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ON MONOTONICITY AND BOUNDEDNESS PROPERTIES
OF LINEAR MULTISTEP METHODS

WILLEM HUNDSDORFER AND STEVEN J. RUUTH

Abstract. In this paper an analysis is provided of nonlinear monotonicity
and boundedness properties for linear multistep methods. Instead of strict
monotonicity for arbitrary starting values we shall focus on generalized mono-
tonicity or boundedness with Runge-Kutta starting procedures. This allows
many multistep methods of practical interest to be included in the theory.
In a related manner, we also consider contractivity and stability in arbitrary
norms.

1. Introduction

Nonlinear monotonicity and boundedness properties are often of importance for
the numerical solution of partial differential equations (PDEs) with nonsmooth
solutions. This holds in particular for hyperbolic conservation laws, for which spe-
cialized spatial discretizations are often used to enforce TVD (total variation dimin-
ishing) or TVB (total variation boundedness) properties in one spatial dimension
or maximum-norm bounds in more dimensions. Applying such a spatial discretiza-
tion, one wants of course also to preserve such properties in the time integration of
the resulting semidiscrete system.

In this paper we consider initial value problems for systems of ordinary differen-
tial equations (ODEs) in Rm, with arbitrary m ≥ 1,

(1.1) w′(t) = F (w(t)) , w(0) = w0 .

In our applications these systems will usually arise by spatial discretization of a
PDE. Specifically we are interested in the discrete preservation of monotonicity
and boundedness properties of numerical approximations wn ≈ w(tn), tn = n∆t,
∆t > 0, generated by linear multistep methods.

In the following it is assumed there is a maximal step size ∆tFE > 0 such that

(1.2) ‖v + ∆tF (v)‖ ≤ ‖v‖ for all 0 < ∆t ≤ ∆tFE , v ∈ Rm,

where ‖ · ‖ is a given seminorm, such as the total variation over the components,
or a genuine norm, such as the maximum norm. Of course, with the forward Euler
method this leads to

(1.3) ‖wn‖ ≤ ‖w0‖ for all n ≥ 1 ,
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whenever the step size restriction ∆t ≤ ∆tFE is satisfied.
In this paper similar properties are studied for linear multistep methods

(1.4) wn =
k∑

j=1

ajwn−j +
k∑

j=0

bj∆tF (wn−j) , n ≥ k .

In the following the notation Fn−j = F (wn−j) is used, and it will be assumed
throughout that

(1.5) b0 ≥ 0 ,

k∑
j=1

aj = 1 .

The starting vectors w0, w1, . . . , wk−1 are either given or computed by an appro-
priate starting procedure, and we shall mainly deal with the property

(1.6) ‖wn‖ ≤ M ‖w0‖ for all n ≥ 1 .

This will be referred to as monotonicity if M = 1 and as boundedness if M > 1.
We shall determine constants CLM such that (1.6) is valid for a multistep method
with suitable starting procedure under the step size restriction ∆t ≤ CLM∆tFE. In
our results, the size of M is determined by the coefficients of the multistep method
and the specific starting procedure.

Multistep schemes of high order satisfying such boundedness properties have
been constructed recently in [13]. In numerical tests these schemes proved to be
superior to existing monotone multistep schemes. In this paper we provide the the-
oretical framework for monotonicity and boundedness properties of these schemes.

The outline of this paper is as follows. In Section 2 we briefly discuss some well-
established concepts that will be generalized in this paper. Section 3 contains the
main results on monotonicity and boundedness, together with examples of explicit
methods with order p = k. In Section 4 the results are extended to include pertur-
bations and generalizations of the assumption (1.2). Section 5 contains bounds on
maximal step sizes for explicit and implicit multistep methods. Some experimental
optimal bounds for classes of explicit methods are discussed in an appendix.

2. Background material

2.1. Norms. In this paper ‖ · ‖ will be an arbitrary norm, e.g., the maximum
norm ‖ · ‖∞, or a seminorm, e.g., the discrete total variation ‖ · ‖TV over the
components. For inner-product norms different results exist. For example, the G-
stability property [2, 6] then gives unconditional stability for many implicit second-
order schemes, including the trapezoidal rule and the implicit BDF2 scheme.

With general (semi-)norms, like ‖·‖∞ or ‖·‖TV , much more stringent restrictions
on the allowable step sizes arise, even for simple linear systems and implicit meth-
ods; see for instance the results in [17] and the experiments in [7, Sect. 5.1]. Such
(semi-)norms are mainly relevant for problems with nonsmooth solutions. This is
common with hyperbolic conservation laws, and the results in this paper should
mainly be regarded with such applications in mind.

2.2. Contractivity and stability. The monotonicity and boundedness concepts
for sequences of approximations can also be reformulated to deal with the difference
of two sequences. Such results will be considered for an ODE system

(2.1) v′(t) = G(v(t)) , v(0) = v0 ,
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where it is assumed that

(2.2)
∥∥ṽ − v + ∆t

(
G(ṽ) − G(v)

)∥∥ ≤ ‖ṽ − v‖ for ṽ, v ∈ Rm, 0 < ∆t ≤ ∆tFE .

Suppose an appropriate Runge-Kutta starting procedure is used to generate
v1, . . . , vk−1 from the given v0, and subsequent approximations vn are computed
by the linear multistep method. Along with the sequence {vn} we also consider
{ṽn} starting with a perturbed ṽ0 and possibly a different starting procedure. Let
wn = ṽn −vn and Fn = G(ṽn)−G(vn). For these differences we still have recursion
(1.4), and consequently (1.6) then gives contractivity if M = 1. For M ≥ 1 we get
stability with respect to initial perturbations.

For nonlinear semidiscrete hyperbolic equations, with suitable norm, it may hap-
pen that assumption (1.6) is valid whereas (2.2) does not hold. By means of com-
pactness arguments it can then still be possible to prove convergence; see for exam-
ple [12, Sect. 12.12]. For that reason, property (1.6) is also sometimes referred to
as (nonlinear) stability and methods satisfying ‖wn‖ ≤ maxj<n ‖wj‖ are nowadays
often called strong-stability preserving (SSP). Of course, for linear problems the
assumptions (1.3) and (2.2) are equivalent.

2.3. Arbitrary starting values. Results concerning contractivity and monotonic-
ity (TVD/SSP) for methods with nonnegative coefficients can be found in [4, 10,
11, 14, 16, 17, 18]. Suppose that all aj , bj ≥ 0, and for such methods let

(2.3) KLM = min
1≤j≤k

aj

bj
,

with the convention a/0 = +∞ if a ≥ 0. Then it is easy to show that we have

(2.4) ‖wn‖ ≤ max
0≤j≤k−1

‖wj‖ for all n ≥ k

under the step size restriction ∆t ≤ KLM∆tFE. This holds for arbitrary starting
values for the multistep scheme. However, the methods with nonnegative coeffi-
cients form a small class, and the step size requirement ∆t ≤ KLM∆tFE can be very
restrictive. For example, it was shown in [10] that for an explicit k-step method
(k > 1) of order p we have KLM ≤ (k − p)/(k − 1). The most interesting explicit
methods have p = k, so then we cannot have KLM > 0. For implicit methods of
order p ≥ 2 we have KLM ≤ 2 ; see [11] and also Section 5.

The commonly known classes of methods, such as the Adams or BDF-type meth-
ods, are not included in this theory since some of the coefficients aj , bj are negative.
However, it was shown in [7] that the boundedness property (1.6) may hold for such
methods if the starting values w1, . . . , wk−1 are generated from w0 by a consistent
starting procedure. For a given multistep method, the constant M in (1.6) will be
determined by the starting procedure; see Section 3.3. With special starting pro-
cedures and a modified step size restriction we can still have M = 1. As we shall
see, such boundedness results with starting procedures do apply to many multistep
methods of practical interest.

Methods with such monotonicity or boundedness properties and optimal step
size restrictions were recently constructed in [13]. In that paper numerical tests
showed much improvement in computational efficiency over the class of methods
with nonnegative coefficients. An analysis for two-step methods was presented in
[7], together with some (partial) results on explicit Adams and BDF methods. This
paper provides a general framework to study the monotonicity and boundedness
properties of linear k-step methods with starting procedures.
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3. Monotonicity and boundedness with starting procedures

To derive monotonicity and boundedness results for linear multistep methods,
we begin with a reformulation of the schemes for theoretical purposes. With this
reformulation we shall see the influence of the starting procedures on the results
for the multistep methods.

3.1. Reformulations and main results. Consider the k-step method (1.4) and
let θ1, θ2, . . . be a bounded sequence of nonnegative parameters. We denote

(3.1) Θj =
j∏

i=1

θi for j > 0 , Θ0 = 1 , Θj = 0 for j < 0 .

By subtracting θ1wn−1 from the right-hand side of (1.4) and then adding this term
but using the recursion, the k-step method is written as an equivalent (k + 1)-step
method with a free parameter. Continuing this way, by subtracting and adding
Θjwn−j , j = 2, . . . , n − k, substituting wn−j in terms of wn−j−1, . . . , wn−j−k, and
collecting terms, it follows that

wn − b0∆tFn =
n−k∑
j=1

(
αjwn−j + βj∆tFn−j

)

+
n∑

j=n−k+1

(
αR

n,jwn−j + βR
n,j∆tFn−j

)
,

(3.2a)

where the coefficients αj , βj are given by

(3.2b) αj =
k∑

i=1

aiΘj−i − Θj , βj =
k∑

i=0

biΘj−i

for all j ≥ 1, and the coefficients of the remainder term are

(3.2c) αR
n,j =

k∑
i=k−n+j

aiΘj−i , βR
n,j =

k∑
i=k−n+j

biΘj−i

for n − k + 1 ≤ j ≤ n. To verify that (3.2) holds for n ≥ k, first observe that it is
valid for n = k (in which case αR

n,j = aj , βR
n,j = bj), and then use induction with

respect to n together with partial summation. Note that by the construction we
still have

(3.3)
n−k∑
j=1

αj +
n∑

j=n−k+1

αR
n,j = 1 , n ≥ k ,

in view of the consistency relation in (1.5).
In the following we consider parameter sequences {θi} satisfying

(3.4) θj ≥ 0 for all j ≥ 1 , θj = θ∗ for j > l

with some l ≥ 0. The parameters will be selected such that

(3.5a) αj ≥ 0 , βj ≥ 0 for all j ≥ 1 ,

and for such a parameter sequence we define

(3.5b) γLM = min
j≥1

αj

βj
.
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The dependence on the choice of the θi is omitted in the notation. The optimal
value for γLM over parameter sequences (3.4) will be denoted by CLM. Such optimal
values will generally depend on the range for θ∗ that will be allowed. The restriction
θj = θ∗, j > l, was imposed for practical optimization purposes in [13], and it will
also be convenient in the analysis; with this restriction the signs of αj , βj and the
size of the ratios αj/βj in (3.5) need only be taken into account for j ≤ k + l.

Theorem 3.1. Consider a k-step method (1.4). Let γLM be given by (3.5) with
θ∗ < 1. Assume w1, . . . , wk−1 are computed from w0 by a Runge-Kutta starting
procedure. Then there is an M ≥ 1, determined by the starting procedure, such that

‖wn‖ ≤ M ‖w0‖ for n ≥ 1, ∆t ≤ γLM∆tFE .

The proof of this theorem is given in Section 3.3. As we shall see, the assumption
θ∗ < 1 is related to zero-stability of the multistep method. With regard to the size
of M , we note already that in experiments in [13] bounds very close to 1 were
found if w1, . . . , wk−1 are computed from w0 with standard Runge-Kutta starting
procedures. The bound M = 1 can sometimes be enforced by selecting special
procedures, and, possibly, a modified step size restriction. See Remark 3.6 for
additional comments.

In [13] optimal values CLM for the γLM in (3.5) were found numerically for given
step numbers k and order p. For several interesting cases this led to a sequence
{θi} with θl+1 = 0 for some l ≥ 0, that is, θ∗ = 0. In such a situation another
generalization of (2.4) can be formulated.

Theorem 3.2. Consider a k-step method (1.4). Let γLM be given by (3.5) where
θl+1 = 0 for some l ≥ 0. Then

‖wn‖ ≤ max
0≤j≤k+l−1

‖wj‖ for n ≥ k + l, ∆t ≤ γLM∆tFE .

Proof. If θl+1 = 0, then also αj , βj = 0 for j > k + l. The reformulation (3.2) then
reduces to

(3.6) wn − b0∆tFn =
k+l∑
j=1

(
αjwn−j + βj∆tFn−j

)
for n ≥ k + l. By simple arguments it follows from (1.2) that

(3.7) ‖wn‖ ≤ ‖wn − b0∆tFn‖
(see for example [7, p. 614]); this is just unconditional monotonicity of the backward
Euler method. The proof now follows directly from (3.6). �

3.2. Examples. Optimal values for the γLM in (3.5), for a given linear multistep
method, were denoted as CLM in [13]. Such optimal values are often called threshold
values. Here we shall distinguish the threshold values C1

LM for θ∗ ∈ [0, 1) (relevant
for Theorem 3.1) and C0

LM for θ∗ = 0 (relevant for Theorem 3.2). Mathematically
this involves all possible integers l ≥ 0. Numerical optimal values are found by
selecting a fixed, large l, and the resulting optimization is then carried out by using
the Baron optimization package [1]; see [13] for details.

As an example we consider here explicit two- and three-step methods with order
p = k. We saw already in Section 2 that for such methods nonnegativity of all
coefficients aj , bj and KLM > 0 is not possible.
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Figure 1. Threshold values C1
LM and C0

LM for explicit third-order
three-step schemes. Contour levels: 0.0, 0.1, . . . , 0.5. Markers:
× for AB3, + for eBDF3 and ∗ for TVB0(3,3).

For the explicit second-order two-step methods the optimal threshold values C1
LM

were obtained in [7] by choosing constant θj , which turned out to be optimal for
this class of methods. Well-known examples are the two-step Adams-Bashforth
method (AB2, C1

LM = 4
9 ) and the extrapolated BDF2 scheme (eBDF2, C1

LM = 5
8 ).

As we shall see, positive threshold values with θ∗ = 0 are not possible for this class
of methods.

The threshold values for explicit third-order three-step methods, with constraints
θ∗ < 1 and θ∗ = 0, are given in Figure 1. This class of methods forms a two-
parameter family, and here we use the coefficients a1, a3 as free parameters. Zero-
stability of these methods is valid for (a1, a3) in a triangle with vertices (−1, 1),
(1,−1) and (3, 1). Close to the edge connecting (1,−1) and (3, 1) the methods have
large error constants [5] and also the numerical optimizations for C1

LM are not very
accurate there.

This class of methods with p = k = 3 contains, for instance, the well-known
three-step Adams-Bashforth method (AB3, C1

LM ≈ 0.16) and the three-step extrap-
olated backward differentiation formula (eBDF3, C1

LM ≈ 0.39). Also marked in the
figure is the optimal method TVB0(3,3) from [13], which has C1

LM = C0
LM ≈ 0.53.

It is surprising that for many methods in the upper half of the figures there is little
difference between C0

LM and C1
LM. In particular, numerical optimization of C1

LM

(with θ∗ ∈ [0, 1)) produced the method TVB0(3,3) for which θ∗ = 0.
Some general necessary conditions for having positive thresholds C1

LM and C0
LM

will be presented in Section 5. Here we mention that ak > 0 is necessary for having
C0

LM > 0, as suggested already by Figure 1 for the case k = 3.

3.3. Technical results. We consider a sequence {θi} as in (3.4) with limit point
θ∗, such that all αj , βj ≥ 0. The resulting γLM in (3.5) need not necessarily be
an optimal value CLM, although for applications that will be the most interesting
situation.

First note that if θl+1 = 0 for some l ≥ 0, then we can take all subsequent θj to
be zero, because the coefficients in (3.2) will not be affected by these θj . Therefore
there are effectively two cases: θ∗ = 0 and θ∗ > 0, and in the latter case we may
assume that θj > 0 for all j ≥ 1. Further note that the coefficients αj , βj would
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grow exponentially for j > l if θ∗ > 1. It will be shown below that this cannot
happen with a zero-stable scheme.

3.3.1. Generating polynomials. To establish a relation between the assumptions
in Theorems 3.1, 3.2 and more commonly known properties of linear multistep
methods, consider the polynomials

(3.8) ρ(ζ) = ζk −
k∑

j=1

ajζ
k−j , σ(ζ) =

k∑
j=0

bjζ
k−j .

Since ρ(1) = 0, according to the consistency relation (1.5), we can write

(3.9) ρ(ζ) = (ζ − 1)ρ̂(ζ)

with ρ̂ a polynomial of degree k − 1. If F ≡ 0 the multistep recursion (1.4) has ρ
as its characteristic polynomial. The method is called zero-stable if all roots of ρ
have modulus at most one and the roots of modulus one are simple. This means
that the scheme is stable for F ≡ 0 with arbitrary initial values, and this also gives
stability for nonstiff problems; see for instance [5]. Because by zero-stability no
roots of ρ are outside the unit circle, and ρ(θ) > 0 for large positive θ, it is obvious
that zero-stability implies

(3.10) ρ̂(θ) > 0 , ρ(θ) ≥ 0 whenever θ ≥ 1 .

For any j ≥ k, the coefficients αj , βj can be written in terms of Θj−k and
θj−k+1, . . . , θj . If j ≥ k + l it is easily seen that

(3.11) αj = −Θj−k ρ(θ∗) , βj = Θj−k σ(θ∗) .

For a zero-stable method, having αj ≥ 0 thus implies θ∗ ≤ 1. Moreover, we see
that θ∗ = 1 will give αj = 0. In that case we can still have γLM > 0, provided also
βj = 0, but we shall see below that this case is not very interesting for practical
purposes.

If the polynomials ρ and σ do not have a common root, the method is said to
be irreducible [5]. Reducible methods are not used in practice since the asymptotic
properties are the same as for the (k−1)-step method that results by dividing out
the common factor of ρ, σ. In this paper reducible methods do appear, for example
in the proof of Theorem 3.2, but these are only for theoretical purposes, not for
actual computations.

Lemma 3.3. Suppose the method (1.4) is irreducible and γLM > 0. Then

ρ(θ∗) < 0 , σ(θ∗) ≥ 0 and 0 < γLM ≤ − ρ(θ∗)
σ(θ∗)

.

If the method is also zero-stable, then θ∗ < 1.

Proof. Consider the index j = k + l, so that Θj−k 	= 0 (even if θ∗ = 0). If γLM > 0,
then αj , βj ≥ 0 and αj = 0 only if βj = 0. But ρ and σ have no common roots,
and thus αj > 0. The proof now follows directly from (3.10) and (3.11). �

We note that the upper bound for γLM in this lemma does not always provide a
useful estimate. For example, with the two-step methods of order two, the θ∗ was
chosen in [7] such that σ(θ∗) = 0. Other upper bounds for γLM (and for the optimal
CLM) are given in Section 5.
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3.3.2. Proof of Theorem 3.1. To prove Theorem 3.1, we start with a technical result
with concrete conditions on the starting values. Subsequently, these conditions will
be analyzed.

Let M ≥ 1, and consider the following conditions on the starting values,

(3.12) ‖wj‖ ≤ M ‖w0‖ for j = 1, . . . , k − 1

and

(3.13)
∥∥∥ k−1∑

i=0

(
αR

n,n−iwi + βR
n,n−i∆tFi

)∥∥∥ ≤
k−1∑
i=0

αR
n,n−i M ‖w0‖ for n ≥ k .

We note that for a sequence satisfying (3.4) these inequalities need only to be
verified for n = k, k + 1, . . . , 2k + l − 1. The size of the constant M will depend on
the starting procedure that is used to generate w1, . . . , wk from w0.

Lemma 3.4. Consider method (1.4) with γLM given by (3.5). Assume (3.12),
(3.13) with M ≥ 1 and ∆t ≤ γLM∆tFE. Then the boundedness property (1.6) holds.

Proof. From (3.2), (3.5) and (3.13) we obtain

‖wn − b0∆tFn‖ ≤
n−k∑
j=1

αj ‖wn−j‖ +
n∑

j=n−k+1

αR
n,j M ‖w0‖ ,

and by the assumption (3.12) the theorem is valid for n ≤ k − 1. Using (3.3) and
(3.7), the proof thus follows directly by induction. �

To study the starting condition (3.13) we may assume that θ∗ > 0 ; otherwise
we are in a situation where Theorem 3.2 applies. Let us denote

(3.14) δn−k+1 =
k−1∑
i=0

αR
n,n−i , n ≥ k .

Then we want to know that all δj (j ≥ 1) are positive, or at least nonnegative, in
order to see whether (3.13) can be satisfied. For this, first note that

(3.15) δ1 = 1 , δj+1 = δj − αj for all j ≥ 1 .

This last relation easily follows from (3.3). As a consequence we thus know that
the sequence {δj} is nonincreasing in j.

For j ≥ k, the δj can be written in terms of Θj−k and θj−k+1, . . . , θj−1. Hence
for j ≥ k + l we have

(3.16) δj+1 = θ∗ δj ,

and in view of (3.11), (3.15) it thus also follows that

(3.17) αj = (1 − θ∗)δj , δj = Θj−k ρ̂(θ∗) .

Combining this with Lemma 3.3 and (3.10) directly yields the following result.

Lemma 3.5. Suppose method (1.4) is irreducible, zero-stable and θ∗ > 0, γLM > 0.
Then θ∗ < 1 and δj > 0 for all j ≥ 1.

As observed before, for a sequence (3.4) we get k+l inequalities in (3.13), and the
coefficients in the right-hand side are δ1, . . . , δk+l. If all these δj > 0, then condition
(3.13) can be fulfilled for any Runge-Kutta starting procedure with ∆t ≤ γLM∆tFE

for some (sufficiently large) constant M ≥ 1. This gives the proof of Theorem 3.1.
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Remark 3.6. A quantification of M can be given for any specific starting procedure
of Runge-Kutta type by using the inequality

(3.18) max
∆t≤C∆tFE

‖v + s∆tF (v)‖ ≤ max
(
1, |2Cs − 1|

)
‖v‖

for C > 0, s ∈ R, and v ∈ Rm; see also [7, Rem. 3.2]. However such computed
bounds for M were found to be much larger than experimental values in numerical
tests. We will therefore not elaborate on such estimates.

Furthermore, we note that with an M that is specified in advance, for instance
M = 1, conditions on the starting procedure and extra conditions on the time
step may arise in order to fulfill (3.13). Examples for this can be found in [7]; in
numerical tests such additional restrictions were found to be less relevant than the
primary time step restriction ∆t ≤ γLM∆tFE with optimal γLM = C1

LM.

Remark 3.7. We can allow θ∗ = 1 in Lemma 3.4, but that does not yield results of
practical interest. As an example, consider the two-step method

wn = 2wn−1 − wn−2 + ∆tFn−1 − ∆tFn−2 .

This method is not zero-stable, since ρ has double root 1, but taking all θj = 1
gives in fact monotonicity with γLM = 1 under the starting condition

‖w1 − w0 − ∆tF0‖ ≤ 0 ,

which means of course that w1 has to be computed by the forward Euler method.
Having boundedness or monotonicity for an unstable method may seem contradic-
tory, but it should be realized that the above method is reducible: if w1 is computed
by forward Euler, then the whole sequence {wn} is a forward Euler sequence. For-
mally the method is second-order consistent, but because of the weak instability it
is only first-order convergent.

4. Generalizations

The above results allow various generalizations. Here we discuss the inclusion of
perturbations, and the replacement of assumption (1.2) by boundedness assump-
tions on finite time intervals.

4.1. Inclusion of perturbations. Instead of the multistep recursion (1.4) we can
also consider a perturbed version

(4.1) wn − b0∆tFn =
k∑

j=1

(
ajwn−j + bj∆tFn−j

)
+ dn , n ≥ k ,

with perturbations dn on each step. In the following theorem the influence of these
perturbations will be bounded by

(4.2) S =
∞∑

j=0

Θj .

Note that this S will be a finite number for any sequence (3.4) with θ∗ < 1.

Theorem 4.1. Consider method (1.4) with γLM given by (3.5). Assume the starting
conditions (3.12), (3.13) are valid with M ≥ 1 and ∆t ≤ γLM∆tFE. Then the solution
of (4.1) can be bounded by

‖wn‖ ≤ M ‖w0‖ + (n − k + 1)S max
k≤j≤n

‖dj‖ , n ≥ k .
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Proof. The reformulation for (4.1) becomes

wn − b0∆tFn =
n−k∑
j=1

(
αjwn−j + βj∆tFn−j

)

+
n∑

j=n−k+1

(
αR

n,jwn−j + βR
n,j∆tFn−j

)
+

n−k∑
j=0

Θj dn−j ,

(4.3)

for n ≥ k. Under the conditions of Lemma 3.4 we thus obtain

‖wn‖ ≤
n−k∑
j=1

αj ‖wn−j‖ + δn−k+1 M ‖w0‖ +
n−k∑
j=0

Θj ‖dn−j‖ ,

where α1 + · · · + αn−k + δn−k+1 = 1 for n > k, and δ1 = 1. Hence

‖wn‖ ≤ (1 − δn−k+1) max
j≤n−1

‖wj‖ + δn−k+1 M ‖w0‖ + S max
j≤n

‖dj‖ .

By induction with respect to n = k, k + 1, . . . , the result easily follows. �

A similar result can be derived for differences of two sequences, wn = ṽn − vn,
with an equation v′(t) = G(v(t)) satisfying (2.2). If we take vn as an unperturbed
multistep result and ṽn = v(tn), then the dn will represent local truncation errors.
For a pth-order method these will be dn = O(∆tp+1), provided the solution is
sufficiently smooth. The above result thus gives stability and convergence in general
norms such as the maximum norm. This provides a generalization of results in
[14, 18] for schemes with nonnegative coefficients, for which we can take θj ≡ 0 and
M = S = 1.

Remark 4.2. We can compare such stability-convergence results with classical es-
timates based on a Lipschitz condition, as found in [5], for example. For this, note
that (2.2) implies

‖G(ṽ) − G(v)‖ ≤ L ‖ṽ − v‖
with L = 2/∆tFE. The standard stability results will involve bounds with exp(Ltn).
If such a Lipschitz condition is valid for a hyperbolic PDE, we will have ∆tFE ∼ ∆x,
where ∆x is the mesh width in space, and estimates with exp(Ltn) are then com-
pletely useless. Our results, on the other hand, lead to reasonable stability bounds
under a CFL restriction on ∆t/∆x, with constants M and S that are independent
of the mesh width ∆x.

4.2. Generalized boundedness assumptions. In semidiscretizations of scalar
conservation laws the monotonicity assumption (1.2) can be valid if a so-called
TVD-limiter is used. Such limiters do not distinguish between genuine extrema
and numerically induced extrema caused by oscillations. Consequently numeri-
cal diffusion must be added locally near genuine extrema to maintain the TVD
property, leading to significant errors. To reduce this dissipation (at the cost of
potentially introducing small oscillations) more relaxed limiters are often used such
as the TVB-limiter of [15].

To generalize our results to these systems and others exhibiting growth, we
consider the assumption

(4.4) ‖v + ∆tF (v)‖ ≤ (1 + c∆t) ‖v‖ + κ∆t
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for arbitrary v ∈ Rm and 0 < ∆t ≤ ∆tFE, where c, κ ≥ 0. For the forward Euler
method wn = wn−1 + ∆tFn−1 with ∆t ≤ ∆tFE it then easily follows that

‖wn‖ ≤ ec tn ‖w0‖ +
1
c

(
ec tn − 1

)
κ , n ≥ 1 ,

with the convention 1
c (ect − 1) = t in the case c = 0. This gives boundedness on

finite time intervals [0, T ]. Here we derive a similar result for multistep methods.
For simplicity we consider (1.4) without perturbations. The generalization (4.4)
was recently considered in [3] for boundedness results with Runge-Kutta methods.
We also remark that the TVB-limiters of Shu [15] can now be included by choosing
κ > 0.

Theorem 4.3. Consider method (1.4) with γLM > 0 given by (3.5). Assume the
starting conditions (3.12), (3.13) are satisfied with M ≥ 1 and ∆t ≤ γLM∆tFE. For
implicit methods, assume also ∆t ≤ ∆t∗ where b0c∆t∗ < 1. Then there are M∗ ≥ 1,
c∗, κ∗ ≥ 0 such that

‖wn‖ ≤ ec∗tn−k+1M∗ ‖w0‖ +
1
c∗

(
ec∗tn−k+1 − 1

)
κ∗ , n ≥ k .

For explicit methods we can take M∗ = M , c∗ = c/γLM and κ∗ = κ/γLM. For
implicit methods the M∗, c∗, κ∗ are determined by M, c, κ, γLM and ∆t∗.

Proof. Let vn = wn − b0∆tFn and denote c′ = c/γLM, κ′ = κ/γLM. By the reformu-
lation (3.2a) we then obtain

‖vn‖ ≤
n−k∑
j=1

‖αjwn−j + βj∆tFn−j‖ + δn−k+1M‖w0‖

≤
n−k∑
j=1

αj

(
(1 + c′∆t)‖wn−j‖ + κ′

∆t
)

+ δn−k+1M‖w0‖

for all n ≥ k. Since
∑n−k

j=1 αj + δn−k+1 = 1, it follows that

‖vn‖ ≤ (1 − δn−k+1)(1 + c′∆t) max
j<n

‖wj‖

+ (1 − δn−k+1)κ′
∆t + δn−k+1M‖w0‖ .

(4.5)

Let us first consider explicit methods, where vn = wn. Consider the induction
assumption

(4.6) ‖wj‖ ≤ ec′tj−k+1M‖w0‖ +
1
c′

(
ec′tj−k+1 − 1

)
κ′ ,

which is valid for j = k − 1. Assuming it to hold for j = k, . . . , n − 1, we obtain

‖wn‖ ≤ (1 − δn−k+1)
(
ec′tn−k+1M‖w0‖ + ec′∆t 1

c′
(
ec′tn−k − 1

)
κ′

)
+ (1 − δn−k+1)κ′

∆t + δn−k+1M‖w0‖ ,

and consequently

‖wn‖ ≤ ec′tn−k+1M‖w0‖ + ec′∆t 1
c′

(
ec′tn−k − 1

)
κ′ + κ′

∆t ,

from which it follows that (4.6) also holds for j = n.
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Next, consider implicit methods. We have

(4.7) ‖wj‖ ≤ 1
1 − b0c∆t

‖vj‖ +
b0κ∆t

1 − b0c∆t
.

This relation easily follows from(
1 +

b0∆t

∆tFE

)
wj = vj +

b0∆t

∆tFE

(
wj + ∆tFEF (wj)

)
,

(
1 +

b0∆t

∆tFE

)
‖wj‖ ≤ ‖vj‖ +

b0∆t

∆tFE

(
(1 + c∆tFE)‖wj‖ + κ∆tFE

)
.

Combining (4.5) and (4.7) gives

‖wn‖ ≤ (1 − δn−k+1)
1 + c′∆t

1 − b0c∆t
max
j<n

‖wj‖

+ (1 − δn−k+1)
κ′∆t

1 − b0c∆t
+ δn−k+1

M‖w0‖
1 − b0c∆t

+
b0κ∆t

1 − b0c∆t
.

Taking M∗ = M/(1 − b0c∆t∗), we can select c∗ ≥ c, κ∗ ≥ κ such that

‖wn‖ ≤ (1 − δn−k+1) ec∗∆t max
j<n

‖wj‖ + κ∗
∆t + δn−k+1M

∗‖w0‖ ,

which leads as before to the desired estimate. �

5. Upper bounds for the threshold values

In this section we consider some additional points related to the maximal values
CLM for the γLM in (3.5) with parameter sequences {θj} satisfying (3.4). As in
Section 3.3, we shall distinguish the thresholds C0

LM with θ∗ = 0 and C1
LM with

θ∗ ∈ [0, 1). Of course, we always have C0
LM ≤ C1

LM.

5.1. Stability regions. The basic equation for linear stability considerations is
the scalar complex test equation w′(t) = λw(t). This can also be converted to an
equivalent system in R2 to remain formally within the class of real equations (1.1).
The stability region S consists of those z = ∆tλ ∈ C for which the multistep scheme
will be stable for arbitrary starting values. We can bound C1

LM in terms of the
largest disc Dr = {z ∈ C : |z + r| ≤ r} fitting in the stability region.

For the test equation w′(t) = λw(t), the monotonicity assumption (1.2) will hold
provided z = ∆tλ ∈ D1. If θ∗ < 1, then we know that the starting conditions (3.12),
(3.13) can be satisfied for any set of starting values by adjusting M , showing stabil-
ity for ∆t ≤ C1

LM∆tFE of the multistep recursion, and thus C1
LMz ∈ S. Consequently,

Dr ⊂ S for r = C1
LM.

This implies for example that no C1
LM > 0 exists for the explicit two-step mid-

point (leap-frog) method or the Nyström methods; see also [7, Rem. 4.3].
It was shown in [9] that Dr ⊂ S implies r ≤ 1 for explicit methods, with equality

r = 1 only for the forward Euler method. The same thus holds for C1
LM.

Note that this general upper bound C1
LM ≤ 1 is the same as the upper bound

KLM ≤ 1 for explicit methods with nonnegative coefficients. However, whereas
KLM > 0 does not hold for most methods of practical interest, the class of methods
with C1

LM > 0 is much larger and it does include many useful methods.
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5.2. Positive threshold values. Application of Lemma 3.3 with θ∗ = 0 shows
that

(5.1) C0
LM > 0 =⇒ ak > 0 , bk ≥ 0 ,

and if ak > 0, bk ≥ 0, then C0
LM ≤ ak/bk. For zero-stable methods with order

p = k this necessary condition for C0
LM > 0 cannot hold if k = 2, see [7], and the

numerical optimizations in [13] indicate that this is also the case with k = 4, 6. For
k = 3, 5, on the other hand, these numerical optimizations did produce schemes
with θ∗ = 0 when trying to optimize C1

LM for a given step number k and order p,
leading for instance to the TVB0(3, 3) scheme discussed in Section 3.3.

The upper bound for C1
LM obtained from Lemma 3.3 with θ ∈ [0, 1) does in

general not provide a useful estimate. For explicit methods the condition Dr ⊂ S
for r = C1

LM often gives a much better bound, though usually not sharp, while for
implicit A-stable methods this does not yield a useful bound. Here we give some
simple but useful upper bounds based on the first few αj , βj .

With explicit methods we have α1 = a1 − θ1, β1 = b1 and β2 = b2 + b1θ1. To
have β2 ≥ 0 we need θ1 ≥ −b2/b1, and therefore

(5.2) C1
LM ≤ α1

β1
≤ a1 + b2/b1

b1
=

1
b2
1

(
a1b1 + b2) .

This was used in [7] to guarantee the optimality of the threshold values C1
LM found

with constant θj for explicit second-order two-step methods. As a consequence of
(5.2) we have for explicit methods the necessary condition

(5.3) C1
LM > 0 , b0 = 0 =⇒ a1 > 0 , b1 ≥ 0 a1b1 + b2 > 0 .

This result was used in [7, 13] to show that there is no positive threshold value for
the explicit Adams methods with k ≥ 4 and the extrapolated BDF schemes with
k = 6. In the contour plot for C1

LM in Figure 1, with k = p = 3, the lower-left (nearly
triangular-shaped) region roughly coincides with the region where a1b1 + b2 ≤ 0.

For implicit methods we have α1 = a1 − θ1, β1 = b1 + θ1b0. Since b0 ≥ 0 we then
have the necessary condition

(5.4) C1
LM > 0 =⇒ a1 > 0 , b1 + a1b0 ≥ 0 .

An example will be seen in Figure 2 below.

5.3. Implicit methods. For the construction of optimal methods in [13] only
explicit methods were considered. The reason was that with implicit methods
threshold values are found that are not much larger than with explicit methods.
From a practical point of view this means that implicit methods do not allow large
time steps if monotonicity properties are crucial. An exception is the backward
Euler method with KLM = ∞; see, e.g., formula (3.7). In this section upper bounds
for C1

LM will be derived for methods of order two or larger.

5.3.1. Example. As an illustration, we show in Figure 2 the threshold values with
θ∗ < 1 for implicit second-order two-step methods. These methods form a two-
parameter family, and we can take a1, b0 as free parameters. The methods are
zero-stable for 0 ≤ a1 < 2 and A-stable if we also have b0 ≥ 1

2 . Interesting cases
are, for example, a1 = 1 and a1 = 4

3 , giving the two-step Adams and BDF2-type
methods, respectively. The standard implicit BDF2 method corresponds to a1 = 4

3 ,
b0 = 2

3 , and the (third-order) Adams-Moulton method has a1 = 1, b0 = 5
12 .
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Figure 2. Threshold values C1
LM for second-order two-step methods.

We note that the C1
LM values given here are somewhat larger for b0 ≥ 1 than the

values presented in [7], where constant θj were used. In the quadrangle defined by
the inequalities 0 ≤ a1 ≤ 1, 1

2a1 ≤ b0 ≤ 1 − 1
4a1 we have nonnegative coefficients,

and for most of that region the value of KLM = minj(aj/bj) is close to the displayed
C1

LM. Furthermore, it should be noted that b1 = 2− 1
2a1 − 2b0 due to second-order

consistency. Combining this with (5.4), it is seen that a positive threshold cannot
be obtained for b0 > (2− 1

2a1)/(2−a1), corresponding to the region in the upper-left
corner in Figure 2.

The maximal values C1
LM = 2 are found for b0 = 1

2 and a1 ≥ 1. For any fixed
a1 ∈ [1, 2] we see the following behaviour: if the parameter b0 is increased, starting
with b0 = 0, we first get an increase of C1

LM, up to the value 2 for b0 = 1
2 , but after

that there is a decrease of C1
LM. It will be shown below that this behaviour is quite

general for implicit methods of order p ≥ 2.

5.3.2. Upper bound for KLM. To derive general upper bounds for C1
LM we first study

the optimal values KLM for methods with nonnegative coefficients.
Consider an implicit k-step method of order p ≥ 2 with all aj , bj ≥ 0. In

the following results we shall only use the order-two conditions. Together with∑k−1
j=0 ak−j = 1, see (1.5), these order conditions are

k−1∑
j=0

(
jqak−j + q jq−1bk−j

)
= kq − qkq−1b0 , q = 1, 2 .

Let cj = aj − Kbj and assume cj ≥ 0 for j = 1, . . . , k − 1, that is, K ≤ KLM. In
terms of these coefficients, the order conditions can also be written as

k−1∑
j=0

(
ck−j + Kbk−j

)
= 1 ,(5.5a)

k−1∑
j=0

(
j ck−j + (Kj + 1)bk−j

)
= k − b0 ,(5.5b)

k−1∑
j=0

(
j2ck−j + (Kj2 + 2j)bk−j

)
= k(k − 2b0) .(5.5c)
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By taking a linear combination of these relations, multiplying (5.5a) by λ and
(5.5b) by µ, with λ, µ chosen such that

λ + µ(k − b0) − k(k − 2b0) = 0 ,

it is seen that
k−1∑
j=0

(
λ + µj − j2

)
ck−j = −

k−1∑
j=0

(
K(λ + µj − j2) + (µ − 2j)

)
bk−j .

Let s = ±1. Depending on b0, we shall select below suitable λ, µ ∈ R such that

s(λ + µj − j2) ≥ 0 , j = 0, 1, . . . , k − 1 .

Since all ck−j , bk−j ≥ 0 it then follows that

s
(
K(λ + µj − j2) + (µ − 2j)

)
≤ 0

for some index j. For both cases s = +1 and s = −1 we thus obtain

(5.6) K ≤ max
0≤j≤k−1

ϕ(j) , ϕ(j) =
2j − µ

λ + µj − j2
.

First consider b0 ≤ 1
2 . Take λ = 0, µ = k(k − 2b0)/(k − b0). Then the function

ϕ will attain its maximum in (5.6) for j = k − 1. Hence we get the following upper
bound for KLM:

KLM ≤ k2 − 2k + 2b0

(k − 1)((1 − b0)k − b0)
.

This is monotonically increasing in b0; if b0 = 0 its value is (k − 2)/(k − 1) and if
b0 = 1

2 the value equals 2. If we allow k to be arbitrarily large we get the upper
bound

(5.7) KLM ≤ 1/(1 − b0) for b0 ≤ 1
2 .

In fact this bound can be shown to hold for any first-order method with b0 ≤ 1.
Next we consider b0 > 1

2 , and we now take µ = 2(k − 1), λ = −k(k − 2) − 2b0.
Then

ϕ(j) =
2i

i2 + 2b0 − 1
, i = k − 1 − j .

Here it is easily seen that

(5.8) KLM ≤
{

1/b0 if 1
2 < b0 ≤ 1 ,

1/
√

2b0 − 1 if 1 ≤ b0 .

Hence the optimal threshold value is KLM = 2, which is achieved by the trape-
zoidal rule. This was already stated in [11, p. 186], and in that reference also
bounds on KLM can be found for higher-order implicit methods, partly obtained by
numerical optimizations.

5.3.3. Upper bound for C1
LM. The above bounds (5.7), (5.8) for the thresholds KLM

with arbitrary step number k lead to the following result.

Theorem 5.1. For any irreducible, zero-stable, implicit linear multistep method of
order p ≥ 2 we have

(5.9) C1
LM ≤

⎧⎪⎪⎨
⎪⎪⎩

1/(1 − b0) if 0 ≤ b0 ≤ 1
2 ,

1/b0 if 1
2 ≤ b0 ≤ 1 ,

1/
√

2b0 − 1 if 1 ≤ b0 .
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Proof. Let us denote the right-hand side of (5.9) by U(b0). Along with method
(1.4) and the reformulation (3.2a) with θ∗ < 1, we also consider formula (3.2a)
without the remainder terms,

(5.10) wn − b0∆tFn =
κ∑

j=1

(
αjwn−j + βj∆tFn−j

)
,

where κ = n − k and αj , βj ≥ 0. The omitted k remainder terms have magnitude
ε = θκ

∗ . Therefore the truncated formula (5.10) is a linear κ-step method for which
the order-two conditions will be satisfied within O(ε) accuracy; that is, (5.5) is
valid in terms of the coefficients αj , βj and step number κ (instead of aj , bj and k)
if we modify the right-hand sides by adding an O(ε) term. Now we can repeat the
arguments of Section 5.3.2 for this truncated method to obtain

min
1≤j≤κ

αj

βj
≤ U(b0) + O(ε) .

By taking κ sufficiently large, it is thus seen that the above upper bounds for
KLM with arbitrarily large step numbers k also apply to the threshold C1

LM of the
original method (1.4). �

For practical applications the most important fact is that large threshold values
are not possible. Numerical illustrations of the strong oscillations that can occur
with standard implicit methods for the advection test equation ut + ux = 0, with
TVD-limiters in the spatial discretization, can be found in [8, Sect. III.1]. Explicit
methods are therefore preferable if monotonicity properties are crucial. For appli-
cations with very stiff terms, for instance convection-reaction with stiff reactions,
some form of splitting or an implicit-explicit approach may of course be more ben-
eficial if the difficulties with monotonicity arise from the nonstiff (or mildly stiff)
parts of the equation that allow explicit treatment.

Appendix A. Optimizations and optimal methods

In [13] optimizations of the threshold values were performed over various classes
of explicit k-step schemes with order p, using the Baron optimization package.
As indicated in Section 3.2, finding the threshold values C1

LM and C0
LM for any

given method involves mathematically all possible integers l ≥ 0; numerical optimal
values are found by selecting a fixed, sufficiently large l.
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Figure 3. Optimal values γLM for l = 0, 1, . . . , 21, with θ∗ = 0 or
θ∗ ∈ [0, 1), for explicit methods with given k, p.
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To illustrate this procedure, we consider here optimizations of the values γLM

for fixed integers l, with either θ∗ = 0 or θ∗ ∈ [0, 1), over some classes of explicit
methods with given step number k and order p.

In Figure 3 the optimal values are plotted for several choices of (k, p) with integers
l = 0, 1, . . . on the horizontal axis. One sees that the values for increasing l quickly
level out to optimal threshold values.

In these plots, l = 0 also is included, meaning that all θj equal θ∗. If θ∗ = 0
the optimal γLM values then correspond of course with the optimal KLM over these
classes of methods. For (k, p) = (5, 4) a small value KLM ≈ 0.02 is possible. For
the other choices of (k, p) there is no positive KLM; see also [4, 13].

Furthermore, we note that for p = 4, k = 4, 5, the case θ∗ ∈ [0, 1) yields optimal
values that are actually achieved by methods with θ∗ = 1, but these methods are
not zero-stable (double root 1 for the ρ-polynomials). Also nearby methods with
θ∗ slightly less than 1 cannot be recommended; these methods have large error
constants. For this reason the optimization for (k, p) = (4, 4) was performed in [13]
with θ∗ ∈ [0, 0.7], leading to the TVB(4,4) method in Table 3.2 of that paper.

Optimizations of this kind yielded a number of schemes in [13] with step number
k up to 7 and order p = k or p = k − 1. The schemes with θ∗ = 0 were denoted as
TVB0(k, p) and for these schemes the result of Theorem 3.2 is valid. For the other
TVB(k, p) schemes of [13] the boundedness result of Theorem 3.1 applies.
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