
MATHEMATICS OF COMPUTATION
Volume 75, Number 254, Pages 1015–1024
S 0025-5718(05)01798-9
Article electronically published on December 2, 2005

APPROXIMATING THE NUMBER OF INTEGERS
WITHOUT LARGE PRIME FACTORS

KOJI SUZUKI

Abstract. Ψ(x, y) denotes the number of positive integers ≤ x and free of
prime factors > y. Hildebrand and Tenenbaum gave a smooth approximation
formula for Ψ(x, y) in the range (log x)1+ε < y ≤ x, where ε is a fixed positive
number ≤ 1/2. In this paper, by modifying their approximation formula, we
provide a fast algorithm to approximate Ψ(x, y). The computational complex-

ity of this algorithm is O(
√

(log x)(log y)). We give numerical results which
show that this algorithm provides accurate estimates for Ψ(x, y) and is faster
than conventional methods such as algorithms exploiting Dickman’s function.

1. Introduction

Let Ψ(x, y) be the number of positive integers ≤ x and free of prime factors > y.
Estimates for Ψ(x, y) are useful for many number-theoretic algorithms and modern
cryptography. The behavior of Ψ(x, y) has been investigated by many authors
([3],[4],[6],[8],[9],[10],[11],[13],[16]). We see good summaries for the investigations of
Ψ(x, y) in [12] and [15].

Dickman [8] showed that the probability that a random integer between 1 and x
has no prime factors exceeding x1/u(0 < u) approaches the value ρ(u) as x −→ ∞,
where u = (log x)/ log y and ρ(u) is the unique solution to the following equations:

uρ′(u) + ρ(u − 1) = 0 (1 < u),
ρ(u) = 1 (0 ≤ u ≤ 1).

The estimate Ψ(x, y) ≈ xρ(u) is, in practice, accurate only for small u. Hunter and
Sorenson [13] gave some experimental data to show this fact. Dickman’s ρ can be
computed by using the following equation:

(1.1) ρ(u) =
1
u

∫ u

u−1

ρ(t)dt for u ≥ 1.

Several authors [2, 5, 14] proposed other methods to efficiently calculate Dickman’s
ρ.

Hildebrand and Tenenbaum [11] gave an estimate of Ψ(x, y) which is accurate
for large u. They showed that uniformly for 2 ≤ y ≤ x,

(1.2) Ψ(x, y) = h(x, y, αu)
(

1 + O

(
log y

log x

)
+ O

(
log y

y

))
,

Received by the editor September 30, 2004 and, in revised form, December 13, 2004.
2000 Mathematics Subject Classification. Primary 11N25; Secondary 11Y05.
Key words and phrases. Computational number theory, analytic number theory, asymptotic

estimates, factoring problem.

c©2005 American Mathematical Society

1015



1016 KOJI SUZUKI

where

h(x, y, s) =
xs

∏
p≤y(1 − p−s)−1

s
√

2πφ2(s, y)
,

φ2(s, y) =
∑
p≤y

ps(log p)2

(ps − 1)2
,

and αu is the unique solution to the equation

(1.3) −
∑
p≤y

log p

pαu − 1
+ log x = 0.

In [11], they also gave a smooth approximation for h(x, y, s) in the range u is not
too large. They showed that uniformly for x ≥ 2, (log x)1+ε < y ≤ x,

(1.4)

h(x, y, αu)

= x

(
ξ′u
2π

)
exp

{
γ − uξu +

∫ ξu

0

et − 1
t

dt

+Oε

(
log(1 + u)

log y

)
+ u exp(−(log y)3/5−ε)

}
,

where ε is a fixed positive number ≤ 1/2 and ξu is the unique solution to the
equation

eξu = 1 + uξu.

The use of the above equation for approximating Ψ(x, y) requires good estimates
for ξu, ξ′u, and

∫ ξu

0
(et − 1)/tdt.

Hunter and Sorenson [13] provided an algorithm to evaluate Hildebrand and
Tenenbaum’s approximation (1.2). Their algorithm uses a bisection method for
obtaining approximations of αu, the unique solution to (1.3). The complexity of
their algorithm is given by

(1.5) O

(
y

(
log log x

log y
+

1
log log y

))
.

Hunter and Sorenson also showed that Newton’s method can improve the complex-
ity of the algorithm. To prove quadratic convergence for Newton’s method, one
needs a preliminary search by bisection for obtaining a suitable starting point, and
it costs O(y(log((log x)/ū)/ log y) operations. Then, if log x ≤ y, the total running
time of this algorithm is dropped to O(y/ log log y), and if log x > y, it corresponds
to (1.5). Although Newton’s method can reduce the running time for finding the
unique solution of (1.3), one can only prove quadratic convergence. Furthermore,
assuming the validity of the Riemann Hypothesis (RH), Sorenson [17] proposed a
modification of Hunter and Sorenson’s algorithm. The running time of this modified
algorithm is roughly proportional to

√
y.

The author [18] gave another algorithm to evaluate (1.2). Let

m =
⌈

log u + log log y

log log u

⌉
+ 1

and

α̂u(l) = 1 − E(l)
log y

,



APPROXIMATING INTEGERS WITHOUT LARGE PRIME FACTORS 1017

where l is a positive integer and

(1.6) E(l) =

⎧⎨
⎩

log u for l = 0,

log u + log (E(l − 1) + 1/u) for l > 0.

Then, we have αu = α̂u(m) + O(1/(u(log y)2)) for x → ∞, in the range

(1.7) (log log x)5/3+ε′ < log y < (log x)/e,

where ε′ is any fixed positive number. E(m) is an approximation of ξu. Using the
above α̂u(m), one can obtain

(1.8) Ψ(x, y) = h(x, y, α̂u(m))
(

1 + O

(
1
u

+
1

log y

))
for x → ∞,

in the above range. The complexity of the algorithm to approximate Ψ(x, y) with
(1.8) is the same as (1.5). By assuming the validity of the RH and applying the
same method as in [17] to this algorithm, one can obtain an algorithm with the
running time roughly proportional to

√
y [18].

In this paper, by modifying (1.4), we provide a fast algorithm to approximate
Ψ(x, y). To approximate

∫ ξu

0
(et − 1)/tdt in (1.4), we use the midpoint method and

(1.6). Let tk(l) = (k − 1/2)E(l)/l for positive integers k and l. Define

g(l) =
xα̂u(l)eγ+f(l)

α̂u(l)
√

2πu(1 + (log x)/y)
,

where γ is Euler’s constant and

f(l) =
E(l)

l

l∑
k=1

etk(l) − 1
tk(l)

.

Let
m′ =

⌈√
u log y

⌉
+ 1.

The following theorem shows g(m′) can approximate Ψ(x, y) in almost the same
range as (1.7).

Theorem 1.1. Let ε be any fixed positive number ≤1/2. In the range (log logx)5/3+ε

< log y ≤ e−1(1 − ε) log x, we have

Ψ(x, y) = g(m′) exp
{

O

(
log(1 + u)

log y
+ u exp(−(log y)3/5−ε) +

1
log(1 + u)

)}
,

for x → ∞.

Using the above theorem, we can obtain the following algorithm to approximate
Ψ(x, y).

Algorithm A. (1) Set E(0) = log u and m′ = �
√

u(log y)� + 1.
(2) Compute E(m′) using (1.6).
(3) Compute and output g(m′).

Since the conventional methods based on (1.2) need to find all primes ≤ y, these
methods require at least O(y/ log y) operations. However, our new algorithm does
not require these primes and therefore it is very fast. The complexity of Algorithm
A is given by

O(
√

u(log y)) = O(
√

(log x)(log y)).



1018 KOJI SUZUKI

Also, the algorithm to approximate Ψ(x, y) using (1.1) requires O(u) operations.
Therefore, our algorithm is faster than the methods with (1.1) in the range log x >
(log y)3.

The structure of this paper is as follows. In Section 2 we give the proof of
Theorem 1.1. In Section 3 we give numerical results for showing that Algorithm A
provides an accurate approximation to Ψ(x, y) and is much faster than conventional
algorithms.

2. Proof of Theorem 1.1

In this section, we provide the proof of Theorem 1.1. The author [18] showed
that for u > e, n ≥ 1,

(2.1) 0 < ξu − E(n) <
1

(log u)n−1
.

Using the above equation iteratively, we can have good approximations for ξu. By
this iterative method and the midpoint one, we can obtain an approximation for∫ ξu

0
(et − 1)/tdt.

Lemma 2.1. Let ε be any fixed positive number. For u ≥ e1+ε and sufficiently
large y, we have

(2.2) f(m′) =
∫ ξu

0

et − 1
t

dt + O

(
log u

log y

)
.

Proof. Let s(t) = (et − 1)/t and h = E(m′)/m′. In the following, we denote tk(m′)
by tk. Since m′ ≥ m = �(log u+log log y)/ log log u�+1 for u ≥ e1+ε and sufficiently
large y, we have

(2.3) 0 < ξu − E(m′) ≤ ξu − E(m) = O

(
1

u log y

)
.

From (2.1), we obtain

log u < E(1) < ξu < E(1) + 1 < log u + log log u + 2.

Hence, since s(t) is increasing for t ≥ 0, we get

0 <

∫ ξu

0

s(t)dt −
∫ E(m′)

0

s(t)dt =
∫ ξu

E(m′)

s(t)dt

< (ξu − E(m′))
eξu − 1

ξu
(2.4)

= O

(
1

log y

)
.

Since s′′(t) is increasing for t ≥ 0, we have for an integer k ≥ 1,∫ tk+h/2

tk−h/2

{s(t) − s(tk)} dt ≤
∫ tk+h/2

tk−h/2

{
(t − tk)s′(tk) +

(t − tk)2

2
s′′(tk + h/2)

}
dt

=
h3

24
s′′(tk + h/2).



APPROXIMATING INTEGERS WITHOUT LARGE PRIME FACTORS 1019

Hence,

∫ E(m′)

0

s(t)dt − f(m′) <
h2

24

m′∑
k=1

s′′(tk + h/2)h

<
h2

24

∫ E(m′)+h

h

s′′(t)dt

<
h2

24
(s′(E(m′) + h) − s′(h))

= O

(
(log u)2

(log y)2

)
= O

(
log u

log y

)
.

Similarly, we have∫ E(m′)

0

s(t)dt − f(m′) >
h2

24
(s′(E(m′) − h) − s′(0)) = O

(
log u

log y

)
.

Hence, ∫ E(m′)

0

s(t)dt − f(m′) = O

(
log u

log y

)
.

From the above equation and (2.4), we obtain the proof of this lemma. �

Using the above lemma, we obtain the proof of Theorem 1.1.

Proof of Theorem 1.1. By Theorem 2 of [11], we have

φ2(αu, y) =
(

1 +
log x

y

)
(log x)(log y)

(
1 + O

(
1

log(1 + u)
+

1
log y

))
,

for x ≥ y ≥ 2. Also, from the proof of Theorem 2 of [11, p. 289], we obtain∏
p≤y

(1 − p−αu)−1

= eγ(log y) exp

{∫ ξu

0

et − 1
t

dt + Oε

(
log(1 + u)

log y
+ u exp(−(log y)3/5−ε)

)}
.

By Lemma 2.1 of [18], we have

αu = 1 − ξu

log y
+ O

(
1

u(log y)2

)
,

in the range (log log x)5/3+ε < log y. From the above equation and (2.3), we obtain
α̂u(m′) = αu + O(1/(u(log y)2)) in the range of this theorem. Hence, we have

xα̂u(m′)

α̂u(m′)
=

xαu

αu
exp

{
O

(
1

log y

)}
.

In the range of this theorem, y → ∞ for x → ∞. Hence, by the above equations,
Lemma 2.1, and (1.2), we can obtain the proof of Theorem 1.1. �



1020 KOJI SUZUKI

3. Numerical results

In this section, we compare Algorithm A with conventional algorithms to ap-
proximate Ψ(x, y). We implemented Algorithm A, Hunter and Sorenson’s (HS),
Sorenson’s based on the RH (SO on RH), Suzuki’s (SU), Suzuki’s based on the RH
(SU on RH), de Bruijn’s method (DB), and Patterson and Rumsey’s method (PR)
to compute the dickman’s ρ in C++ programs.

To find primes required for the algorithms HS, SO on RH, SU, and SU on RH, we
used Atkin and Bernstein’s sieve method [1], which uses O(y/ log log y) operations
and y1/2+o(1) bits of memory for finding all primes ≤ y. For Algorithm HS and SO
on RH, we used Newton’s method for finding an estimate of αu. Instead of a value
given by a preliminary search by bisection, we used α0 := log(1+ y/(5 log x))/ log y
as a starting point.

Using Patterson and Rumsey’s method, one can efficiently compute Dickman’s
ρ [2]. Let r denote a positive integer, and let ρr(x) = ρ(x) for r − 1 ≤ x ≤ r. Let
0 ≤ ν ≤ 1. Then, ρr(x) can be computed by

ρr(r − ν) =
∞∑

i=0

φ(i, r)νr,

where φ(i, j)’s are given by the following relations:

φ(0, 1) = 1, φ(i, 0) = 0 for i ≥ 1,

φ(0, 2) = 1 − log 2, φ(i, 2) = 1/(i2i) for i ≥ 1,

φ(0, r) =
1

r − 1

∞∑
j=1

φ(j, r)
j + 1

, φ(i, r) =
i−1∑
j=0

φ(j, r − 1)
iri−j

for r ≥ 3.

In the calculation of ρr(x) with the above equation, we truncated the infinite sums
in the above equations at i = j = 100. This algorithm requires O(u) operations.
We can obtain another method to calculate Dickman’s ρ by using de Bruijn’s ap-
proximation formula. De Bruijn [7] showed

ρ(u) = exp

{
−u

(
log u + log log u − 1 +

log log u − 1
log(u + 1)

+ O

(
u

(
log log u

log u

)2
))}

,

for u ≥ 3. The above equation can be calculated in O(1) operations.
Tables 1, 2, and 3 provide the estimates of Ψ(x, y) and the running times of the

algorithms. Tables 1 and 2 list the estimates of Ψ(x, y) for x = 2350 and 21000,
respectively, with y ranging from 220 up to 225. Table 3 lists the estimates of
Ψ(x, y) for y = 215, with x ranging from 250 up to 2300. In the tables, “TIME”
denotes the total amount of CPU time (milliseconds), “RATIO” denotes the ratio
of the estimates by SO on RH, SU, SU on RH, PR, DB, and A to that by HS. In
Tables 1 and 3, “R-L” and “R-U”, respectively, denote the ratio of those estimates
to the lower bound and the upper bound of Ψ(x, y) given by Bernstein’s method
[3]. In our calculations for Bernstein’s method, we used the scaling factor = 500
and the precision parameter =218. All calculations were performed using a PC with
Pentium III 1.066GHz and 130Mbyte memory.

The tables show that Algorithm A provides accurate estimates and is much faster
than the conventional methods, except for Algorithm DB. Although Algorithm DB
is as fast as Algorithm A, the estimates by Algorithm DB are very crude.



APPROXIMATING INTEGERS WITHOUT LARGE PRIME FACTORS 1021

Table 1. Estimates of Ψ(x, y) function for x = 2350 and y ranging
from 220 up to 225

y Algorithm Ψ(x, y) RATIO R-L R-U TIME(millisec.)
220 Algorithm HS 4.77E81 − 1.01 0.988 180

Alg. SO on RH 4.99E81 1.04 1.05 1.03 50
Algorithm SU 4.78E81 1.00 1.01 0.989 60
Alg. SU on RH 4.99E81 1.04 1.05 1.03 40
Algorithm PR 3.91E81 0.820 0.830 0.810 20
Algorithm DB 1.20E83 25.2 25.5 24.9 0
Algorithm A 5.05E81 1.05 1.07 1.04 0

221 Algorithm HS 1.75E83 − 1.01 0.988 311
Alg. SO on RH 1.80E83 1.02 1.04 1.01 50
Algorithm SU 1.75E83 1.00 1.01 0.989 90
Alg. SU on RH 1.80E83 1.02 1.04 1.01 40
Algorithm PR 1.46E83 0.835 0.846 0.826 20
Algorithm DB 4.57E84 26.1 26.4 25.8 0
Algorithm A 1.83E83 1.04 1.06 1.03 0

222 Algorithm HS 4.42E84 − 1.01 0.989 541
Alg. SO on RH 4.52E84 1.02 1.03 1.01 40
Algorithm SU 4.43E84 1.00 1.01 0.990 140
Alg. SU on RH 4.53E84 1.02 1.03 1.01 40
Algorithm PR 3.75E84 0.848 0.859 0.839 10
Algorithm DB 1.19E86 26.9 27.3 26.7 0
Algorithm A 4.59E84 1.03 1.05 1.02 0

223 Algorithm HS 8.13E85 − 1.01 0.989 932
Alg. SO on RH 8.24E85 1.01 1.02 1.00 50
Algorithm SU 8.14E85 1.00 1.01 0.990 281
Alg. SU on RH 8.24E85 1.01 1.02 1.00 40
Algorithm PR 6.99E85 0.860 0.871 0.851 20
Algorithm DB 2.26E87 27.8 28.1 27.5 0
Algorithm A 8.36E85 1.02 1.04 1.01 0

224 Algorithm HS 1.13E87 − 1.01 0.989 1622
Alg. SO on RH 1.14E87 1.01 1.02 1.00 50
Algorithm SU 1.13E87 1.00 1.01 0.991 471
Alg. SU on RH 1.14E87 1.01 1.02 1.00 50
Algorithm PR 9.86E86 0.869 0.880 0.860 20
Algorithm DB 3.23E88 28.5 28.9 28.2 0
Algorithm A 1.15E87 1.01 1.03 1.00 0

225 Algorithm HS 1.24E88 − 1.01 0.990 2904
Alg. SO on RH 1.25E88 1.01 1.02 1.00 50
Algorithm SU 1.24E88 1.00 1.01 0.991 782
Alg. SU on RH 1.25E88 1.01 1.02 1.00 50
Algorithm PR 1.09E88 0.877 0.888 0.868 10
Algorithm DB 3.63E89 29.2 29.6 28.9 0
Algorithm A 1.25E88 1.00 1.02 0.999 0



1022 KOJI SUZUKI

Table 2. Estimates of Ψ(x, y) function for x = 21000 and y rang-
ing from 220 up to 225

y Algorithm Ψ(x, y) RATIO TIME(millisec.)
220 Algorithm HS 9.99E204 − 170

Alg. SO on RH 1.12E205 1.12 50
Algorithm SU 9.99E204 1.00 50
Alg. SU on RH 1.12E205 1.12 40
Algorithm PR 7.19E204 0.71 51
Algorithm DB 1.46E206 14.6 0
Algorithm A 1.09E205 1.10 0

221 Algorithm HS 6.30E210 − 310
Alg. SO on RH 6.81E210 1.08 50
Algorithm SU 6.30E210 1.00 80
Alg. SU on RH 6.81E210 1.07 50
Algorithm PR 4.74E210 0.75 50
Algorithm DB 9.87E211 15.6 0
Algorithm A 6.97E210 1.10 0

222 Algorithm HS 1.05E216 − 501
Alg. SO on RH 1.11E216 1.05 50
Algorithm SU 1.05E216 1.00 170
Alg. SU on RH 1.11E216 1.05 50
Algorithm PR 8.18E215 0.77 50
Algorithm DB 1.73E217 16.4 0
Algorithm A 1.16E216 1.10 0

223 Algorithm HS 5.55E220 − 851
Alg. SO on RH 5.74E220 1.03 50
Algorithm SU 5.55E220 1.00 270
Alg. SU on RH 5.74E220 1.03 50
Algorithm PR 4.40E220 0.79 50
Algorithm DB 9.61E221 17.3 0
Algorithm A 6.11E220 1.10 0

224 Algorithm HS 1.08E225 − 1522
Alg. SO on RH 1.11E225 1.03 60
Algorithm SU 1.08E225 1.00 471
Alg. SU on RH 1.11E225 1.03 50
Algorithm PR 8.82E224 0.81 40
Algorithm DB 1.94E226 17.9 0
Algorithm A 1.18E225 1.09 0

225 Algorithm HS 8.83E228 − 2855
Alg. SO on RH 9.06E228 1.02 61
Algorithm SU 8.84E228 1.00 821
Alg. SU on RH 9.06E225 1.02 50
Algorithm PR 7.31E228 0.82 40
Algorithm DB 1.61E230 18.2 0
Algorithm A 9.57E228 1.08 0



APPROXIMATING INTEGERS WITHOUT LARGE PRIME FACTORS 1023

Table 3. Estimates of Ψ(x, y) function for y = 215 and x ranging
from 250 up to 2300

x u Algorithm Ψ(x, y) RATIO R-L R-U TIME
250 3.33 Algorithm HS 3.00E13 − 1.00 1.00 30

Alg. SO on RH 3.05E13 1.01 1.02 1.01 30
Algorithm SU 3.02E13 1.00 1.01 1.00 20
Alg. SU on RH 3.06E13 1.02 1.03 1.02 30
Algorithm PR 2.66E13 0.887 0.894 0.888 0
Algorithm DB 1.95E15 65.1 65.7 65.3 0
Algorithm A 2.75E13 0.917 0.925 0.919 0

2100 6.66 Algorithm HS 3.88E24 − 1.00 0.996 30
Alg. SO on RH 4.04E24 1.04 1.04 1.03 30
Algorithm SU 3.88E24 1.00 1.00 0.998 20
Alg. SU on RH 4.04E24 1.04 1.04 1.03 30
Algorithm PR 3.19E24 0.824 0.830 0.821 10
Algorithm DB 1.45E26 37.4 37.7 37.3 0
Algorithm A 3.88E24 1.00 1.00 0.996 0

2150 10.0 Algorithm HS 5.09E34 − 1.00 0.993 30
Alg. SO on RH 4.04E34 1.06 1.07 1.05 30
Algorithm SU 3.88E34 1.00 1.00 0.994 20
Alg. SU on RH 5.42E34 1.06 1.07 1.05 30
Algorithm PR 3.95E34 0.775 0.781 0.770 10
Algorithm DB 1.49E36 29.4 29.6 29.2 0
Algorithm A 5.26E34 1.03 1.04 1.02 0

2200 13.3 Algorithm HS 1.56E44 − 1.00 0.991 30
Alg. SO on RH 1.71E44 1.09 1.10 1.08 40
Algorithm SU 1.56E44 0.999 1.00 0.991 20
Alg. SU on RH 1.70E44 1.08 1.09 1.08 40
Algorithm PR 1.14E44 0.732 0.739 0.726 10
Algorithm DB 3.89E45 24.8 25.0 24.6 0
Algorithm A 1.63E44 1.04 1.05 1.03 0

2250 16.6 Algorithm HS 1.66E53 − 1.01 0.990 30
Alg. SO on RH 1.86E53 1.11 1.12 1.10 40
Algorithm SU 1.66E53 0.998 1.00 0.989 20
Alg. SU on RH 1.86E53 1.11 1.12 1.10 40
Algorithm PR 1.15E53 0.691 0.698 0.685 20
Algorithm DB 3.61E54 21.6 21.8 21.4 0
Algorithm A 1.72E53 1.03 1.04 1.02 0

2300 20.0 Algorithm HS 7.68E61 − 1.01 0.988 30
Alg. SO on RH 8.80E61 1.14 1.15 1.13 40
Algorithm SU 7.67E61 0.998 1.00 0.987 20
Alg. SU on RH 8.78E61 1.14 1.15 1.13 40
Algorithm PR 5.01E61 0.652 0.659 0.645 20
Algorithm DB 1.46E63 19.1 19.3 18.8 0
Algorithm A 7.83E61 1.01 1.03 1.00 0



1024 KOJI SUZUKI

Acknowledgments

The author would like to thank the anonymous referees for carefully reading the
paper and for helpful suggestions.

References

[1] A. Atkin and D. Bernstein, Prime sieves using binary quadratic forms, Math. Comp. 73,
1023-1030, 2004. MR2031423 (2004i:11147)

[2] E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Math. Comp. 65, 1701-
1715, 1996. MR1370848 (98a:11123)

[3] D. Bernstein, Bounding smooth integers, ANTS-III proceedings, Lecture Notes in Compt.
Sci. 1423, Springer, New York, 128-130, 1998. MR1726065

[4] E. R. Canfield, P. Erdös, and C. Pomerance, On a problem of Oppenheim concerning “fac-
torisatio numerorum,” J. Number Theory 17, 1-28, 1983. MR0712964 (85j:11012)

[5] A. Y. Cheer and D. A. Goldston, A differential delay equation arising from the sieve of
Eratosthenes, Math. Comp. 55, 129-141, 1990. MR1023043 (90j:11091)

[6] N. G. de Bruijn, On the number of positive integers ≤ x and free of prime factors > y,
Nederl. Akad. Wetensch. Proc. Ser. A54, 50-60, 1951. MR0046375 (13:724e)

[7] N. G. de Bruijn, The asymptotic behavior of a function occurring in the theory of primes,
Journal of the Indian Mathematical Society (New Series) 15 (1951), 25-32. 50-60, 1951.
MR0043838 (13:326f)

[8] K. Dickman, On the frequency of numbers containing prime factors of a certain relative
magnitude, Arkiv För Matematik, Astromi Fysik. Band 22 A, no. 10, 1-14, 1930.

[9] A. Hildebrand, On the number of positive integers ≤ x and free of prime factors > y, J.

Number Theory 22, 289-307, 1986. MR0831874 (87d:11066)
[10] A. Hildebrand, On the local behavior of Ψ(x, y) Trans. Amer. Math. Soc. 297, 729-751, 1986.

MR0854096 (87k:11099)
[11] A. Hildebrand and G. Tenenbaum, On integers free of large prime factors, Trans. Amer.

Math. Soc. 296, 265-290, 1986. MR0837811 (87f:11066)
[12] A. Hildebrand and G. Tenenbaum, On integers without large prime factors, Journal de

Théorie des Nombres de Bordeaux 5, 411-484, 1993. MR1265913 (95d:11116)
[13] S. Hunter and J. Sorenson, Approximating the number of integers free of large prime factors,

Math. Comp. 66, 1729-1741, 1997. MR1423076 (98c:11093)
[14] G. Marsaglia, A. Zaman, and J. C. W. Marsaglia, Numerical solution of some classical

differential-difference equations, Math. Comp. 53, 191-201, 1989. MR0969490 (90h:65124)
[15] K. K. Norton, Numbers with small prime factors, and the least kth power nonresidue, Mem.

Amer. Math. Soc. 106, 9-27, 1971. MR0286739 (44:3948)
[16] R. A. Rankin, The difference between consecutive prime numbers, J. London Math. Soc. 13,

242-247, 1938.
[17] J. P. Sorenson, A fast algorithm for approximately counting smooth numbers, ANTS-IV pro-

ceedings, Lecture Notes in Compt. Sci. 1838, Springer, New York, 539-549, 2000. MR1850632
(2002e:11123)

[18] K. Suzuki, An estimate for the number of integers without large prime factors, Math. Comp.,
73, 1013-1022, 2004. MR2031422 (2005a:11142)

Corporate Research Group, Fuji Xerox, 430, Sakai, Nakai-machi, Ashigarakami-gun,

Kanagawa 259-0157, Japan

E-mail address: kohji.suzuki@fujixerox.co.jp

http://www.ams.org/mathscinet-getitem?mr=2031423
http://www.ams.org/mathscinet-getitem?mr=2031423
http://www.ams.org/mathscinet-getitem?mr=1370848
http://www.ams.org/mathscinet-getitem?mr=1370848
http://www.ams.org/mathscinet-getitem?mr=1726065
http://www.ams.org/mathscinet-getitem?mr=0712964
http://www.ams.org/mathscinet-getitem?mr=0712964
http://www.ams.org/mathscinet-getitem?mr=1023043
http://www.ams.org/mathscinet-getitem?mr=1023043
http://www.ams.org/mathscinet-getitem?mr=0046375
http://www.ams.org/mathscinet-getitem?mr=0046375
http://www.ams.org/mathscinet-getitem?mr=0043838
http://www.ams.org/mathscinet-getitem?mr=0043838
http://www.ams.org/mathscinet-getitem?mr=0831874
http://www.ams.org/mathscinet-getitem?mr=0831874
http://www.ams.org/mathscinet-getitem?mr=0854096
http://www.ams.org/mathscinet-getitem?mr=0854096
http://www.ams.org/mathscinet-getitem?mr=0837811
http://www.ams.org/mathscinet-getitem?mr=0837811
http://www.ams.org/mathscinet-getitem?mr=1265913
http://www.ams.org/mathscinet-getitem?mr=1265913
http://www.ams.org/mathscinet-getitem?mr=1423076
http://www.ams.org/mathscinet-getitem?mr=1423076
http://www.ams.org/mathscinet-getitem?mr=0969490
http://www.ams.org/mathscinet-getitem?mr=0969490
http://www.ams.org/mathscinet-getitem?mr=0286739
http://www.ams.org/mathscinet-getitem?mr=0286739
http://www.ams.org/mathscinet-getitem?mr=1850632
http://www.ams.org/mathscinet-getitem?mr=1850632
http://www.ams.org/mathscinet-getitem?mr=2031422
http://www.ams.org/mathscinet-getitem?mr=2031422

	1. Introduction
	2. Proof of Theorem ??
	3. Numerical results
	Acknowledgments
	References

