads to

E(z1
m) − E(z0

m)
∆t

= − 1
2

r∑
k=1

bk(Zmk)T KT ∂t(∂xZmk)

− 1
2

r∑
k=1

bk∂x(Zmk)T KT (∂tZmk).

(4.17)

This means that (4.4) holds. Analogously, we show that (4.5) holds. The proof is
finished. �

Remark 4.2. The discrete conservation of energy and momentum for (2.4)–(2.12)
can be discussed in a similar way, but with tedious calculations.

5. Conclusion

Theorem 1.2 tells us that concatenating two symplectic Runge-Kutta methods
probably produces a multi-symplectic integrator with the order that we need. The-
orem 2.1 provides theoretically many more ways of constructing multi-symplectic
integrators by using partitioned Runge-Kutta methods. For example, a multi-
symplectic integrator of the wave equation can be produced by using the Lobatto
IIIA-IIIB pair to discretize the equation both in time and in space directions.
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