
MATHEMATICS OF COMPUTATION
Volume 75, Number 254, Pages 941–981
S 0025-5718(05)01799-0
Article electronically published on December 8, 2005

TWO EFFICIENT ALGORITHMS
FOR THE COMPUTATION OF IDEAL SUMS

IN QUADRATIC ORDERS

ANDRÉ WEILERT

Abstract. This paper deals with two different asymptotically fast algorithms
for the computation of ideal sums in quadratic orders. If the class number of
the quadratic number field is equal to 1, these algorithms can be used to
calculate the GCD in the quadratic order. We show that the calculation of an
ideal sum in a fixed quadratic order can be done as fast as in Z up to a constant
factor, i.e., in O(µ(n) log n), where n bounds the size of the operands and µ(n)
denotes an upper bound for the multiplication time of n-bit integers. Using
Schönhage–Strassen’s asymptotically fast multiplication for n-bit integers, we
achieve µ(n) = O(n log n log log n).

1. Introduction

In this paper we present two asymptotically fast algorithms for the greatest com-
mon divisor (GCD) computation in quadratic orders or, generally, for the compu-
tation of ideal sums if the class number is not equal to 1 (Algorithms 3.16 SGCDOD

and 4.2 IDEALSUMOD
). We show that the calculation of an ideal sum in a chosen

quadratic order can be performed as fast as in Z up to a constant factor (depending
on the chosen order), i.e., in running time O(µ(n) log n), where n is the size of the
operands and µ(n) an upper bound for the running time of the multiplication of n-
bit integers. It follows from these algorithms that the class number is a much more
suitable algebraic invariant than the property of a quadratic order being euclidean.
If the quadratic order is a principal domain, a euclidean algorithm with a suit-
able chosen euclidean function may fail to calculate the generator of an ideal sum
(e.g., in the case of quadratic orders with discriminants D = −19,−43,−67,−163),
however, there always exists such a generator.

At first we give a historical overview of GCD computations in Z and in quadratic
number fields. Then we introduce some terminology regarding quadratic number
fields and binary quadratic forms. In Section 2 we generalize Schönhage’s technique
of a controlled euclidean descent and corresponding algorithm to a newly introduced
class of rings, the S-euclidean domains. In Section 3 we apply this concept in order
to calculate the sum of two principal ideals (for each of them we know one generator)

Received by the editor July 20, 2003 and, in revised form, January 7, 2005.
2000 Mathematics Subject Classification. Primary 54C40, 14E20; Secondary 46E25, 20C20.
Key words and phrases. Computational number theory, quadratic number fields, GCD com-

putation, Euclidean algorithm.
This paper deals with the main results of my doctoral thesis [40]. I would like to thank my

academic teachers Arnold Schönhage and Jens Franke (both at the University of Bonn, Germany).

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

941

942 ANDRÉ WEILERT

in the ring of algebraic integers of an imaginary quadratic number field with any
class number. Apart from the initial calculation of an S-euclidean descent we
compute the valuation of ideals at finitely many places, where the places are only
depending on the chosen order, and not on the operands. Due to this valuation step
our novel Algorithm 3.16 is not very closely related to the concept of a euclidean
domain. In Section 4 we present a different approach for the calculation of ideal
sums. Our Algorithm 4.2 computes the sum of two ideals (for which we know a
suitable coding) in any quadratic order—independent of the class number or the
discriminant D. This Algorithm 4.2 is uniformly fast because it does not need any
precalculations. It uses the representation of ideals in the Hermite normal form
and the correspondence between ideals in quadratic orders and binary quadratic
forms. Its running time only depends on the size of the operands and the size of
the discrimant.

We present both of these algorithms in this paper because Algorithm 3.16 also
calculates a representation of the GCD g, ax + by = g, in the case of the five imag-
inary quadratic norm-euclidean maximal orders, while Algorithm 4.2 does not, but
is uniformly fast for all quadratic orders.

1.1. Historical overview. The history of efficient GCD computations is based
on Euclid’s algorithm [14, Book VII, Propositions 1 and 2] (about 330 B.C.) that
does not need any factorization of the integers. The algorithm calculates euclidean
steps, i.e., divisions with remainders, as long as the remainder is not equal to zero.
One can show that every step of the euclidean descent is reducing the size of the
operands by at least a factor larger than 1. The last remainder which is not equal
to zero is the greatest common divisor of the operands. One can calculate cofactors
in the euclidean steps in order to represent the GCD as a linear combination of the
operands.

Improvements to Euclid’s algorithm were made only in the last 60 years due
to the possibility of using computers for calculations. Lehmer [22] presented an
improved version of Euclid’s algorithm that calculates euclidean steps in single
precision using the top-bits of the operands as long as possible. Another GCD
algorithm is Stein’s binary algorithm [36] (or, [19, Section 4.5.2, Algorithm B])
that uses only addition, subtraction and shifting (division by powers of two). This
algorithm has a running time of O(n2) if the inputs are n-bit integers. There exist
many further improvements to these algorithms, but none of these achieve a nearly
linear running time. For a more detailed overview, we refer the reader to [40,
Abschnitt 1.2].

In 1971 Schönhage and Strassen [32] presented an asymptotically fast algorithm
using FFT methods for the multiplication of n-bit integers which achieves a running
time of µ(n) = O(n log n log log n). Knuth [18], who used this fast multiplication,
found an efficient GCD algorithm with running time O(µ(n)·(log n)4). Based on
these algorithms, in 1971 Schönhage [28] used the correspondence between the eu-
clidean descent and the continued fraction decomposition and developed an asymp-
totically fast GCD algorithm with running time O(µ(n) log n). Until Schönhage
implemented his GCD algorithm, it was doubted that this algorithm could be
faster than the other known algorithm in practice; see [31, Sections 1.3.6, 6.1.3]
and [29]. Schönhage used for his implementation the so-called technique of a con-
trolled euclidean descent instead of the correspondence to the continued fraction
decomposition. Later he was able to transfer this concept to the fast reduction of

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 943

binary quadratic forms [30]. Recently, Stehlé and Zimmermann [35] presented an-
other asymptotically fast GCD algorithm for integers with the same asymptotical
running time. It would be nice to also have a comparison of its computation time
with Schönhage’s implementation [31, Sections 1.3.6, 6.1.3].

Up to now we discussed GCD algorithms for integers, while the GCD can be
defined in a more general context. A study, started by Gauß and finished in 1952,
showed that only 21 rings of algebraic integers are euclidean domains w. r. t. the
algebraic norm. Lemmermeyer [23] studied more generally for which of the num-
ber fields a euclidean algorithm is applicable. GCD computations in the ring of
algebraic integers, which can be made in practice, were studied only in the last 30
years. Most of these algorithms are transferred from the ring of integers to the
maximal order of a number field, especially to the ring of Gaussian integers Z[i].
Caviness and Collins [6, 7] transferred Lehmer’s GCD algorithm to Z[i].

We were able to specify an analogue to the binary algorithm for the Gaussian
integers [38] that achieves a quadratic running time. Instead of the prime number
2 in case of the binary algorithm, we use powers of the prime element 1+ i in order
to reduce the operands. Based on the practical running time tests, Collins [11]
presented a faster GCD algorithm for Z[i] with quadratic running time than the
so-called (1 + i)-ary algorithm. It calculates euclidean steps, but not necessarily
least remainder euclidean steps, and in this sense, his algorithm is called “approxi-
mative”. Furthermore, Schönhage’s asymptotically fast GCD algorithm for integers
can be transferred to the ring of Gaussian integers [39] such that there exists a GCD
algorithm in Z[i] with running time O(µ(n) log n), if the Gaussian numbers have
length O(n). This algorithm can also be used to calculate a quotient sequence and
cofactors, from which we are able to compute the biquadratic residue symbol of
the Gaussian numbers in linear time [41]. Moreover it is easy to see that this kind
of GCD algorithm can be generalized to the ring of algebraic integers of the five
norm-euclidean imaginary quadratic number fields (discriminants −3,−7,−8,−11,
and −4, i.e., the ring of Gaussian integers).

Kaltofen and Rolletschek [16] studied GCD algorithms in the ring of algebraic
integers of quadratic number fields with class number 1. In particular, they showed
that there does not in general exist a sequence of euclidean steps (even if it is
not always norm-decreasing) for discriminant D ≤ −19 such that the GCD can
be calculated in this way. Their algorithm requires quadratic running time in the
size of the operands, but there are some expensive, but necessary, precalculations
(e.g., the fundamental unit) in the case of real quadratic integers. For that reason
their algorithm is not fast in a uniform manner for every quadratic maximal order
with class number 1. The authors generalize their algorithm to all quadratic rings
of algebraic integers, independent of the class number [17]. If the class number
is not equal to one, then their algorithm calculates the “GCD” (in other words,
the sum of the two principal ideals, generated by the two operands) as a canonical
representative of the class group (all these representatives have to be precalculated)
and a principal ideal. In addition to that, they presented another GCD algorithm
with cubic running time for the four imaginary quadratic maximal orders with
discriminant D ≤ −19 and class number 1. This algorithm is based on lattice
reduction and does not need any precalculations. Altogether, their algorithms are
only able to calculate the sum of two principal ideals, and not of two ideals in
general.

944 ANDRÉ WEILERT

Another approach to the GCD computation is to consider the ideals of a qua-
dratic order as Z-modules of rank 2. Then one can use the concept of “Hermite
normal form” (HNF) in order to compute ideal sums; see [13] and [8, Section 2.4.3].
It is possible to generalize the HNF concept to Dedekind domains [9] that can be
used for a coding of ideals in relative extensions [10, Chapter 1].

1.2. Notations. Now we give a brief overview of quadratic number fields. More
details and proofs for the following definitions and statements can be found, e.g.,
in [8, 15, 20, 24, 26].

We denote by Z,Q,R and C the ring of integers, the field of rational numbers,
the field of real numbers, and the field of complex numbers, respectively.

Let K be a quadratic number field, i.e., K ∼= Q(
√

d) for a squarefree d ∈ Z,
d �= 0, 1. Denote by σ the nontrivial field automorphism of K, and define the norm
Norm : K → Q and trace Tr : K → Q by

Norm(α) = α·σ(α), Tr(α) = α + σ(α), for α ∈ K.

The ring of algebraic integers of K, denoted by OK , consists of the α ∈ K such
that α is a zero of a monic quadratic polynomial with coefficients in Z. An order O
in K is a subring of OK with 1 ∈ O and with field of fractions K. Every order O
in K satisfies Z ⊂ O ⊂ OK and is a free Z-module of rank 2. Due to this inclusion,
the order OK is called the maximal order of K. The index of O in OK is finite and
called the conductor. Every positive integer f occurs as the conductor of an order
O in K, namely O = Z + fOK . If O = e1Z + e2Z, then the discriminant D of O
is defined by D = (e1·σ(e2) − e2·σ(e1))2; this is an integer which does not depend
on the choice of the basis e1, e2. We have D = f2·D0, where f is the conductor
of O and D0 is the discriminant of OK ; we also call D0 the discriminant of K.
The integer D is not a square, and D ≡ 0 or 1 mod 4. Conversely, any nonsquare
integer D that is 0 or 1 mod 4 is the discriminant of a uniquely determined order
in a quadratic field, namely O = Z[(D +

√
D)/2] ⊂ K. We denote the unique order

in K with discriminant D by OD. If D is a positive (negative) integer, then we call
the order OD real quadratic (imaginary quadratic).

We call the discriminant D0 of a quadratic number field K a fundamental dis-
criminant. This means that D0 �= 1 and either D0 ≡ 1 mod 4 and is squarefree, or
D0 ≡ 0 mod 4, D0/4 is squarefree and D0/4 ≡ 2 or 3 mod 4. Then we denote the
unique quadratic number field with discriminant D0 by Q(

√
D0). A Z-basis of the

maximal order OD0 = OK is called an integral basis of K.
Let OD be a quadratic order with a discriminant D in the quadratic number field

K. An (integral) ideal H is an OD-submodule of OD. H can be considered as a Z-
module of rank 2 as well. We call I a fractional ideal if there exists a positive integer
d such that dI is an integral ideal. The ring OD/I is finite, and its cardinality is
called the norm Norm(I) of the ideal I.1 If there exists a fractional ideal I ′ in OD

with I·I ′ = OD, then we call I an invertible ideal. We call two fractional ideals
I �= 0 and J equivalent if there exists an α ∈ K, α �= 0 such that J = αI. Then we
define the class group Cl(OD) = Cl(D) as the set of equivalence classes of invertible
ideals in OD, and the class number h(OD) = h(D) as its cardinality (the class group
is always a finite group).

1In the case of a principal ideal αOD the two norm definitions may only differ in the sign:
Norm(αOD) = |Norm(α)|.

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 945

If D is a fundamental discriminant, i.e., OD is the maximal order of a quadratic
number field, then we call Cl(OK) the class group and h(OK) the class number of
K. It is known that there exist only nine imaginary quadratic number fields with
h(D) = 1, namely D = −3,−4,−7,−8,−11,−19,−43,−67,−163. On the other
hand, real quadratic number fields generally seem to have small class numbers, but
it is not known whether there exist infinitely many real quadratic number fields
with class number 1.

The maximal order OK is always a Dedekind domain, which does not hold true
for every quadratic order. In particular, every fractional ideal I can be written in
a unique way as

I =
∏
p

p
vp(I),

the product being over a finite set of prime ideals, and the exponents vp(I) being
in Z (nonnegative if I is an integral ideal). Let D be a fundamental discriminant.
We can classify the prime ideals in OD (which are all lying over a prime number
p in Z) based on the value of the Jacobi symbol (D/p): Let p be a prime number.
If (D/p) = −1, then p is inert and p = pOD; if (D/p) = 0, then p is ramified and
pOD = p2; if (D/p) = +1, then p is split and pOD = p1p2.

As mentioned above, we can represent every integral ideal a in a quadratic order
as a Z-module of rank 2. Furthermore, there exists a unique matrix in Z2×2 w. r. t.
a chosen integral basis (1, ω), the Hermite normal form:

(1.1)
(

a b
0 c

)
, where a, b, c ∈ Z, c divides both a and b, and 0 ≤ b < a.

The ideal a has a = aZ + (b + cω)Z as its Z-module representation. Moreover, a is
the smallest positive integer in a, and Norm(a) = ac [8, Proposition 5.2.1].

Now we would like to introduce some terminology related to binary quadratic
forms which was already introduced by Gauß [12, Section 5]. A binary quadratic
form f is a homogeneous quadratic polynomial in two variables

f(x, y) = ax2 + bxy + cy2 = (x, y)
(

a 1
2b

1
2b c

)
(x, y)T , a, b, c ∈ Z,

with discriminant D = b2 − 4ac. Instead of f we write (a, b, c) or (a, b, ∗), because
c is determined by a, b and D. We call f primitive if the greatest common divisor
of a, b, c is equal to 1.

Define the operation of a matrix M =
(

α β
γ δ

)
∈ PSL2(Z) for a quadratic form f

(identifying a matrix M ∈ SL2(Z) with −M because the operation of −M is the
same as the operation of M) as

M ·f = M ·f(x, y) := f((x, y)MT) = f(αx + βy, γx + δy).

Two quadratic forms f = (a, b, c) and f ′ = (a′, b′, c′) are called equivalent (f ∼ f ′)
if there exists an M ∈ PSL2(Z) such that M ·f = f ′. This can also be written as

(1.2) MT ·
(

a 1
2b

1
2b c

)
·M =

(
a′ 1

2b′
1
2b′ c′

)
.

The module group Γ := PSL2(Z) is generated by the matrices

S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
.

946 ANDRÉ WEILERT

Now we show the correspondence between quadratic forms of discriminant D and
ideals in the quadratic order with discriminant D. In particular, the multiplication
of ideals corresponds to the composition of binary quadratic forms. The Z-module
aZ + −b+

√
D

2 Z is an integral ideal in OD if and only if 4a divides b2 − D. Let
Γ∞ := {Sm : m ∈ Z} ⊂ Γ be a multiplicative subgroup of the module group that
operates on quadratic forms. Then we define

F(D) := {(a, b, c) : D = b2 − 4ac}, F (D) := F(D)/Γ∞

as sets of quadratic forms with discriminant D. Denote the set of fractional ideals
in OD by I(D). Define I(D) := I(D)/Q×, where Q× acts multiplicatively on
fractional ideals. We can define mappings

φFI : F(D) → I(D) × Z/2Z, φFI(a, b, c) =

(
aZ +

−b +
√

D

2
Z, sgn a

)
,(1.3)

φIF : I(D) × Z/2Z → F(D), φIF (a, s) = s·Norm(xω1 − syω2)
Norm(a)

,(1.4)

where (ω1, ω2) is a Z-basis of a with ω1 ∈ Q (always possible, e.g., using a HNF
representation of a) and (ω2σ(ω1) − ω1σ(ω2))/

√
D > 0. These mappings are inverse

isomorphisms and induce isomorphisms on the level of the equivalence classes:

φFI : F (D) → I(D) × Z/2Z, φIF : I(D) × Z/2Z → F (D).

We call a quadratic form (a, b, c) ∈ F(D) reduced if{
|
√

D − 2|a|| < b <
√

D, if D > 0,

|b| ≤ a ≤ c and, additionally, b ≥ 0 if |b| = a or a = c, if D < 0.

Denote the set of reduced forms by R(D). There exists an equivalent reduced form
for every quadratic form. The mapping

ρ : F(D) → F(D), ρ(a, b, c) = (c, b′, c′), b′ ∈ Jc′ , b′ ≡ −b mod 2c,

where Jw :=

⎧⎪⎨
⎪⎩
{x ∈ R : −|w| < x ≤ |w|}, if either D < 0

or D > 0 and |w| ≥
√

D,

{x ∈ R :
√

D − 2|w| < x ≤
√

D}, if D > 0 and |w| <
√

D,

is reducing, i.e., after finitely many steps we have calculated an equivalent reduced
form. If the discriminant is negative, there exists exactly one equivalent reduced
form for every quadratic form, which does not hold true for D > 0. In the case of
a positive discriminant there exists more than one equivalent reduced form for a
quadratic form. The restriction of ρ to R(D) is a permutation of R(D); the ρ-orbits
of R(D) are called cycles. Every cycle contains an even number of elements because
the sign of the first coefficient alternates. Two reduced forms are equivalent if and
only if they belong to the same cycle.

Schönhage [30] showed that the reduction of a binary quadratic form with co-
efficients bounded by 2n can be calculated in running time O(µ(n) logn) by using
his technique of a controlled descent. In particular, the sign of the discriminant D
does not significantly affect the calculation steps in Schönhage’s algorithm.

Definition 1.1. We call the quadratic form (a, b, c) ∈ F(D) minimal above s if

a, 1
2b, c ≥ s and

(
a − b + c < s or

(
1
2b − a < s and 1

2b − c < s
))

.

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 947

This defines a measure for the size of the operands. Schönhage’s algorithm for
fast reductions of binary quadratic forms is based on the following theorem.

Theorem 1.2 (Schönhage). Let s > 0, and let (a, b, c) ∈ F(D) be a quadratic
form with a, 1

2b, c ≥ s. Then there exists a uniquely defined matrix M ∈ Γ, M ≥ 0,
and a unique defined quadratic form (α, β, γ) ∈ F(D) minimal above s such that
(a, b, c) = M ·(α, β, γ). The coefficients of M =

(
u u′

v v′

)
are bounded by

(u + u′)2 ≤ a/s, 2(u + u′)(v + v′) ≤ b/s, (v + v′)2 ≤ c/s.

If the coefficients a, b, c are bounded by 2n, then the running time of the reduction
to α, β, γ can be bounded by O(µ(n) log n), independently of s.

Remark 1.3. We refer to [30, Lemma 1, Lemma 2] for the proof. We can extend
the fast reduction as above to any quadratic form f ∈ F(D) as we can calculate an
equivalent quadratic form f̂ ∼ f with only positive (and not too large) coefficients
using at most two actions of T and Sm (cf. [30, § 4]). Now we can apply an
algorithm according to Theorem 1.2 (cf. [30, Algorithm “MR”] or [40, Algorithm 3.2
“REDUCTION”]) for the form f̂ with parameter s = 1

2 . We obtain an equivalent
quadratic form f̃ = (ã, b̃, c̃) minimal above 1

2 as a result with ã, b̃, c̃ ≥ 1. All these
calculations are independent of the sign of the discriminant D. The calculation of
the/an equivalent reduced quadratic form can be done with at most two actions of T
and Sm. Altogether, we are able to compute a complete reduction of the quadratic
form f = (a, b, c) with coefficients |a|, |b|, |c| < 2n to an equivalent reduced form in
running time O(µ(n) logn).

Denote the canonical reduced form with discriminant D with φFI(1D) = (OD, 1)
by 1D. This form has the coefficients (1, b, (D − b2)/4), where b is the greatest
integer with the same parity as D less than or equal to 1 if D < 0, and to �

√
D� if

D > 0.

2. Concept of S-euclidean domains

Now we generalize the class of euclidean domains to the class of S-euclidean
domains which contains euclidean domains as a special case. This generalization is
based on algorithmic aspects such that we are able to present the asymptotically fast
Algorithm 2.19 (DESCENTR) that computes a controlled S-euclidean descent in
an S-euclidean domain where the triangle inequality is satisfied for the S-euclidean
function. After this general introduction to S-euclidean domains we will focus only
on quadratic orders and apply the novel concept.

2.1. Generalization of euclidean domains. While we now introduce the con-
cept of S-euclidean domains, we show in the next section that all the rings of
algebraic integers of imaginary quadratic number fields are S-euclidean.

Definition 2.1. Let R be an integral domain, and let S ⊂ R \ {0} be a finite
subset. We call R S-euclidean w. r. t. a euclidean function f : R → R≥0 if

(S1) f(x) = 0 ⇔ x = 0.
(S2) There exist q ∈ R and s ∈ S for all x, y ∈ R \ {0} with f(s·x − qy) < f(y).
(S3) The set {f(x) : x ∈ R, f(x) < κ} is finite for every κ > 0.

948 ANDRÉ WEILERT

Remark 2.2.

(1) The finiteness of S ensures a practical calculation of an S-euclidean step as
in (S2) if there exists a computable division with remainder in R, because
one can calculate the division for every s ∈ S.

(2) If R is {1}-euclidean, then R is euclidean.
(3) The conditions (S1), (S2) and (S3) do not necessarily imply that R is a

unique factorization domain (which is true if R is euclidean).

Definition 2.3. Let R be an S-euclidean domain w. r. t. f. Then there exist s ∈ S
and q, r ∈ R for all x, y ∈ R \ {0} according to (S2) such that s·x = qy + r with
f(r) < f(y). We call such a division step an S-euclidean step (not unique in general).

Definition 2.4. Let R be an integral domain, let f : R → R≥0, and let S⊂R \ {0}
be a finite subset. Assume that (S1) and (S3) are satisfied. Then we define the
S-euclidean minimum of R w. r. t. f as

E(R,S, f) := inf{κ > 0 : ∀x, y ∈ R \ {0} ∃ q ∈ R, s ∈ S : f(s·x − qy) < κ·f(y)}.

If E(R,S, f) < 1, then R is S-euclidean w. r. t. f.

We now show that the cofactors of an S-euclidean descent are bounded w. r. t.
the S-euclidean function f . Assume that f is multiplicative, satisfies the triangle
inequality, and f(x) = 0 or f(x) ≥ 1 for x ∈ R. Denote the field of fractions with
K := Quot(R). Let x, y ∈ R. Without loss of generality we assume f(x) ≥ f(y). Set
x0 := x, x1 := y as starting values. Then, for 1 ≤ j ≤ r,
(2.1)

sj ·xj−1 = qjxj + xj+1, where sj ∈ S, qj , xj+1 ∈ R and f(xj+1) ≤ ER·f(xj)

is an S-euclidean step w. r. t. xj−1, xj . Thereby, let ER < 1 be a good upper bound
for the S-euclidean minimum with 0 < E(R,S, f) ≤ ER < 1 such that one can cal-
culate every single S-euclidean step in an efficient manner. An S-euclidean descent
is a sequence of S-euclidean steps, as long as the remainder xj+1 does not equal
zero. It follows from (2.1) and (S3), that this sequence is always finite, i.e., xr+1 = 0
for a minimal r ∈ N. We can rewrite an S-euclidean step using a 2 × 2-matrix as(

sj 0
0 1

) (
xj−1

xj

)
=

(
qj 1
1 0

) (
xj

xj+1

)
, where qj ∈ R, sj ∈ S.

The matrix on the left-hand side is not generally invertible in R because sj ∈ S is
not necessarily a unit. Another representation for this S-euclidean step is

(2.2) Qj ·
(

xj−1

xj

)
=

(
xj

xj+1

)
, Qj :=

(
0 1
sj −qj

)
, detQj = −sj , Qj ∈ R2×2.

The matrix Qj is not generally invertible in R, but always in K because the deter-
minant does not vanish due to 0 �∈ S.

Define the product of the matrices Qκ and the product of the S-factors sκ as
Mj ∈ R2×2 and, respectively, Sj ∈ R \ {0} for 1 ≤ j ≤ r. Set M0 as the identity ma-
trix and S0 := 1. Setting Mj = Qj ·Mj−1 and Sj = sj ·Sj−1 yield detMj = (−1)j ·Sj .
From a representation of Mj as

(2.3) Mj = (−1)j ·
(

vj −uj

−vj+1 uj+1

)
,

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 949

it follows that

u0 = 0, u1= 1, uj+1= qjuj + sjuj−1,(2.4)

v0 = 1, v1= 0, vj+1= qjvj + sjvj−1.(2.5)

Therefore we get the representation

(2.6) Mj ·
(

x0

x1

)
=

(
xj

xj+1

)
,

and from this (using the K-inverse matrix M−1
j) we get a representation of x0, x1

as

(2.7)
(

x0

x1

)
= M−1

j ·
(

xj

xj+1

)
=

1
Sj

·
(

uj+1 uj

vj+1 vj

) (
xj

xj+1

)
.

Now we are going to show that Mj ’s coefficients are bounded w. r. t. the S-euclidean
function f. To prove that we use the notations as introduced above. Under these
assumptions it is easy to show that f(ε) = 1 for every R-unit ε, and that f can be
canonically extended to the field of fractions, f : K → R≥0.

Lemma 2.5. Let 1 ≤ j ≤ r, and let qj be a quotient of an S-euclidean descent.
Then f(qj) ≥ 1.

Proof. We have f(xj)≤f(xj−1), because in case of j = 1 we assumed f(x0)≥f(x1),
and in case of j ≥ 2 we calculated xj in an S-euclidean step. Considering the
S-euclidean step sj ·xj−1 = qjxj + xj+1 with f(xj+1) < f(xj), it follows from the
multiplicativity of f that f(sj ·xj−1) ≥ f(xj−1) ≥ f(xj) > f(xj+1). Assume that
qj = 0. This yields sj ·xj−1 = xj+1, which is a contradiction to the inequality above.
Therefore we have qj �= 0, thus f(qj) ≥ 1, because f avoids every value between 0
and 1. �

Lemma 2.6. uj �= 0 for 1 ≤ j ≤ r, and vj �= 0 for 2 ≤ j ≤ r.

Proof. We defined u1 = 1 �= 0. Thus we have to show the statements for uj , vj only
for 2 ≤ j ≤ r. Using (2.6) we get xj = (−1)j(vjx0 − ujx1). Assume vj = 0. Then
ujx1(−1)j+1 = xj �= 0. Thus f(x1) ≤ f(xj), because f(uj) ≥ 1 and f(−1) = 1. But
we have f(xj) < f(x1) for 2 ≤ j ≤ r, because xj is calculated by an S-euclidean
step. We conclude that f(x1) < f(x1), which is a contradiction. The proof for
uj �= 0 for 2 ≤ j ≤ r is almost the same. �

Definition 2.7. Set Uj :=
uj+1

uj
for 1 ≤ j ≤ r, and set Vj :=

vj+1

vj
for 2 ≤ j ≤ r.

Remark 2.8. Uj , Vj are well defined because the occurring denominators do not
vanish (Lemma 2.6). We calculate U1 = q1, U2 = q2 + s2/q1, V2 = q2, and Uj =
qj + sj/Uj−1 and Vj = qj + sj/Vj−1 for 3 ≤ j ≤ r (cf. (2.4), (2.5)).

Lemma 2.9. Assume f(Vj) ≥ 1 for 2 ≤ j ≤ r. Then f(vj+1) ≤ 1
1−ER

·f(Sj ·x1/xj).

Proof. We have Sj ·x1 = vj+1xj + vjxj+1 in R using (2.7). Dividing this equation
by xj (does not vanish for 2 ≤ j ≤ r) and separating vj+1, we get

Sj ·x1

xj
= vj+1·

(
1 +

vj

vj+1
·xj+1

xj

)
= vj+1·

(
1 + V −1

j ·xj+1

xj

)
.

950 ANDRÉ WEILERT

Applying the S-euclidean function f to this equation yields

(2.8) f(vj+1) =
f

(
Sj ·x1

xj

)
f

(
1 + V −1

j ·xj+1
xj

) .

Because of f
(

xj+1
xj

)
≤ ER and f(V −1

j) ≤ 1, we can bound the denominator as
follows:

f

(
1 + V −1

j ·xj+1

xj

)
≥ 1 − f(V −1

j)·f
(

xj+1

xj

)
≥ 1 − ER > 0.

This estimate and (2.8) imply f(vj+1) ≤
1

1 − ER
·f(Sj ·x1/xj). �

Now we introduce the f -maximum of the S-set in order to eliminate the factor
f(Sj) in the proven estimate.

Definition 2.10. Let R be an S-euclidean domain w. r. t. f. Then we define the
f-maximum of the euclidean set S as S := maxs∈S f(s).

Lemma 2.11. There exists c′ ∈ R≥0 such that f(Sj−1)≤f(x1/xj)c′ for 1≤j ≤ r.

Proof. There is nothing to show in the case of j = 1. Thus assume j ≥ 2. Then we
have f(Sj−1) ≤ Sj−1 and f(xj) ≤ Ej−1

R f(x1). If we choose any c′ ≥ logE−1
R

S, then
we obtain

f(x1/xj)c′ ≥ f(x1/xj)
log

E
−1
R

S ≥
(
E

−(j−1)
R

)log
E

−1
R

S

= Sj−1 ≥ f(Sj−1).

�

Corollary 2.12. Let c ∈ R>0 be a fixed chosen constant with c ≥ 1 + logE−1
R

S.

Let 2 ≤ j ≤ r, and assume f(Vj) ≥ 1. Then we have f(vj+1) ≤ S
1−ER

·f(x1/xj)c.

Proof. The claim follows from the Lemmas 2.9 and 2.11 due to f(Sj) ≤ S·f(Sj−1).
In particular, we have c ≥ 1, because E−1

R > 1 and S ≥ 1. �

Proposition 2.13. Let c ≥ 1 + logE−1
R

S. Then, for 0 ≤ j ≤ r, we have

f(vj+1) ≤
S

1 − ER
·f(x1/xj)c,(2.9)

f(uj+1) ≤
S

1 − ER
·f(x0/xj)c + 1.(2.10)

Proof. The estimate (2.9) holds true in the case of j = 0 and j = 1, because v1 = 0
and v2 = s1.

In the case of j = 2 we have V2 = q2. Lemma 2.5 implies f(V2) ≥ 1, such that
the claim follows from Corollary 2.12.

Now let 3 ≤ j ≤ r, and assume that the claim holds true for j − 1. Then
either f(Vj) ≥ 1 such that the claim (2.9) follows from Corollary 2.12, or we have
f(Vj) < 1. The inductive assumption for j − 1 yields

f(vj) ≤
S

1 − ER
·f(x1/xj−1)c =

S

1 − ER
·f(x1/xj)c· f(xj/xj−1)c︸ ︷︷ ︸

≤Ec
R<1

<
S·f(x1/xj)c

1 − ER
.

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 951

The claim (2.9) follows from this inequality using f(vj+1) < f(vj). We use xj+1 =
(−1)j+1(vj+1x0 − uj+1x1) (cf. (2.6)) in order to show the estimate (2.10). From
this we obtain f(uj+1x1) ≤ f(vj+1x0) + f(xj+1) using the triangle inequality. Fur-
thermore, it follows from (2.9) that f(uj+1) ≤ S

1−ER
·f(x0/xj)c + f(xj+1/x1). From

this inequality we can conclude that f(uj+1) ≤ S
1−ER

·f(x0/xj)c + 1 because of
f(xj+1/x1) ≤ 1 ≤ f(x0/xj). �
2.2. Controlled S-euclidean descent in S-euclidean domains. Let R be an
S-euclidean ring, where the S-euclidean function ‖ · ‖ is multiplicative, satisfies the
triangle inequality, and avoids every value between 0 and 1. Under these assump-
tions we are able to transfer the concept of a controlled euclidean descent2 and its
fast computation to the S-euclidean domains.

The GCD calculation for imaginary quadratic maximal orders consists of the
computation of such an asymptotically fast S-euclidean descent and the subse-
quent valuation at finitely many certain prime places. For this reason we need the
imaginary quadratic order to be a Dedekind domain, i.e., we are able to calculate
the ideal sum in this way in maximal orders only.

A controlled S-euclidean descent in the ring R can be specified as follows. In
particular, we do not need any information about the group of units, apart from
the fact that +1 and −1 is contained.

Theorem 2.14. Let x, y ∈ R and let σ ∈ N>0 with ‖x‖, ‖y‖ ≥ σ. Then there exist
u, v ∈ R and a matrix M ∈ R2×2 such that

M ·
(

x
y

)
=

(
u
v

)
, M is invertible in Quot(R), i.e., detM �= 0,(2.11)

and 2 max(‖x‖, ‖y‖) > ‖u‖, ‖v‖ ≥ σ > min(‖u + v‖, ‖u − v‖).(2.12)

Furthermore the coefficients of the matrix M = (mij)i,j are bounded by

‖mij‖ ≤ SR·
1 + ECR

R

1 − ER
·
(

max(‖x‖, ‖y‖)
σ

)CR

+ 2

≤
(

1 +
SR

1 − ER

)
·(1 + ECR

R)·
(

max(‖x‖, ‖y‖)
σ

)CR

,(2.13)

where CR := 1 + �log1/ER
SR� and SR := maxs∈S ‖s‖.

Proof. We give a constructive proof for this theorem because we calculate S-
euclidean steps in the algorithm in an efficient manner in the same way as in this
proof.

Without loss of generality assume ‖x‖ ≥ ‖y‖ ≥ σ > 0. Set u := x, v := y and
M := I. If we have

(2.14) min(‖u − v‖, ‖u + v‖) < σ,

then we have a representation as in (2.11) where (2.12) holds true. Otherwise

(2.15) min(‖u − v‖, ‖u + v‖) ≥ σ,

and we calculate an S-euclidean step

(2.16) s·u = qv + r with ‖r‖ ≤ ER·‖v‖ < ‖v‖ ≤ ‖u‖
2See also [29, Theorem 2.1] for a controlled euclidean descent in Z, [39] for it in Z[i], and [30]

for binary quadratic forms.

952 ANDRÉ WEILERT

�

�

�
�

�

�

vr
r + v

r − v σ

Figure 1. Size modification after an S-euclidean step (R ⊂ R2)

for the operands u, v. If we now have ‖r‖ ≥ σ, then we set M :=
(

0 1
s −q

)
·M and

change the names to unew := v, vnew := r. Then we obtain

M ·
(

x
y

)
=

(
unew

vnew

)
, max(‖x‖, ‖y‖) > ‖unew‖, ‖vnew‖ ≥ σ.

If the newly calculated operands (called u, v again) still satisfy condition (2.15), we
calculate further S-euclidean steps as described. The set {‖z‖ : z ∈ R, ‖z‖ < ‖y‖}
is finite and contains 0 because R is S-euclidean. Thus we are going to calculate
a remainder ‖r‖ < σ after finitely many steps in (2.16). If ‖r − v‖ ≥ σ, then set
ε := −1. Otherwise, i.e., ‖r − v‖ < σ ≤ ‖v‖, we have ‖r + v‖ = ‖2v − (v − r)‖ ≥
2·‖v‖ − ‖v − r‖ ≥ ‖v‖ ≥ σ, where ‖v − r‖ ≤ ‖v‖. Set ε := 1 for this case. We
can express (2.16) as s·u = (q − ε)v + (r + εv), where ε ∈ {−1, +1} was chosen in
a manner that ‖r + εv‖ ≥ σ (see Figure 1). Then we set M :=

(
0 1
s −(q−ε)

)
·M and

change the names to unew := v, vnew := r + εv. Then it holds true that ‖unew‖ =
‖vold‖, ‖vnew‖ = ‖r + εvold‖ ≤ (1 + ER)·‖vold‖ < 2·‖vold‖. Furthermore, because
of ‖uold‖, ‖vold‖ ≤ max(‖x‖, ‖y‖), we obtain ‖unew‖, ‖vnew‖ < 2 max(‖x‖, ‖y‖), and
M · (x

y) = (unew
vnew).

Note that no further euclidean step for u = unew, v = vnew has to be calculated
because it holds true that ‖u − εv‖ = ‖r + εvold − εvold‖ = ‖r‖ < σ. This satisfies
condition (2.14) which means that we have found a suitable representation as in
(2.11) which satisfies the conditions (2.12) as well.

We call such a modification of the remainder r to r + εv a size modification after
an S-euclidean step.

Altogether we calculate r S-euclidean steps where a size modification is done
at most by the last S-euclidean step. We obtain a matrix Q̂j =

(
0 1
sj −q̂j

)
for every

calculated quotient qj (1 ≤ j ≤ r), where q̂j := qj for 1 ≤ j < r, and q̂r = qr − ε
with ε ∈ {−1, 0, +1} as above. Note that ε = 0 means that no size modification
has to be made in the r-th S-euclidean step.

The matrix M is the product of the matrices Q̂j , 1 ≤ j ≤ r. M is invertible in
Quot(R) because sj �= 0, thus det Q̂j �= 0.

It remains to show that the coefficients of M are bounded as stated. For
1 ≤ j < r, it holds true that Q̂j = Qj , where Qj is defined in (2.2). Thus we
have the representation

Q̂r·Qr−1· . . . · Q2·Q1·
(

x
y

)
=

(
u
v

)
.

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 953

We can calculate the product of the matrices Qr−1· . . . · Q1 as

Mr−1 = (−1)r−1·
(

vr−1 −ur−1

−vr ur

)
,

using (2.3). The coefficients of Mr−1 are bounded as was shown in Proposition 2.13.
In order to calculate M we can multiply the matrix Mr−1 by Q̂r after the r-th S-
euclidean step:

M = Q̂r·Mr−1 = (−1)r·
(

vr −ur

−vr+1 + εvr ur+1 − εur

)
.

Using the estimate of Proposition 2.13 we obtain an upper bound for the size of
the coefficients of M :

‖ur+1 − εur‖ ≤ ‖ur+1‖ + ‖ur‖

<
SR

1 − ER
·
(∥∥∥∥x0

xr

∥∥∥∥CR

+
∥∥∥∥ x0

xr−1

∥∥∥∥CR
)

+ 2 ≤ SR·
1 + ECR

R

1 − ER
·
∥∥∥∥x0

xr

∥∥∥∥CR

+ 2

because of ‖xr/xr−1‖ ≤ ER for r ≥ 2. From 2 ≤ ‖x0/xr‖CR + ‖x0/xr−1‖CR it
follows that

‖ur+1 − εur‖ ≤
(

1 +
SR

1 − ER

)
·(1 + ECR

R)·
∥∥∥∥x0

xr

∥∥∥∥CR

.

The estimate for ‖ − vr+1 + εvr‖ can be shown in an analogous manner. The stated
size bound (2.13) follows from ‖xr‖ ≥ σ. �

If R is a Dedekind domain, we can use the technique of a controlled S-euclidean
descent to calculate nearly the GCD of two elements apart from a finite set of
places.

Definition 2.15. Let S be a finite subset of R, e.g., the set for which R is S-
euclidean. Then we define

V (
∏

S) := V
(∏

s∈S s
)

= {p prime ideal in R : ∃ s ∈ S : p ⊃ sR}
which is a set of prime ideals of R that contains the ideal (

∏
S). In other words

V (
∏

S) contains the prime ideals which are divisors of elements of S.

In particular, V (
∏

S) is a finite set due to the finiteness of S.

Lemma 2.16. Let R be a Dedekind domain, and let x0, x1, . . . , xr ∈ R be the
elements of an S-euclidean descent (xr+1 = 0). Then vp(x0) ≥ k and vp(x1) ≥ k if
and only if vp(xr) ≥ k for every prime ideal p �∈ V (

∏
S).

Proof. Both implications are proven by inductions. Let 1 ≤ j < r. The assump-
tions vp(xj−1) ≥ k and vp(xj) ≥ k imply that vp(xj+1) = vp(sj ·xj−1 − qjxj) ≥
min(vp(sj ·xj−1), vp(qjxj)) ≥ k, which holds true for every prime ideal p of R. It
follows that vp(xr) ≥ k via induction, where the induction starts with the trivial
case j = 1.

Now we are going to prove the other implication. Let 1 ≤ j ≤ r. From vp(xj) ≥ k
and vp(xj+1) ≥ k it follows that vp(xj−1) = vp(sj ·xj−1) = vp(qjxj + xj+1) ≥
min(vp(qjxj), vp(xj+1)) ≥ k. Thereby, the first equation sign holds true because we
provided that vp(sj) = 0. The claim follows with j = 1 using decreasing induction
in j, where the induction starts with j = r. �

954 ANDRÉ WEILERT

Corollary 2.17. Let the conditions be the same as in Lemma 2.16. Then
min(vp(x0), vp(x1)) = k if and only if vp(xr) = k for every prime ideal p �∈
V (

∏
S). �

Proposition 2.18. Let R be an S-euclidean Dedekind domain. If one calculates
an S-euclidean descent from x, y ∈ R to u, v ∈ R with σ = 1 according to Theo-
rem 2.14, then min(vp(x), vp(y)) = vp(u) = vp(v) for every prime ideal p �∈ V (

∏
S).

Proof. We obtain min(‖u + v‖, ‖u − v‖) < 1 using Theorem 2.14, thus ‖u + v‖ = 0
or ‖u − v‖ = 0. Therefore we have u = εv with ε ∈ {−1, +1}, hence vq(u) = vq(v)
for all prime ideals q. The claim that for every prime ideal p �∈ V (

∏
S) follows

directly from Lemma 2.16 and Corollary 2.17. �

Now we are able to present our Algorithm 2.19 DESCENTR for the calculation
of an asymptotically fast S-euclidean descent. The algorithm is based on Lehmer’s
ideas that were improved by Knuth [18] and Schönhage [28, 29] for an asymptotically
fast GCD calculation in Z. This concept, which does not need special properties of
Z, was transferred to Z[i] [39], and is now generalized for S-euclidean domains.

If the operands have large size, we split them into heads and tails w. r. t. a fixed
chosen basis b ∈ R \ (R× ∪ {0}) using a remainder-division for each of them, and we
calculate an S-euclidean descent only with the heads (i.e., the calculated quotient
of the remainder-division). If we apply a remainder-division for one of the operands
and for bT , then we know that the tail w. r. t. ‖ · ‖ is bounded by ‖bT ‖·E(R, ‖ · ‖),
where E(R, ‖ · ‖) denotes the euclidean minimum for the integral domain R. Set
B := ‖b‖. We have B > 1 because b is not a unit.

In order to give a general description of the Algorithm 2.19 DESCENTR, we are
going to introduce some constants which depend only on the S-euclidean domain,
and not on the operands:

E′
R := ER +

1 − ER

2
=

1 + ER

2
< 1,(2.17)

CR := 1 + �log1/E′
R

SR� ≥ 1, where SR := max
s∈S

‖s‖,(2.18)

mR :=
(

1 +
SR

1 − E′
R

)
·
(
1 + E′

R
CR

)
,(2.19)

γR := max(0, �logB(2mR·E(R, ‖ · ‖)) − logB(B − 1) + max(1 − CR, logB SR)�),
(2.20)

δR := max
(⌈

logB

(
2· B

1 − ER

)
− 1

⌉
,

⌈
logB(1 + B−(2+γR)·E(R, ‖ · ‖))

⌉)
,

(2.21)

�R := 1 + max
(⌈

log1/ER
B1+δR

⌉
,

⌈
log1/ER

(3·B − 2)
⌉)

.(2.22)

These constants serve different purposes. Because we are going to calculate S-
euclidean steps with the head parts of the operands, we cannot guarantee a re-
duction w. r. t. ‖ · ‖ by ER for the entire operands. Thus we introduce E′

R as the
reduction factor for the entire operands, even if we calculate S-euclidean steps with
only the heads (with ER as the reduction factor).

The constant CR determines whether we use the divide-and-conquer technique
in order to calculate an S-euclidean descent. We choose CR such that E′

R
−(CR−1)

is an upper bound for SR. This constant is also involved in an estimate for the

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 955

coefficients of the cofactor matrix according to Proposition 2.13. The factor of this
estimate is bounded by mR (cf. Theorem 2.14).

The constant γR is chosen such that the operands satisfy the minimum size
requirement σ if they are transferred from the head parts using the cofactor matrix.

The constant δR determines that only operands larger than BL+1+δR are split
into heads and tails. Furthermore, it controls that we are able to guarantee E′

R

as a reduction factor for the entire operands, even if we calculated the S-euclidean
steps only with the heads.

We are able to bound the number of iterations in the “while” loop (D9) of the
Algorithm 2.19 by �R. We can distinguish between two cases in order to bound the
number of iterations in (D9). Either no splitting was done so that we calculate
S-euclidean steps with the original operands, or a splitting was done so that we
transferred the S-euclidean descent to the entire operands (D8) satisfying some size
bound.

Algorithm 2.19 (Fast computation of a controlled S-euclidean descent in R).
Given x, y ∈ R, L ∈ N with ‖x‖, ‖y‖ ≥ BL, this algorithm calculates u, v ∈ R and
a matrix M ∈ R2×2, invertible in Quot(R), according to Theorem 2.14 (with the
parameter E′

R instead of ER for the size bound of the matrix coefficients) such that

M ·
(

x
y

)
=

(
u
v

)
and ‖u‖, ‖v‖ ≥ BL > min(‖u − v‖, ‖u + v‖).

algorithm DESCENTR(x, y, L)
(D1) if min(‖x‖, ‖y‖) < BL+1+δR then (0 ≤ δR < ∞ independent of x, y)

u := x, v := y, M := I; (and go to D9)
else

(D2) Find a small N ∈ N with ‖x‖, ‖y‖ < BL+N ;
(see the proof of Theorem 2.20 for choosing such an N)
if L ≤ CRN + γR then (no splitting)

T := 0, L1 := L;
else (split the operands; see Figure 2)

L1 := CRN + γR, T := L + 1 − L1,

split
(

x
y

)
=

(
x′

y′

)
+ bT ·

(
x′′

y′′

)
, (here ‖x‖, ‖y‖ ≥ BL+1+δR)

such that BL1 ≤ ‖x′′‖, ‖y′′‖ < BL1+N−1,
‖x′‖, ‖y′‖ ≤ BT ·E(R, ‖ · ‖),

and set x := x′′, y := y′′;
(D3) H := L1 + �N/2�;

if min(‖x‖, ‖y‖) < BH then
u′ := x, v′ := y, M := I;

else
(D4) (u′, v′, M) := DESCENTR(x, y, H); (min(‖u′ ± v′‖) < BH);
(D5) while min(‖u′ − v′‖, ‖u′ + v′‖) ≥ BL1 and

max(‖u′‖, ‖v′‖) ≥ BH do (at most 2 times)
Perform one S-euclidean step on u′, v′

preserving ‖u′‖, ‖v′‖ ≥ BL1 ,
and with proper updating of M ;

if min(‖u′ − v′‖, ‖u′ + v′‖) < BL1 then
u := u′, v := v′;

956 ANDRÉ WEILERT

else
(D6) (u, v, M ′) :=DESCENTR(u′, v′, L1); (then min(‖u± v‖)<BL1);
(D7) M := M ′·M ;
(D8) if T > 0 then(

u
v

)
:= bT ·

(
u
v

)
+ M ·

(
x′

y′

)
;

(D9) while min(‖u − v‖, ‖u + v‖) ≥ BL do (at most �R times)
Perform one S-euclidean step on u, v
preserving ‖u‖, ‖v‖ ≥ BL,
and with proper updating of M ;

(D10) return (u, v, M).

Theorem 2.20. Given x, y ∈ R, Algorithm 2.19 DESCENTR calculates u, v ∈ R
and a matrix M ∈ R2×2 according to Theorem 2.14 (E′

R instead of ER). In addition
to that, the number of S-euclidean steps in the “while” loops (D5) and (D9) is
bounded by 2 or, respectively, �R independent of the operands.

Proof. We calculate every S-euclidean step in the algorithm such that we can guar-
antee a reduction by the factor ER w. r. t. ‖ · ‖. If we compute an S-euclidean step
only for the heads of the operands, we are not able to guarantee the factor ER

for the entire operands (calculated using the cofactor matrix). Anyway, we can
always guarantee E′

R as a reduction factor for the entire operands as we will show
in Lemma 2.22.

If a size modification is made after an S-euclidean step in the “while” loop (D5)
or (D9), then the minimum condition in (D5) or (D9) is not satisfied anymore such
that the loop iteration terminates.

After these general remarks we will follow the algorithm step by step in order
to prove its correctness. Without loss of generality we assume ‖x‖ ≥ ‖y‖. If step
(D1) branches to (D9), we have ‖y‖ < BL+1+δR . In every S-euclidean step in (D9)
the intermediate operands are reduced w. r. t. ‖ · ‖ by the factor ER at least. Thus
we achieve a remainder less than BL after finitely many steps such that a size
modification has to be made. After this no further iteration is executed. Otherwise,
if (D1) does not branch to (D9), we always have N ≥ 2 in (D2).

In case the operands x, y have to be split, we calculate the splitting for x (y in
an analogous manner) using a remainder-division w. r. t. to the euclidean minimum
E(R, ‖ · ‖) < ∞ as x = x′′·bT + x′ with ‖x′‖ ≤ BT ·E(R, ‖ · ‖); see Figure 2. Now we
can estimate ‖x‖

BT −E(R, ‖ ·‖) ≤ ‖x′′‖ ≤ ‖x‖
BT +E(R, ‖ ·‖). Because the operands x, y

are both greater than BL+1+δR w. r. t. ‖·‖ (no branch in (D1)), we can conclude that
‖x′′‖ ≥ ‖x‖

BT −E(R, ‖·‖) ≥ BL+1+δR−T −E(R, ‖·‖) = BL1 ·(BδR−B−L1 ·E(R, ‖·‖)) ≥
BL1 , because δR ≥ logB(1+B−(2+γR)·E(R, ‖·‖)) ≥ logB(1+B−L1 ·E(R, ‖·‖)) using
the definition for δR and L1 ≥ 2 + γR. Furthermore, we have ‖x′′‖ ≤ BL+N−T +
E(R, ‖ · ‖) = BL1+N−1 + E(R, ‖ · ‖) as an upper bound. In addition to that,

T L1 = CR·N + γR N − 1

L N

Figure 2. S-euclidean descent in R: Splitting with tails

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 957

we assume that N was chosen minimal such that ‖x′′‖ < BL1+N−1. Therefore N
can be determined in the following manner. Let Nmin be the smallest N which
satisfies ‖x‖ < BL+Nmin . Then we can choose N with Nmin ≤ N ≤ Nmin + ∆,
where ∆ := �max (0, logB E(R, ‖ · ‖) − (γR + 3)) + logB 2� + 1 independent of the
operand x. In particular, we have ∆ > logB E(R, ‖ · ‖) − (γR + 3) + logB 2 which
yields

BL1+N+∆−1 = 1
2BL1+N+∆−1 + 1

2BL1+N+∆−1

> BL1+N−1 + 1
2B(2+γR)+2+(logB E(R,‖·‖)−(γR+3)+logB 2)−1

≥ BL1+N−1 + E(R, ‖ · ‖) ≥ ‖x′′‖.

Thus we choose N as the smallest N ≥ Nmin which satisfies ‖x′′‖ < BL1+N−1. The
explanation above shows that there exists such an N which is at most ∆ larger
than Nmin.

Now we show that the number of iterations of the “while” loop (D5) is bounded
by 2 at most. Denote the heads of the operands x, y with x̃, ỹ in case of T > 0, and
assume ‖x̃‖ ≥ ‖ỹ‖. Otherwise, if T = 0, we set x̃ := x, ỹ := y. We are calculating a
descent of N “bits” (for example in case of R = Z and B = 2) from L1 + N to L1

bits for the operands x̃, ỹ. In order to achieve this, we first calculate a descent of
�N/2� bits to H := L1 + �N/2� bits in (D4) and (D5).

If ‖ỹ‖ < BH in (D3), we calculate one S-euclidean step and get a remain-
der r with ‖r‖ ≤ ER·BH < BH instead of applying procedure DESCENTR. If now
‖r‖ ≥ BL1 , then no further loop iteration is executed because max(‖ỹ‖, ‖r‖) < BH .
Otherwise, if ‖r‖ < BL1 , then a size modification with ỹ is made (u′ := ỹ and
v′ := r + εỹ with ε ∈ {−1, +1} such that ‖v′‖ ≥ ‖ỹ‖). Then ‖u′ − εv′‖ < BL1 such
that no further loop iteration is done. In the other case, i.e., if we called DESCENTR

in (D4) recursively, there exists an ε ∈ {−1, +1} such that ‖u′ + εv′‖ < BH . After
the calculation of an S-euclidean step we get a remainder less than BH . Either a
size modification is necessary for the remainder which terminates the “while” loop,
or a further S-euclidean step is calculated. This leads to a remainder less than BH

for which a size modification can be done. In this case, the “while” loop terminates,
and otherwise both operands are less than BH such that no further iteration is done
due to the maximum condition.

If the “while” loop (D5) terminates because min(‖u′ − v′‖, ‖u′ + v′‖) < BL1 is
satisfied, then the condition in the following “if” clauses holds true such that no fur-
ther DESCENTR (D6) is calculated. If T = 0, no splitting was done, the condition
(D8) does not hold true, and L = L1 such that no iteration in (D9) is executed.

From now on we assume T > 0 that implies L > CRN + γR. The parameters
T and L1 are chosen such that T + L1 = L + 1. We are calculating a descent from
the heads x′′, y′′ (D3) to intermediate operands ũ, ṽ (D7). In addition to that there
exists an ε ∈ {−1, +1} such that

(2.23) ‖ũ‖, ‖ṽ‖ ≥ BL1 > ‖ũ + εṽ‖.
We calculate u, v in (D8) as

(2.24)
(

u
v

)
:= bT ·

(
ũ
ṽ

)
+ M ·

(
x′

y′

)
= bT ·M ·

(
x′′

y′′

)
+ M ·

(
x′

y′

)
= M ·

(
x
y

)
.

Because of BL1 ≤ ‖x′′‖, ‖y′′‖ < BL1+N−1 and because of the minimum size of ũ, ṽ,
Lemma 2.23 implies that the coefficients mij (i, j ∈ {1, 2}) of the cofactor matrix

958 ANDRÉ WEILERT

M (for the descent from x′′, y′′ to ũ, ṽ) are bounded w. r. t. ‖ · ‖ by

‖mij‖ ≤ mR·
(

BL1+N−1

BL1

)CR

= mR·BCR·(N−1)

(cf. Theorem 2.14 with E′
R instead of ER). Furthermore, ‖x′‖, ‖y′‖≤BT ·E(R, ‖ · ‖)

such that the estimate

‖u‖, ‖v‖ ≥ BL1+T − 2mR·BCR·(N−1)·BT ·E(R, ‖ · ‖)
= BL1+T − 2mR·E(R, ‖ · ‖)·BCRN+γR+T−CR−γR

= BL+1 − 2mR·E(R, ‖ · ‖)·BL+1−(CR+γR)

= BL·(B − 2mR·E(R, ‖ · ‖)·B1−(CR+γR)) ≥ BL

follows from (2.24) because γR ≥ logB(2mR·E(R, ‖ · ‖)) − logB(B − 1) + 1 − CR.
This means that ‖u‖, ‖v‖ cannot become too small. In addition to that it follows
from (2.24) using the size bound (2.23) that

‖u + εv‖ = ‖(ũ + εṽ)·BT + (m11 − εm21)x′ + (m12 + εm22)y′‖
< BL1+T + 4mR·BCR(N−1)·BT ·E(R, ‖ · ‖)
= BL1+T + 4mR·E(R, ‖ · ‖)·BCRN+γR+T−(CR+γR)

≤ BL+1 + 4mR·E(R, ‖ · ‖)·BL+1−(CR+γR)

= BL·(B + 4mR·E(R, ‖ · ‖)·B1−(CR+γR))(2.25)

≤ BL·(3·B − 2) (cf. (2.20)).

In the case where the operands were split (T > 0), one of the operands is less than
(3·B − 2)·BL w. r. t. ‖ · ‖ after at most one S-euclidean step in (D9). Every further
S-euclidean step reduces the remainder w. r. t. ‖ · ‖ at least by the factor ER (we
can guarantee ER instead of E′

R because we are calculating S-euclidean steps with
the entire operands, and not only with the heads). After k ≥ log1/ER

(3·B − 2)
S-euclidean steps we achieve at least a reduction by Ek

R ≤ 1
3·B−2 which means

that ‖u + εv‖ < BL. In the case T = 0 one of the operands is less than BL+1+δR

w. r. t. ‖ · ‖, and after one S-euclidean step in (D9) this size bound holds true for
both operands. One can bound the number of further S-euclidean steps in (D9)
in an analogous manner as above in order to achieve a remainder less than BL.
Altogether, the number of S-euclidean steps in (D9) can be bounded by

�R = 1 + max
(⌈

log1/ER
B1+δR

⌉
,

⌈
log1/ER

(3·B − 2)
⌉)

.

This statement holds true because we get a remainder less than BL w. r. t. ‖·‖ after
at most �R iterations (D9) such that a size modification is done which implies an
afterwards termination of the “while” loop. �

Remark 2.21. The constants were chosen in such a way that the estimates hold
true in the proof above. In addition to that one can be interested in discussing
strategic aspects of the choice of the constants. For example, on the one hand it
is an advantage to choose γR as small as possible in order to achieve a splitting in
the recursive calls as often as possible. On the other hand, γR should be as large
as possible in order to achieve a small factor B + 4mR·E(R, ‖ · ‖)·B1−(CR+γR) in

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 959

(2.25). Such a strategic discussion about the choice of the ring constants is not in
the scope of this article.

We have omitted the proof of two statements in the proof of Theorem 2.20 which
we now present as Lemmas 2.22 and 2.23.

Lemma 2.22. Let s·x′′ = q·y′′ + r′′ be an S-euclidean step for the heads x′′, y′′ in
any recursive call of the Algorithm 2.19 DESCENTR, hence ‖r′′‖ ≤ ER·‖y′′‖. Then
we have ‖r‖ ≤ E′

R·‖y‖ for a corresponding S-euclidean step s·x = qy + r for the
entire operands x, y in the outermost recursion level.

Proof. Let x, y be the operands in the outermost recursion level. During the recur-
sive calls of DESCENTR, these operands are split severals times in heads and tails,
hence

x = x0 + bT1 ·(x1 + bT2 ·(x2 + · · · + bTk ·xk) · · ·),
y = y0 + bT1 ·(y1 + bT2 ·(y2 + · · · + bTk ·yk) · · ·).

Thereby we have Tκ > 0 because a splitting was done in the recursion level κ. In
the innermost recursion level we have split the operands in heads x′′, y′′ and tails
x̂, ŷ as

x′′ := xk, x̂ := x − bτx′′, y′′ := yk, ŷ := y − bτy′′, where τ :=
k∑

κ=1

Tκ.

Now we are able to bound the size of the tails by

‖x̂‖, ‖ŷ‖ ≤ E(R, ‖ · ‖)·BT1 + E(R, ‖ · ‖)·BT1+T2 + · · · + E(R, ‖ · ‖)·Bτ

≤ Bτ ·E(R, ‖ · ‖)·
k−1∑
κ=0

B−κ (as Tκ > 0)

≤ Bτ ·E(R, ‖ · ‖)· 1
1 − B−1

= Bτ ·E(R, ‖ · ‖)· B

B − 1
,(2.26)

because the splitting was done by calculating a euclidean step w. r. t. the euclidean
minimum E(R, ‖ · ‖) for the ring R.

Now we return to the k-th recursion level, and let L1, N be the parameter of the
corresponding splitting. It follows from both the S-euclidean steps s·x′′ = q·y′′ + r′′

and s·x = qy + r (dividing them by y′′ or, respectively, y, and subsequent subtrac-
tion in order to eliminate q) that

(2.27) s·
(

x′′

y′′ −
x

y

)
=

r′′

y′′ −
r

y
⇒

∥∥∥∥ r

y

∥∥∥∥ ≤
∥∥∥∥ r′′

y′′

∥∥∥∥ + ‖s‖·
∥∥∥∥x′′

y′′ −
x

y

∥∥∥∥ .

We know ‖r′′/y′′‖ ≤ ER, thus it remains to show that the second term can be
bounded by 1−ER

2 :∥∥∥∥x′′

y′′ −
x

y

∥∥∥∥ =
∥∥∥∥x′′y − xy′′

yy′′

∥∥∥∥ =
∥∥∥∥x′′ŷ + x′′bT y′′ − x̂y′′ − x′′bT y′′

yy′′

∥∥∥∥
≤

∥∥∥∥x′′ŷ

yy′′

∥∥∥∥ +
∥∥∥∥ x̂

y

∥∥∥∥ ≤ B

B − 1
·E(R, ‖ · ‖)·Bτ−(L+1+δR)·

(∥∥∥∥x′′

y′′

∥∥∥∥ + 1
)

<
B

B − 1
·E(R, ‖ · ‖)·B−L1−δR ·(BN−1 + 1).

960 ANDRÉ WEILERT

Because of L1 = CRN + γR and γR ≥ logB(2·E(R, ‖ · ‖)) − logB(B − 1) + logB SR

using (2.20), it follows that

‖s‖·
∥∥∥∥x′′

y′′ −
x

y

∥∥∥∥ < SR·2
B

B − 1
·E(R, ‖ · ‖)·B−CRN−γR−δR+N−1

≤ B·B−(CR−1)N−δR−1 ≤ B−δR ,

because BN−1 + 1 ≤ 2·BN−1, CR ≥ 1, and N ≥ 0. It follows from (2.21) that
δR ≥ logB

(
2· B

1−ER

)
− 1, which implies

‖s‖·
∥∥∥∥x′′

y′′ −
x

y

∥∥∥∥ ≤ 1 − ER

2
.

Then the statement follows from (2.27) using the definition of E′
R (2.17). �

Lemma 2.23. The coefficients (mij) of the cofactor matrix M are bounded by

‖mij‖ ≤
(

1 +
SR

1 − E′
R

)
·(1 + E′

R
CR)·

(
max(‖x′′‖, ‖y′′‖)

BL1

)CR

in step (D8) of Algorithm 2.19 DESCENTR.

Proof. We calculate an S-euclidean descent with several S-euclidean steps for the
heads of the entire operands. Each of these steps reduces the remainder at least
by a factor of ER w. r. t. ‖ · ‖. If the remainder is smaller than a certain minimum
size σ, we calculate a size modification of the remainder. Let s·x = qy + z, ‖z‖ ≤
ER·‖y‖, be an S-euclidean step for x, y of an S-euclidean descent (in particular,
e.g., the last calculated S-euclidean step in a recursive call), which is followed
by a size modification z + εy. Then the calculation of a further S-euclidean step
1·(z + εy) = εy + z, ‖z‖ ≤ ER·‖y‖ removes the previous size modification such
that we can guarantee a reduction by the factor ER. For that reason we must not
consider the size modification in general, apart from the size modification after the
last S-euclidean step (if done) of an S-euclidean descent in order to bound the
matrix coefficients.

Lemma 2.22 says that all S-euclidean steps w. r. t. the full operands (not only for
the heads) are reducing the size at least by the factor E′

R such that we can bound
M ’s coefficients in the same manner as in Theorem 2.14 (replacing ER by E′

R). �

These two lemmas complete the proof of Theorem 2.20. Finally we prove an
estimate for the running time of Algorithm 2.19 DESCENTR.

Proposition 2.24. Let t(l, n) denote the maximum running time of algorithm
DESCENTR(x, y, L) for every L ≤ l and any x, y with ‖x‖, ‖y‖ < BL+N , where
N ≤ n. Then we have t(l, n) ≤ O(µ̂R(l + n)· log(n + 1)), where µ̂R(l + n) denotes a
smooth upper bound for the multiplication time or, respectively, for the calculation
of an S-euclidean step of two operands smaller than Bl+n w. r. t. ‖ · ‖.

Proof. Set C ′
R := CR + γR/2. In the case of a splitting of the operands in heads

and tails we have C ′
RN ≥ CRN + γR, because N ≥ 2.

Except for the recursive calls in (D4) and (D6) the algortihm calculates
only a bounded number of operations with operands smaller than Bl+n. The case

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 961

L > CRN + γR is reduced to a problem with parameters L1 = CRN + γR,
N1 = N − 1, which allows the estimate

(2.28) t(l, n) ≤ t(L1, N1) + O(µ̂R(l + n)) ≤ t(C ′
R·n, n) + O(µ̂R(l + n)).

The divide-and-conquer technique of the algorithm yields

(2.29) t(C ′
R·2n, 2n) ≤ 2·t(C ′

R·n, n) + O(µ̂R(2n(1 + C ′
R))).

(In other words one calculates a descent of 2n bits by calculating recursively
up to two descents of n bits each. In these recursive calls a splitting is done
such that a running time of t(C ′

R·n, n) is sufficent.) The estimated running time
t(l, n) ≤ O(µ̂R(l + n)· log(n + 1)) follows from (2.28) and (2.29). �
Remark 2.25. This running time with parameter l = 0 is an upper bound for
the calculation of a complete S-euclidean descent for operands x, y ∈ R with
‖x‖, ‖y‖ < Bn. It should be mentioned that some algorithmic properties of the
domain R are encoded in the function µ̂R and in the constant of the O-notation,
for example the cardinality of the set S.

3. GCD computation in imaginary quadratic rings

of algebraic integers

Now, after having introduced S-euclidean domains, we are able to apply this
concept and the corresponding fast Algorithm 2.19 DESCENTR to imaginary qua-
dratic orders. We show that every imaginary quadratic order is S-euclidean w. r. t.
the absolute value and that, for every imaginary quadratic maximal order, we can
compute the sum of two principal ideals using the concept of S-euclidean domains
and valuations at certain places (it is necessary that the order is a Dedekind do-
main).

If the reader is interested in more general computations of ideal sums in quadratic
number fields, e.g., for the real quadratic case, we refer to Section 4.

3.1. Imaginary quadratic orders as examples of S-euclidean domains.
Now we would like to show that every imaginary quadratic order (not only the
maximal order) is an S-euclidean domain. In particular, we need an applicable
description for the “S-euclidean” property in order to use it for an algorithm. This
requirement is satisfied by

Theorem 3.1. Let OD be the imaginary quadratic order with discriminant D < 0.
Then there exists a finite set S ⊂

{
1, . . . ,

⌊√
|D|/3

⌋}
such that OD is an S-eucli-

dean domain w. r. t. the absolute value | · | (considering OD canonically embedded
in C).

We postpone the proof of this theorem to the end of this section such that we
can discuss some important conclusions for our following Algorithm 3.16 SGCDOD

.
Even if this theorem holds true for every imaginary quadratic order, our Algo-
rithm 3.16 is defined only for Dedekind domains, i.e., for rings of algebraic integers
(maximal orders).

Remark 3.2. The ring of algebraic integers OD with a fundamental discriminant
D < 0 is a unique factorization domain (i.e., a principal ideal domain in case of
algebraic number fields) if D ∈ {−3,−4,−7,−8,−11,−19,−43,−67,−163}. More-
over, OD is norm-euclidean for D ∈ {−3,−4,−7,−8,−11} such that one can choose
S = {1}.

962 ANDRÉ WEILERT

Definition 3.3. Let D < 0 be a discriminant. Then we define a finite euclidean
set SD ⊂ N>0 as SD := {1, . . . , �

√
|D|/3�}.

In particular, we have SD = {1} for D ∈ {−3,−4,−7,−8,−11}.

Corollary 3.4. Every imaginary quadratic order OD is SD-euclidean w. r. t. | · |.

We restrict our considerations on S-euclidean sets for imaginary quadratic orders
to subsets of positive integers because there exists an easy way to prove in a uniform
manner that these orders are S-euclidean. There may exist smaller S-euclidean sets
(not only consisting of integers, but also of “general” ring elements) such that an
order is S-euclidean w. r. t. such a set. A lower bound for the cardinality of such an
S-euclidean set of an imaginary quadratic order depends on the class number or,
respectively, on the structure of the class group in a nontrivial manner.

Before we prove Theorem 3.1, we need some preparations.

Proposition 3.5. Let c ∈ R>0 be a constant, let J ⊂ R>0 be a compact in-
terval, and let U be an environment of 0 that contains the open interval (−η, η)
with η ∈ R>0. Then there exists a finite index set M ⊂ N× N>0 such that J ⊂⋃

(k,s)∈M
c·k+U

s .

Proof. Without loss of generality we assume c = 1. If not, we could change the scale
by multiplying by 1/c. Because of the inclusion Ik,s,η :=

(
k−η

s , k+η
s

)
⊂ k+U

s , it suf-

fices to show that R>0 ⊂
⋃

k≥0
s≥1

(
k−η

s , k+η
s

)
. Define S := �1/η�, thus S + 1 > 1/η.

From Dirichlet’s approximation theorem (cf. [27, Chapter V, A. Theorem] or [1,
Chapter 7]) it follows that for every θ ∈ R>0 there exist integers k and s with
0 < s ≤ S such that ∣∣∣∣θ − k

s

∣∣∣∣ ≤ 1
s(S + 1)

<
η

s
⇒ θ ∈ Ik,s,η.

Thus we have covered J with a countable infinite system of open sets. Because of
the compactness of J there exists a finite subset of this system whose sets cover J
already. �

Remark 3.6. For any c ∈ R>0 we can define an upper bound for the occuring
denominators s by S := �c/η�.

Furthermore, it follows from the above proof that one is able to find such a finite
set M. For every fixed denominator s with 0 < s ≤ S, there exist a finite number
of Ik,s,η which are intersecting with J. All these pairs (k, s) form a suitable finite
set M.

Let OD be an imaginary quadratic order with discriminant D < 0. OD is a
discrete subring in C such that we can define c := min{Im(x) > 0 : x ∈ OD} which
can be calculated as c = 1

2

√
|D|. According to this ring constant we define

Aη := {z ∈ C : η ≤ Im(z) ≤ c/2} and Bη,k := {z ∈ C : | Im(z) − k·c| ≤ η}

for k ∈ Z and 0 < η < c/2. Bη,k forms a 2η high, horizontal stripe in the complex
plane which contains the x ∈ OD with Im(x) = k·c (see Figure 3 with D ≡ 1 mod 4).

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 963

0 1 2 3 4

Bη,2
√D

Bη,1

Bη,0

Aη

1+√D
2

Figure 3. The lattice OD (D ≡ 1 mod 4) and the sets Aη, Bη,k

Proposition 3.7. Let the imaginary quadratic order OD be embedded canonically
in C. Let Bη,k and c be defined as above. Let η > 0. Then there exists a finite set
S ⊂ N>0 such that for every z ∈ C there exist an s ∈ S and a k ∈ Z with s·z ∈ Bη,k.

Proof. For z ∈
⋃

κ∈Z Bη,κ s = 1 is sufficient. Thus let us assume that no Bη,k

contains z. Then there exists ẑ ∈ OD such that z − ẑ ∈ Aη ∪ (−Aη). Therefore Aη

contains z − ẑ or ẑ − z. (Multiplying z by −1 causes a transition from Bη,k to Bη,−k

in the assumption.) For this reason we can assume z ∈ Aη w. l. o. g.
Set z′ := Im(z). Denote the projections of the sets Aη, Bη,0 on the imaginary part

by J := Im(Aη) and I := Im(Bη,0). Then z′ ∈ J, and we have Im(Bη,k) = c·k + I.

It follows from Proposition 3.5 that there exist (k, s) ∈ N × S such that z′ ∈ c·k+I
s .

(In particular, S can be chosen as a finite set which follows from Remark 3.6.)
Thus we have s·z′ ∈ c·k + I, and this can be transformed into s·z ∈ Bη,k because
of Im(s·z) = s·z′. �

Remark 3.8.
(1) In the case of 0 < η <

√
3/2, it follows that the distance between

z ∈ C ∩ Bη,k for any k ∈ Z to the nearest lattice point (consider OD

embedded canonically in C) is less than 1. In other words, there
exists a ẑ ∈ R with |Re(z) − Re(ẑ)| ≤ 1

2 and | Im(z) − Im(ẑ)| ≤ η, thus
|z − ẑ|2 ≤ (1

2)2 + η2 < 1.
(2) S can be chosen as S ⊂ {1, . . . , �c/η�}, which follows from Remark 3.6.

Now we have made all the preparations in order to prove Theorem 3.1.

Proof of Theorem 3.1. We have to show that the conditions (S1), (S2) and (S3)
are all satisfied. Obviously, (S1) holds true for the absolute value f = | · |. (S3)
is satisfied because OD is a discrete subring of C. It follows from Proposition 3.7
that for every z ∈ QuotOD there exists an s ∈ S ⊂ N>0 such that s·z ∈ Bη,k. For
a fixed chosen η <

√
3/2 the distance between s·z to a nearest lattice point in OD

w. r. t. the absolute value | · | is less than 1, which shows that (S2) holds true.
We have to show that S can be chosen as the stated finite set of the posi-

tive integers. We can bound the set S ⊂ N>0 by S = �c/η� with c = 1
2

√
|D| and

964 ANDRÉ WEILERT

0 < η < 1
2

√
3 due to Remark 3.8. Thus we have to study how we can specify the up-

per bound S in terms of the discriminant D and, according to this, what the minimal
size for η is. Therefore define γ, 0 < γ ≤ 1, by

√
|D|/3 + γ = �

√
|D|/3� + 1 ∈ N>0.

It follows that

(3.1)
√

3
2·(1 + γ

√
3/|D|)

< η <
√

3/2 ⇒
√
|D|/3 <

c

η
<

√
|D|/3 + γ.

Thus we have �
√
|D|/3� < c/η < �

√
|D|/3� + 1 using the definition of γ such that

we conclude that S = �c/η� = �
√
|D|/3�. �

3.2. Fast GCD computation in rings of algebraic integers of imaginary
quadratic number fields using the concept of S-euclidean domains. On
the one hand we have shown how to compute asymptotically fast an S-euclidean
descent, on the other hand we have proved that the imaginary quadratic (maxi-
mal) orders are S-euclidean domains. Now we combine these two facts in order to
compute the sum of two principal ideals (quasi a GCD) in such rings of algebraic
integers asymptotically fast.

Let K be an imaginary quadratic number field with fundamental discriminant
D < 0, and let OK = OD be its ring of algebraic integers. We know that the
multiplication time is bounded by µOD

(n) = O(µ(n)) for this maximal order and a
fixed chosen integral basis. In addition to that we know the euclidean minimum

EOD
= E(OD, | · |) =

⎧⎨
⎩

√
|D|/4+1

2 , if D ≡ 0 mod 4,
|D|+1

4
√

|D|
, if D ≡ 1 mod 4

[23, Proposition 3.2] and know the behaviour of the prime ideals (inert, split, ram-
ified) [8, Proposition 5.1.4] in order to efficiently calculate the valuation at the
finitely many places p ∈ V (

∏
SD). Thus we can calculate the sum of two prinicipal

ideals, each given by a generator, by calculating a controlled SD-euclidean descent
with Algorithm 2.19 DESCENTOD

for these two generators, and then by calculat-
ing the valuations at the corresponding SD-places. The occuring ring constants of
Algorithm 2.19 DESCENTR are shown for the nine imaginary quadratic maximal
orders with class number 1 and for a few maximal orders with class number 2 in Ta-
ble 1. Thereby we chose b = 2 (B = 2) as the basis. For all of these maximal orders
R = OD we used the SD-euclidean set (cf. Definition 3.3). Note that in the case
of D ∈ {−3,−4,−7,−8,−11}, the maximal orders are euclidean. Furthermore, we
denote the maximum of SD by SR according to Theorem 3.1. This yields a lower
bound for η as in (3.1), hence we chose η <

√
3/2 only a little above this bound

(cf. (3.1)) in order to achieve as much progress as possible in every SD-euclidean

step. Thus we have ER =
√

η2 + 1
4 . It should be mentioned that η can be close to

√
3/2 for a fixed chosen ring of algebraic integers OD, D < 0 such that ER is close

to 1. This means that—in the worst case—the progress of every SD-euclidean step
can be small. The ring O−427 is an example for a large ER < 1.

Fast computation of valuations in quadratic rings of algebraic integers. We can cal-
culate the sum of two principal ideals (given by one generator each) in an imaginary
quadratic ring of algebraic integers OD, using the Algorithm DESCENTOD

in order
to compute an SD-euclidean descent, and then modifying the intermediate ideal at

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 965

Table 1. Examples for the ring-specific constants (or numerical
approximation) in Algorithm 2.19 DESCENTR for Z and several
imaginary quadratic maximal orders with class number 1 and 2.

R E(R, | · |) ER E′
R SR CR mR γR δR �R

Z 1/2 1/2 0.7500 1 1 8.7500 4 1 3
O−3 1/

√
3 1/

√
3 0.7887 1 1 10.2528 4 2 5

O−4 1/
√

2 1/
√

2 0.8536 1 1 14.5105 5 2 7
O−7 2/

√
7 2/

√
7 0.8780 1 1 17.2667 5 3 11

O−8

√
3/2

√
3/2 0.9331 1 1 30.7895 6 3 21

O−11 3/
√

11 3/
√

11 0.9523 1 1 42.8521 7 4 36
O−19 5/

√
19 0.8820 0.9641 2 13 50.6843 8 4 29

O−43 11/
√

43 0.9602 0.9801 3 56 200.6255 11 5 104
O−67 17/

√
67 0.9592 0.9796 4 69 244.3554 12 5 101

O−163 41/
√

163 0.9417 0.9709 7 67 274.1137 14 5 71
O−15 4/

√
15 0.8165 0.9083 2 9 32.3862 8 3 15

O−20

√
3/2 0.8976 0.9488 2 15 58.2239 9 4 34

O−24

√
7/2 0.9575 0.9788 2 34 140.6459 10 5 97

O−403 101/
√

403 0.9746 0.9873 11 188 941.1931 17 6 189
O−427 107/

√
427 0.9957 0.9979 11 1103 5517.0133 20 8 1433

the V (
∏

SD) places using valuations. Thus, in this section, we now discuss how to
quickly compute the valuations for an integral ideal.

Assume that we would like to calculate valuations at the place p. Our asymptot-
ically fast computation of p-valuations will be based on a precalculated representa-
tion of pk as Z-modules. For a fixed chosen quadratic ring of algebraic integers OD,
we know the Z-module representation for every prime ideal, and we only have to
consider finitely many p ∈ V (

∏
SD). Starting with such a Z-module representation

of p, we use Hensel lifting in order to calculate the Z-module representation for pk.
Thereby k depends on the size of the operand for which we are going to calculate
the p-valuation.

Theorem 3.9 (Hensel lifting). Let m ∈ N≥1, and let f, f1, f2, c1, c2 ∈ Z[x] be
polynomials with

f ≡ f1f2 mod m, c1f1 + c2f2 ≡ 1 mod m.

Assume that the leading coefficient of f2 is equal to 1, n := deg f = deg f1+deg f2,
and deg c1 < deg f2, deg c2 < deg f1. Then there exists an algorithm that lifts
the factorization of f to accuracy ml, l ∈ N≥1, i.e., there exist polynomials
f∗
1 , f∗

2 , c∗1, c
∗
2 ∈ Z[x] such that

f ≡ f∗
1 f∗

2 mod ml, c∗1f
∗
1 + c∗2f

∗
2 ≡ 1 mod ml,

the leading coefficient of f∗
2 is equal to 1, and

f∗
1 ≡ f1 mod m, deg f∗

1 =deg f1, c∗1 ≡ c1 mod m, deg c∗1<deg f∗
2 ,

f∗
2 ≡ f2 mod m, deg f∗

2 =deg f2, c∗2 ≡ c2 mod m, deg c∗2<deg f∗
1 .

The running time of this algorithm is bounded by O(µ(n)µ(size(ml))).

Proof. [37, Algorithm 15.10, Theorem 15.11, Theorem 15.12]. �

966 ANDRÉ WEILERT

Lemma 3.10. Let D be a fundamental discriminant, let p ∈ N>1 be a prime
number, and let (D/p) = +1, hence pOD = pp̄ is split. Let k ∈ N≥1, and let
b2 ≡ D mod 4pk. Then

p = pZ +
−b +

√
D

2
Z

is a Z-module representation of p (suitable choice of the sign of b), and we have for
1 ≤ κ ≤ k

p
κ = pκZ +

−b +
√

D

2
Z.

Proof. It is well known that p = pOD +
(
ω − −b+D

2

)
OD [8, Proposition 5.1.4],

because b2 ≡ D mod 4pk implies that b2 ≡ D mod 4p. In addition to that, we have
a Z-module representation of p with the same two generators because 4p | (b2 −D).
This proves the claim for κ = 1.

Due to this Z-module representation of p with one integer as a generator, we
can use the correspondence between ideal multiplication and composition of binary
quadratic forms in order to calculate powers of p. Assume that the claim holds true
for every κ ≥ 1 with κ + 1 ≤ k. Then we calculate pκ·p using the composition of
the corresponding quadratic forms (mapping φIF)
(3.2)(

pκ, b,
D − b2

4pκ

)
·
(

p, b,
D − b2

4p

)
=

(
pκ+1, b − 2pκw·D − b2

4p
, ∗

)
∼ (pκ+1, b, ∗),

because the assumption (D/p) = +1 implies that D = b2 − 4pc and p are coprime,
hence b and p are coprime as well. There exist u, w ∈ Z such that up + wb = 1. It
follows that D−b2

4p can be divided by p because of k ≥ κ + 1 ≥ 2. Thus

b − 2pκw·D − b2

4p
= b − 2pκ+1m, m ∈ Z.

For that reason the equivalence in (3.2) consists only of a Γ∞-operation (F (D)),
i.e., a change of the generators, but no change for the corresponding ideal. �

Remark 3.11. This lemma can be used in order to calculate powers of a prime ideal
p̄ in a Z-module representation that lies above a split prime number p. We use this
fact for the fast calculation of p-valuations.

Lemma 3.12. Let I be an integral ideal in the quadratic ring of algebraic integers
OD, and let p | p be a prime ideal. Let k ∈ N, and let ε ∈ {0, 1} be such that
k + ε ≡ 0 mod 2. Then vp(I) ≥ k if and only if

pk | I if
(

D

p

)
= −1; p(k+ε)/2 | pεI if

(
D

p

)
= 0; pk | p̄kI if

(
D

p

)
= +1.

Proof. The claim follows from the decomposition of the prime numbers p in OD. �

Remark 3.13. Let p | p. In order to calculate vp(I) we can determine the maximum k
such that vp(I) ≥ k. Lemma 3.12 shows how to reduce this problem to the question
of whether an integral ideal I ′ is divisible by a suitable power of p. Thereby we have
either I equal to I ′, or I ′ is the product of I and of an ideal for which a Z-module
representation is known (cf. Lemma 3.10).

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 967

Algorithm 3.14 (Fast calculation of the p-valuation of an integral ideal). Let p

be a prime ideal in the ring of algebraic integers OD of the quadratic number field
with fundamental discriminant D. Let I be an integral ideal, given in a represen-
tation with two Z-generators. Then this algorithm calculates the p-valuation vp(I).
Therefore p ∈ N denotes the unique prime number with p | p, and a representation
with two generators of p or p̄ is known.
algorithm vp(I)

(V1) if I = 0 return ∞;
(V2) kmax := � 1

f logp Norm(I)�; (f is the degree of p | p)

(V3) Calculate p20
, p21

, . . . , p2λ

with 2λ ≤ kmax < 2λ+1 using successive squaring;
(V4) if (D/p) = +1 then (p split)

Compute p̄kmax in a representation as in Lemma 3.10;
I := p̄kmax ·I;

(V5) v := 0;
(V6) for κ = λ, . . . , 0 do

if p2κ | I then v := v + 2κ, I := I/p2κ

;
(V7) if (D/p) = 0 then (p ramified)

v := 2v; (Norm(p) = p)
if p | pI then v := v + 1;

(V8) return v.

Proposition 3.15. Let p be a prime ideal in the quadratic ring of algebraic integers
OD with the fundamental discriminant D. Let I be an integral ideal which is given
by its HNF or by a 2-generator representation as Z-module. Then Algorithm 3.14
calculates the valuation vp(I) in time O(µ(s) log s), s = O(size(Norm(I))).

Proof. The case I = 0 is trivial, hence assume I �= 0. Let p ⊃ pOD, i.e., p lies
above the prime number p. Assume pk | I. It follows that k ≤ 1

f logp Norm(I) due
to Norm(p) = pf ≥ p, hence we get an upper bound kmax ∈ N for the maximum
p-power that divides I.

The correctness of Algorithm 3.14 follows from Lemma 3.12. In (V3) we calculate
2λ-powers of p such that we can obtain every power of p with an exponent less than
kmax from these powers using multiplications. The running time for such computa-
tion can be bound by O(µ(size(pkmax))) ≤ O(µ(Norm(I))) using a geometric series
(cf. [25, 3.5.2]). Then, if pOD is split, we calculate the kmax-power of p̄ according to
Lemma 3.10. For that we lift a representation of p̄ as in [8, Proposition 5.1.4] such
that b2 ≡ D mod 4pkmax .3 This can be done in time O(µ(size(pkmax))). Afterwards
we calculate the ideal p̄kmax ·I (like the composition of binary quadratic forms) and
find out the largest p-power according to Lemma 3.12 which divides it. The running
time for this step can be bounded by O(µ(s) log s) because this step is as expensive
as a GCD calculation in Z.

In (V6) we calculate the maximum power of p which divides the ideal I (maybe
changed in (V4)), independent of (D/p). This loop requires at most O(µ(s) log s)
bit operations.

3At first we know a solution for the equation x2 − D ≡ 0 mod 4p, which we can transfer to a
solution with accuracy 4pkmax using Hensel-lifting. In particular, we calculate a solution in case
of p = 2 for x2−D ≡ 0 mod pk+2, and in case of p �= 2 for x2−D ≡ 0 mod pk using Hensel-lifting.
After this we adjust x by adding pk if x �≡ D mod 2.

968 ANDRÉ WEILERT

In (V7) we treat the special case that p is ramified and double v because the
ramification index is e = 2. Then it remains to test whether p is contained in an
odd power in the ideal I (all nonzero even powers are removed from I).

Altogether, the algorithm calculates the p-valuation correctly, and the stated
running time holds true. �

Calculation of the sum of two principal ideals. Now we are prepared to present
the fast Algorithm 3.16 SGCDOD

for the calculation of the sum of two principal
ideals in an imaginary quadratic ring of algebraic integers OD. If this ring is a
principal domain (i.e., h(D) = 1), then all the ideal operations can be calculated
only with ring elements as generators of principal ideals. This can be done by the
more simple Algorithm 3.17 SGCD1OD

, which has the same asymptotical running
time as Algorithm SGCDOD

with a smaller constant hidden in the O-notation.

Algorithm 3.16 (GCD calculation in OD using an SD-euclidean descent). Al-
gorithm SGCDOD

calculates the “GCD ideal” g = xOD + yOD for x, y ∈ OD.
Thereby OD denotes the SD-euclidean ring of algebraic integers of the imaginary
quadratic number field with fundamental discriminant D < 0, and the pair (1, ω)
denotes an integral basis.
algorithm SGCDOD

(x, y)
(S1) x′′ := gcdZ(x0, x1), y′′ := gcdZ(y0, y1); (x = x0 + ωx1, y = y0 + ωy1)
(S2) x′ := x/x′′, y′ := y/y′′; (primitive part of the operands)
(S3) Calculate an asymptotically fast controlled SD-euclidean descent on x′ and

y′ (Algorithm 2.19 DESCENTOD
(x′, y′, 0))

returning g ∈ OD (cofactor matrix is not required);
(S4) g′ := g/ gcdZ(g0, g1); (g = g0 + ωg1)
(S5) Calculate representations of the primitive ideals x′OD, y′OD, g′ := g′OD as

Z-modules (two generators with one of them being an integer);
(S6) for each p ∈ V (

∏
SD) do

(a) Calculate the p-valuations vp(x′OD), vp(y′OD), vp(g′) using Algorithm
3.14;

(b) Calculate g′ := g′·pmin(vp(x′OD),vp(y′OD))−vp(g′)

(using the corresponding composition of binary quadratic forms);
(S7) return g′· gcdZ(x′′, y′′).

Algorithm 3.17 (GCD calculation in OD with h(D) = 1 using an SD-euclidean
descent). Algorithm SGCD1OD

calculates a generator g for the “GCD ideal”
gOD = xOD + yOD for x, y ∈ OD. Thereby OD denotes the SD-euclidean ring
of algebraic integers of the imaginary quadratic number field with fundamental dis-
criminant D < 0 and class number h(D) = 1, and the pair (1, ω) denotes an integral
basis.
algorithm SGCD1OD

(x, y)
(S′1) Calculate an asymptotically fast controlled SD-euclidean descent on x and y

(Algorithm 2.19 DESCENTOD
(x, y, 0)) returning g ∈ OD (cofactor matrix

is not required);
(S′2) for each p ∈ V (

∏
SD) do (p is a generator of the principal ideal: p =

pOD)
g := g·pmin(vp(x),vp(y))−vp(g);

(S′3) return g (g = gOD).

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 969

Theorem 3.18. Let OD be the imaginary quadratic ring of algebraic integers with
fundamental discriminant D < 0, and let (1, ω) be an integral basis. For x, y ∈ OD

with Norm(x), Norm(y) < 2n, Algorithm 3.16 SGCDOD
calculates the ideal g =

xOD + yOD in running time O(µOD
(n) log n).

If it is known that h(D) = 1, i.e., OD is a principal domain, then Algorithm 3.17
SGCD1OD

calculates a generator g ∈ OD of the ideal gOD = g = xOD + yOD in
the same asymptotic running time.

Proof. In order to prove the correctness of the Algorithms 3.16 and 3.17, we have
to show that for all prime ideals p vp(g) = min(vp(x), vp(y)) holds true.

If p �∈ V (
∏

SD), the claim follows from Lemma 2.16, because OD is SD-euclidean
w. r. t. | · | according to Theorem 3.1, and because the correct part of the GCD is
calculated at these places in an SD-euclidean descent. The calculation of the part
of the GCD at the places p ∈ V (

∏
SD) is done with valuations which removes an

SD part due to the SD-euclidean descent from the calculated ideal, if necessary.
Thus it remains to prove the stated running time. The norm is a positive definite

quadratic form for the coefficients of an algebraic integer in OD to a fixed chosen
integral basis (1, ω). Set x = x0 + ωx1. Because Norm(x) is bounded, it follows
that |x0|, |x1| are bounded. Without loss of generality let the absolute values of the
coefficients x0, x1 be bounded by 2n, hence the absolute values of the nonprimitive
part of the operands |x′′|, |y′′| are bounded by 2n in step (S1). The multiplicativity
of the norm implies that Norm(x′), Norm(y′), Norm(g), Norm(g′) are bounded by 2n

as well. We precalculate the Z-part of the GCD ideal g in order to discuss primitive
elements or, respectively, primitive principal ideals. Thus we are allowed to reduce
g to a primitive g′ in (S4) because g cannot contain a nonprimitive relevant part
of g.

The calculation of 2-generator representations of x′OD, y′OD, g′OD can be done
as follows using HNF-reduction: Let z ∈ OD be primitive. The minimal polynomial
of ω is x2 − Tr(ω)x + Norm(ω). Then the prinicipal ideal zOD is generated by z
and ωz as a Z-module, hence

zOD = zZ + zωZ = (z0 + ωz1)Z + (−Norm(ω)z1 + ω(z0 + Tr(ω)z1))Z.

Because z is primitive, there exist ζ0, ζ1 ∈ OD such that ζ0z0 + ζ1z1 = 1.(
z0 −Norm(ω)z1

z1 z0 + Tr(ω)z1

)
·
(

z0 + Tr(ω)z1 ζ1 − Tr(ω)ζ0

−z1 ζ0

)

=

(
z0(z0 + Tr(ω)z1) + Norm(ω)z2

1 z0(ζ1 − Tr(ω)ζ0) − Norm(ω)z1ζ0

0 1

)

=

(
Norm(z) b′

0 1

)
.

If we apply a column operation to this matrix which reduces b′ by multiples of
Norm(z) to b with 0 ≤ b < Norm(z), we obtain the HNF of the primitive ideal zOD.
It represents the ideal zOD, which has the following 2-generator representation as
a Z-module (one integer generator) according to (1.1):

zOD = Norm(z)Z +

(
b +

D +
√

D

2

)
Z = Norm(z)Z +

−(−2b − D) +
√

D

2
Z.

970 ANDRÉ WEILERT

The running time of the calculation of the Z-module representation is O(µ(n) logn),
because the running time of the GCD computation dominates the whole computa-
tion.

The number of iterations in the loop (S6) for a fixed chosen ring of algebraic
integers OD is bounded by O(1), because there are at most two prime ideals lying
above a prime number, and the number of prime ideals in SD is uniformly bounded,
independent of the operands x, y. The calculation of the valuations in (S6a) requires
O(µ(n) log n) running time according to Proposition 3.15. The multiplication of the
ideals in (S6b) is possible in the same time, because the calculation of powers of
p can be done in an analogous manner as the calculation of a prime power in
Algorithm 3.14, and the subsequent ideal multiplication can be done using the
composition of binary quadratic forms. Altogether the norms of the occuring ideals
are bounded because of the multiplicativity of the norm, and because the norm of
the GCD ideal divides the norm of the principal ideals xOD, yOD.

In the case of a principal ideal domain OD we can simplify Algorithm 3.16 to
Algorithm 3.17, because the whole ideal arithmetic can be done with generators
of principal ideals. The calculation of the SD-euclidean descent is possible in time
O(µ(n) log n); the calculation of each step in the loop (S′2) can be done in time
O(µ(n)) such that the stated running time holds true for Algorithm 3.17 as well.
It is only faster by a constant factor than Algorithm 3.16. �

Remark 3.19. Now we will discuss some possible improvements of the Algorithms
3.16 and 3.17.

(1) We can reduce the loop in (S6) or (S′2) to the possibly smaller set V (
∏

ŜD),
where ŜD contains only the s ∈ SD which were used in at least one SD-
euclidean step s·x = qy + r of the SD-euclidean descent.

It seems that this would not be any significant improvement for large
operands because in most cases all the prime places of V (

∏
SD) will occur

in an SD-euclidean descent. In addition to that, we had to extend Algo-
rithm 2.19 (DESCENTOD

) such that it returns the subset ŜD of the used
s ∈ SD.

(2) Algorithm 3.17 SGCD1OD
only holds true for the nine fundamental dis-

criminants D ∈ −3,−4,−7,−8,−11,−19,−43,−67,−163, for which OD

is a principal ideal domain [8, Section 7.2.4]. In general we can use Algo-
rithm 3.16 SGCDOD

for the calculation of the ideal sum without knowledge
of the class number h(D), but this may not lead to a generator of the prin-
cipal ideal, even in case of h(D) = 1.

We conclude this section by discussing how the running times of these algo-
rithms depend on the fundamental discriminant. We assume that a fundamental
discriminant D < 0 and the minimal polynomial for ω, where (1, ω) is an integral
basis, are inputs for the Algorithm SGCDOD

or SGCD1OD
. Then we can bound

the running time by O(c(D)·µOD
(N) log N) with N = O(n + size(ω)), and size(ω)

denotes the size of the coefficients of the minimal polynomial of ω. c(D) does not
depend on the operands x, y, but it depends in many ways on properties of the
imaginary quadratic ring of algebraic integers OD (cf. Table 1). The calculation
of an SD-euclidean step can be bounded by the running time for the calculation
of at most O(

√
|D|) euclidean steps for corresponding operands because the SD-

euclidean set has cardinality of �
√
|D|/3�. In addition to that c(D) is influenced

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 971

in a nontrivial manner by further ring constants, e.g., E′
OD

and �OD
. In particular,

we do not have estimates for c(D) which are monotone in |D|, because some of the
constants depend on suitable values for η (3.1), and η depends on the distance of√
|D|/3 to the next integer. It seems that c(D) grows asymptotically as fast as√
D/3. If this holds true, then the running time of the Algorithms 3.16 and 3.17 is

not polynomially bounded in the size of D, because a binary coding of D has size
O(log |D|).

4. Ideal sums in quadratic orders

Now we present a different approach for the calculation of the sum of two ideals
in any quadratic order. The following Algorithm 4.2 IDEALSUMOD

generalizes
the previous algorithm in three ways. We are able to compute ideal sums

• with ideals, not necessarily principal ideals,
• in real quadratic fields,
• in orders that are not necessarily maximal orders.

Let D be a squarefree number congruent to 0 or 1 modulo 4. Let OD be the unique
order with discriminant D of the quadratic number field Q(

√
D). Let the pair

(1, ω) form an integral basis of OD, where ω is specified by its minimal polynomial
x2 − TrQ(

√
D)/Q(ω)x + NormQ(

√
D)/Q(ω) over Q. For that reason we are not able

to distinguish between ω and its conjugate σ(ω), where σ is the unique nontrivial
automorphism of Q(

√
D) which is defined by σ :

√
D �→ −

√
D.

4.1. Coding of ideals. Our Algorithm 4.2 requires as inputs two integral ideals
in OD, coded as Z-modules with the basis (1, ω). These inputs can be specified
as two 2 × k matrices (e.g., the matrix in HNF for the two ideals). Now we show
how to convert different codings of ideals in OD into the preferred coding for the
algorithm.

(1) I =
∑k

κ=1 xκOD, xκ ∈ OD.
If the integral ideal I is given by k OD-generators (if I is a principal

ideal, then k = 1 is possible), then we can represent I with 2k Z-generators
because of OD = Z + ωZ.

I =
k∑

κ=1

xκ(Z + ωZ) =
k∑

κ=1

xκZ +
k∑

κ=1

ωxκZ.

Let
xκ = x(0)

κ + ωx(1)
κ ∈ OD, x(0)

κ , x(1)
κ ∈ Z,

be the unique representation w. r. t. the integral basis (1, ω). Then we have

ωxκ = −Norm(ω)x(1)
κ + ω(Tr(ω)x(1)

κ + x(0)
κ)

such that the Z-module I w. r. t. the integral basis (1, ω) can be represented
by the 2 × 2k matrix(

· · · x
(0)
κ −Norm(ω)x(1)

κ · · ·
· · · x

(1)
κ x

(0)
κ + Tr(ω)x(1)

κ · · ·

)
.

We see that I has a representation with finitely many Z-generators (see
case (2)). Furthermore we can assume that k is bounded by 2 because

972 ANDRÉ WEILERT

every integral ideal in a quadratic order has a representation with no more
than two OD-generators [8, Propositions 4.7.7 and 5.2.1].

(2) I =
∑k

κ=1 yκZ, yκ ∈ OD.
The ideal I is given by k Z-generators. Every yκ has a unique represen-

tation yκ = y
(0)
κ + ωy

(1)
κ w. r. t. the integral basis (1, ω). For that reason

the 2 × k matrix (
· · · y

(0)
κ · · ·

· · · y
(1)
κ · · ·

)

represents the ideal I as a Z-module. Furthermore, one can represent I
with a unique upper triangular matrix (k = 2), the HNF of I (see case (3)).

(3) Let I be given as a Z-module by a 2 × k matrix A.
We can assume that k is bounded by 8. Let the coefficients be bounded

by 2n in absolute value. Then we are able to compute the HNF of A in
time O(µ(n) log(n)) [13, Theorem 2.1].

Corollary 4.1. Let I, J be two integral ideals in OD, given in one of the codings (1),
(2) or (3) w. r. t. the integral basis (1, ω). Let the generators for this basis be bounded
by 2n. Then we can compute the HNF of the ideal I + J in time O(µ(N) log N),
where N = O(n + size(ω)).

Proof. If one of the integral ideals I, J is given by two OD-generators (special case
of 1), then we can calculate a representation of the ideal with four Z-generators in
time O(µ(n + size(ω))) using the minimal polynomial of ω, where

size(ω) = max(size(Tr(ω)), size(Norm(ω)))

is an upper bound for the size of the coefficients of the minimal polynomial of ω. The
size of the occuring coefficients in a representation with Z-generators is bounded
by O(n + size(ω)).

Altogether we can assume that the two ideals I, J are given by (at most) four Z-
generators with size O(n + size(ω)). Let AI , AJ denote the corresponding matrices
to I, J, each having two rows. Concatenating AI and AJ yields a 2×k matrix with
k ≤ 8, which represents the ideal I + J as a Z-module. Using [13, Theorem 2.1] we
can calculate the HNF of I + J in time O(µ(N) log N) with N = O(n + size(ω)).

For a fixed chosen order OD and a fixed chosen integral basis (1, ω), we get a
running time of O(µ(n) log n) for the HNF computation. �

4.2. The algorithm IDEALSUM. The following Algorithm 4.2 IDEALSUMOD

first calculates the HNF of the sum I + J , where I and J are the integral ideals in
OD and the input parameters for the algorithm. The HNF of the ideal I +J w. r. t.
the integral basis (1, ω) is unique [8, Proposition 5.2.1] such that we have a unique
representation of I +J. But we are not able to determine whether the Ideal I +J is
a principal ideal, and, if it is a prinicipal ideal, which element in OD is a generator
of I + J. To put it in general words, we could be interested in a representation
for I + J as the product of a canonical representative of the class group Cl(D)
and an algebraic number in QuotOD = Q(

√
D). For that reason we change the

representation of I + J from a view as a Z-module (HNF) to a representation as
a binary quadratic form. Calculating a reduction of binary quadratic forms, we
can find an answer to the question of whether I + J is a principal ideal. If this is
true and OD is an imaginary quadratic order, we can calculate a generator for the

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 973

principal ideal I +J without any knowledge of the class number h(D) (particularly,
this is always possible in the case of h(D) = 1).

Algorithm 4.2 (Fast computation of the sum of two integral ideals in OD). Let
I and J be two integral ideals in OD in a suitable coding as discussed above. Then
the algorithm IDEALSUMOD

calculates the HNF of I +J and the representation
of I + J as a product of a canonical element of the class group Cl(D) and of an
element of QuotOD.
algorithm IDEALSUMOD

(I, J)
(I0) Calculate (if necessary) the coding of I and J as Z-matrices with two rows

and a bounded number of columns;
(I1) Calculate the HNF H =

(
A′ B′

0 C′

)
of I + J w. r. t. the integral basis (1, ω);

(I2) Set A := A′/C ′, B := −2·B′/C ′ − Tr(ω).
Then we have I + J = C ′·

(
AZ + −B+

√
D

2 Z
)

;
(I3) g := (A, B, ∗) (g is a quadratic form with discriminant D);
(I4) Calculate a reduced quadratic form f = (a, b, c) which is equivalent to g

and a matrix M ∈ Γ using Schönhage’s fast algorithm for the reduction
of a binary quadratic form [30] and at most four further reduction steps
(M ·g = f);

(I5) s := C ′·
(
δ − γ b+

√
D

2a

)
, where M =

(
α β
γ δ

)
;

(I6) return H, f, s.

Now we have to show that this algorithm is correct, i.e., f and s are a unique
representation for the ideal I + J, and that the running time of the algorithm is
bounded.

Theorem 4.3. Algorithm 4.2 IDEALSUMOD
calculates for the inputs I and J a

coding of the ideal I+J in time O(µ(N) log N), i.e., the Hermite normal form H and
a quadratic form f as representative of the class group (using the mapping φFI)4 and
a factor s ∈ K = QuotOD. Let 2n be an upper bound for the generators/coefficients
of the coding of the ideals I, J, and set N := n + size(ω) for a fixed chosen integral
basis (1, ω) of OD.

Proof. We have to show that all steps of the Algorithm 4.2 IDEALSUMOD
can be

calculated in the stated running time, and that I + J = s·φFI(f).
The integral ideals I and J are both given with finitely many generators such

that we can calculate a Z matrix with two rows in line (I0) in time O(µ(N)) which
is a coding for the Z-module I + J. From this matrix we can calculate the Hermite
normal form H ∈ Z2×2 of I + J in line (I1) in time O(µ(N) log N) using Hafner
and McCurley’s theorem [13, Theorem 2.1]. We know from (1.1) that H =

(
A′ B′

0 C′

)
is a coding for the ideal

(4.1) I + J = A′Z + (B′ + C ′ω)Z = C ′·(AZ + (B′/C ′ + ω)Z).

Denote by σ the nontrivial automorphism of the number field K. Then we calculate
the discriminant D as

D = d(1, ω) = det
(

1 ω
1 σ(ω)

)2

= (ω − σ(ω))2.

4In contrast to (1.3) we are going to use φFI as a mapping from the set of quadratic forms
into the set of ideals—without any coding of signs.

974 ANDRÉ WEILERT

This implies that ω − σ(ω) =
√

D, and this defines which of the two conjugates is
chosen for ω. One can calculate that

ω −
√

D

2
=

2ω − (ω − σ(ω))
2

=
Tr(ω)

2
such that (4.1) implies that

I + J = C ′·
(

AZ +

(
B′/C ′ +

Tr(ω)
2

+
√

D

2

)
Z

)

= C ′·
(

AZ +
−(−2·B′/C ′ − Tr(ω)) +

√
D

2
Z

)
,

i.e., we calculate the corresponding quadratic form g = φIF (I + J) to f in (I2)
and (I3). The reduction of this form g to an equivalent form f ∈ R(D) can be
done in time O(µ(N) log N) using Schönhage’s fast reduction algorithm [30] (cf.
Theorem 1.2), because g’s coefficients are bounded by O(2N) in absolute value.
Let M ∈ Γ be the reduction matrix with M ·g = f.

It is known that the matrices

S =
(

1 1
0 1

)
and T =

(
0 −1
1 0

)
generate the entire module group Γ [5, Theorem 1.2] and that M has a representa-
tion as

(4.2) M = Sm0TSm1TSm2 · · ·Smr−1TSmr

with minimal r (avoiding redundant factors like (TS)3 = − Id). Note that M ·g = f
is equivalent with

(Sm0TSm1 · · ·Smr−1TSmr)T ·ĝ·(Sm0TSm1 · · ·Smr−1TSmr) = f̂

⇔ (Smr T (TT (· · · (TT (Sm0T ·ĝ·Sm0)T) · · ·)T)Smr) = f̂

using (1.2), where f̂ , ĝ are the corresponding matrices to the quadratic forms f, g.
Now we have to consider the behaviour of the ideals with the S- and T -operations

applied to the corresponding quadratic forms. Let g = (A, B, C) ∈ F(D) be a qua-
dratic form. An S-operation applied to g, Sm·g, does not change the corresponding
ideals, i.e.,

(4.3) φFI(g) = AZ +
−B +

√
D

2
Z = AZ +

−(B + 2mA) +
√

D

2
Z = φFI(Sm·g).

In contrast to this, the corresponding ideals of g and T ·g differ by an element t ∈ K,

φFI(g) = AZ +
−B +

√
D

2
Z = −−B +

√
D

2C
·
(

CZ +
B +

√
D

2
Z

)

= −−B +
√

D

2C
· φFI(T ·g).(4.4)

Applying (4.3) and (4.4) w. r. t. a representation of M yields

φFI(g) = φFI(Sm0 ·g) = s1·φFI(T ·(Sm0 ·g)) = s1·φFI((Sm0T)·g)

= · · · = s1 · · · sr·φFI(M ·g) = s1 · · · sr·φFI(f)

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 975

by the definition of the operation (cf. (1.2)). Let g, f ∈ F(D) be equivalent qua-
dratic forms with

M ·g = f, f = (a, b, c), M =
(

α β
γ δ

)
∈ Γ.

Then we have to show that the following relation for the corresponding ideals holds
true:

φFI(g) =

(
δ − γ

b +
√

D

2a

)
·φFI(f).

In order to prove this we use induction in the length r of a minimal representation
of M (4.2).

In the case of r = 0 we have M = Sm0 such that the Sm0-operation yields the
trivial factor t = 1 (γ = 0, δ = 1 in M).

Now assume r ≥ 1, and assume that the statement is valid for r− 1. We decom-
pose M into the factors M ′, T and Smr with M = M ′TSmr .

(1) Let (a′, b′, c′) = M ′·g. Using the induction assumption we get the factor

t1 = δ′ − γ′ b
′ +

√
D

2a′ , M ′ =
(

α′ β′

γ′ δ′

)
,

with the transition from φFI(g) to φFI(a′, b′, c′), i.e.,

(4.5) φFI(g) = t1·φFI(a′, b′, c′).

(2) Now we are able to apply an operation of T to (a′, b′, c′). Then we get
t2 = −−b′+

√
D

2c′ for the transition from φFI(a′, b′, c′) to φFI(T ·(a′, b′, c′)) =
φFI(c′,−b′, a′), i.e.,

(4.6) φFI(a′, b′, c′) = t2·φFI(c′,−b′, a′).

(3) The operation of Smr on (c′,−b′, a′) does not yield a further factor. We
calculate the corresponding quadratic form Smr ·(c′,−b′, a′) = (c′,−b′ +
2c′mr, ∗) = (a, b, c) with

(4.7) φFI(c′,−b′, a′) = φFI(a, b, c).

Using equations (4.5), (4.6) and (4.7) we get

φFI(g) = t1·φFI(a′, b′, c′) = t1·t2·φFI(a, b, c) = t1·t2·φFI(f).

The transformation from g to the reduced equivalent quadratic form f yields the
factor t1·t2 ∈ K with

t = t1·t2 =

(
δ′ − γ′ b

′ +
√

D

2a′

)
·
(
−−b′ +

√
D

2c′

)

= −δ′
−b′ +

√
D

2c′
+ γ′D − b′2

4a′c′
= −γ′ − δ′

−b′ + 2c′mr − 2c′mr +
√

D

2c′

= −γ′ + δ′mr − δ′
−b′ + 2c′mr +

√
D

2c′
= δ − γ

b +
√

D

2a
,

where M = M ′TSmr =
(

β′ −α′ + β′mr

δ′ −γ′ + δ′mr

)
=

(
α β
γ δ

)
.

We have shown that we calculate the factor s = C ′·t ∈ K from the coefficients of
M and f in (I5). These coefficients are bounded by O(2N) such that we can bound
the running time of this algorithm by O(µ(N) log N). �

976 ANDRÉ WEILERT

Now we would like to discuss two different cases for the application of this algo-
rithm, one for an imaginary quadratic order, and one for a real quadratic order.

4.3. Imaginary quadratic orders. Let the notations be as in Algorithm 4.2
IDEALSUMOD

. In the case of an imaginary quadratic order OD, i.e., D < 0, every
quadratic form g ∈ F(D) is equivalent to exactly one reduced form f ∈ R(D).
Furthermore, the equivalence classes of positive definite quadratic forms are corre-
sponding one-to-one to the elements of the class group Cl(D) such that we can use
the reduced positive definite forms as canonical representatives for the elements of
the class group. For that reason we have f = 1D if and only if the ideal I + J is
principal. In this case we know that s ∈ OD ⊂ K is a generator for the principal
ideal I + J. In the case of h(D) = 1, g is always equivalent to the form 1D, i.e.,
I + J = sOD is principal. In general, we have a representation of the integral ideal
I + J consisting of a (fractional) ideal φFI(f) as a canonical representative of an
element of the class group and of a factor s ∈ K.

Example 4.4. Let D = −20 be the discriminant. The field of fractions of OD

is the number field K := Q(
√
−5) with discriminant D = −20. We choose (1, ω)

as integral basis with ω =
√
−5 and minimal polynomial x2 + 5. We would like to

calculate the ideal sum a of the principal ideals generated by 7 and 1+2
√
−5. Both

of these generators are divisors of 21 in OD. We have the following representation
of a as Z-module: (

7 0 1 −10
0 7 2 1

)
, and in HNF

(
7 4
0 1

)
.

In terms of quadratic forms we get g = (7,−8, 3) for the ideal a which is equivalent
to the reduced positive definite quadratic form f = (2, 2, 3):

M ·g = f, M :=
(

1 1
1 2

)
.

We get a representation of a consisting of the canonical element of the class group
φFI(f) = 2Z + −2+

√
−20

2 Z = 2Z + (−1 +
√
−5)Z and an algebraic number s =

2−1·2+
√
−20

4 = 3
2 −

√
−5
2 ∈ K (which can be decoded from the coefficients of matrix

M). Altogether, we have a = φFI(f)·s, and, in particular, a is not a principal ideal.

4.4. Real quadratic orders. We have to deal with a more difficult situation in
the case of a real quadratic order OD with discriminant D > 0, because for every
quadratic form there can exist more than one equivalent reduced form [5, Theo-
rem 3.5]. The mapping ρ, restricted to reduced forms, is certainly a permutation
of equivalent reduced forms (Figure 4).

Even in this case we get a representation of the ideal sum applying Algorithm 4.2
as a product of an element of the number field K = QuotOD and a representative
of an element of the class group. But such a representative of the class group is
not unique because we can apply ρ at least once to get another equivalent reduced
form (every cycle consists of at least two elements). It is known that the number
of reduced quadratic forms with discriminant D > 0 is bounded by O(

√
D ln D)

[8, Section 5.6.1]. For that reason it is quite expensive to apply ρ again and again
in order to determine whether f ∼ 1D. In addition to that the product of the K-
factors (based on the ρ-application) is growing in a very fast manner such that this
further calculation is more expensive than the calculation of the reduced quadratic

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 977

ρ

g

ρ(g)

f = ρk(g)

Figure 4. Reduction of quadratic forms with positive discriminant

form f. An explanation for this is that the repeated application of ρ, starting with
the reduced form f = (a, b, c) to the equivalent form (a, b, c) or (−a, b,−c) in the
same cycle as f, yields the fundamental unit5 ε of the number field K (up to the
sign and conjugation) as the product of the occuring K-factors. It is conjectured
that the regulator R(D) = ln ε is “usually” of the order

√
D using Brauer-Siegel’s

Theorem [34, 2, 3], and [21, Chapter XVI] if we assume that the class number of real
quadratic number fields is usually very small (verified using heuristic observations
by Cohen-Lenstra [8, Conjecture 5.10.2]). In general, the fundamental unit has
coefficients with length O(

√
D) in a representation with a fixed integral basis which

is not polynomial in the size of D. Therefore, the calculation of a generator of a
principal ideal is in general quite expensive as the following example shows.

Example 4.5. Let OD be the real quadratic order with discriminant D = 102001
and integral basis (1, ω), ω = 1+

√
D

2 . Note that D is prime and h(D) = 1. We
have 1D = (1, �

√
D�, ∗) = (1, 319,−60). Starting from the form 1D we reach the

equivalent form (−1, 319, 60), which can be identified with 1D, after applying 649
cyclic ρ-reductions. The thereby calculated fundamental unit is

ε =1315620449239084724903405151848396439158554211019562343449584105775353667081105470

7612443332188586672182058715994487425343801667577669897553380091806120961250163449

4021997475623199062688503046155657482339023207918903316604812940047905424960925615

123327945093761601581445042290725659283849941921935301980656690663459231926824879

+8264571696871634372657968352123024632758953676405362561800373376469713988921472522

6226945583571404083925887460386048317931160045049287833584590604162977996510329906

6775002473510320222583639990827404694971684963103602062362176265785732661202541989

202570056716206101639556729609649823653974770698307419220754323558102029984402 · ω,

where Norm(ε) = −1 and R(D) ≈ 751.6133. This example shows us that generators
of prinicipal ideals can be very large because it can be necessary to calculate many
ρ-reductions until one arrives at the form 1D.

Now we would like to calculate the ideal sum 2288OD + (771 + ω)OD which has
as HNF obviously (

2288 771
0 1

)
.

5The fundamental unit of a real quadratic number field (canonically embedded in R) is an
algebraic integer ε with norm equals to +1 or −1 and smallest absolute value |ε| > 1.

978 ANDRÉ WEILERT

We convert this HNF into the corresponding quadratic form g = (2288,−1543, 249),
which is equivalent to the reduced form f = (−100, 151, 198) with

M ·g = f, M =
(
−1 1
−3 2

)
.

Using M and Theorem 4.3 we decode the K-factor as s′ = −1
4 − 3

100ω. (Because
there does not exist a unique reduced form f which is equivalent to g, we recommend
using the HNF representation of the ideal sum for tests of equality or inclusion.)
Calculations in the cycle of f with the ρ-mapping help us to find out whether the
ideal sum is principal or not. In our example (class number 1, i.e., every ideal is
principal) we arrive at the form (−1, 319, 60) which can be identified with 1D after
324 ρ-steps:

ρ324(−100, 151, 198) = ρ323(198, 245,−53) = ρ322(−53, 285, 98)

= ρ321(98, 303,−26) = · · · = ρ2(−96, 281, 60) = ρ1(60, 319,−1) = (−1, 319, 60).

Thus we calculated a factor s′′ ∈ K which is approximately half as long as the fun-
damental unit because f is lying roughly halfway between (1, 319, ∗) and (−1, 319, ∗)
in the cycle. Altogether we achieve as a factor s = s′ · s′′,

s =21875907231709832722209227464079943826621818229241368530055707574256026711082040764

2455834050145011465582075650427399009689447239806720825581731627101505238489885439

−13656397715170209193388544179957494494847032635857341364503584604229297423839852386

66535810890521263222727897483912288469995367549982594219883013690467568135293131 · ω,

and because of f ∼ 1D (this follows from h(D) = 1 as well) we have I + J =
sOD. One can calculate that Norm(2288OD) = 5234944, Norm((771 + ω)OD) =
569712, and Norm(sOD) = −2288. Even a multiplication of s with a power of
the fundamental unit ε does not yield another generator for the principal ideal
I + J = sOD with a significantly smaller representation for the chosen integral
basis because the form f ∈ R(D) has a large distance to the 1D in the cycle using
ρ or ρ−1 (ρ is invertible for every cycle of equivalent reduced forms). It seems
that the generator of a principal ideal could not be calculated in a different way
in polynomial time of size(D) = O(log |D|) because the coding of a generator can
have a length of O(

√
D).

Remark 4.6. There exists at least one different kind of coding for the fundamental
unit and for generators of principal ideals which has only a length of O(lnD) [4].
We do not discuss such a coding because it has no main focus on generators of
principal ideals. Even for the representation of the ideal sum (despite the question
of whether it is a principal ideal) we can use the HNF which can be calculated in
an asymptotically fast manner.

Remark 4.7. The decision of whether an ideal is principal can be made asymptoti-
cally fast if we allow expensive precalculations for the real quadratic order. At first
one calculates all the O(

√
D ln D) reduced quadratic forms, whose coefficients are

bounded by
√

D, and identifies (a, b, c) with (−a, b,−c). Each of these forms can
be found in one of the h(D) cycles which are numbered with 1, . . . , h(D). Assume
that cycle 1 contains the form 1D. The coding of a form and of the containing
cycle is possible with O(log

√
D + log h(D)) = O(log D) space. A coding for all the

reduced forms requires O(
√

D log2 D) space. Using suitable data structures (e.g., a
balanced tree) it is possible to determine the number of the cycle which contains the
given form in time O(log(

√
D ln D) + log D) = O(log D). Therefore, after building

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 979

up such data structure, one can use Algorithm 4.2 and then determine whether the
1D-cycle contains the reduced form f, i.e., whether I + J is a principal ideal.

Note that the precalculation is at least as expensive as the calculation of the class
number of an order for which no polynomial-time algorithm is known. The fastest
known algorithm for the calculation of a class number is Buchmann’s Algorithm [8,
Section 5.9] and has a sub-exponential running-time.

5. Conclusion

We presented two different approaches and corresponding Algorithms 3.16
SGCDOD

and 4.2 IDEALSUMOD
for the calculation of an ideal sum in a qua-

dratic order. In order to calculate the sum of two principal ideals in a fixed cho-
sen imaginary quadratic ring of algebraic integers with fundamental discriminant
D < 0, we can use both algorithms and achieve the same asymptotically running
time O(µ(N) log N).

If we consider D as input for the algorithms, then the running time of Al-
gorithm 3.16 SGCDOD

contains additional factors which correspond to the ring-
specific constants for the imaginary quadratic ring of algebraic integers. The run-
ning time for a single SD-euclidean step depends on the size of the euclidean set
SD and can be bounded by O(

√
|D|/3·µ(N)) for a fixed chosen integral basis. In

addition to that, further factors, not monotone in |D|, influence the running time,
e.g., the SD euclidean minimum EOD

depends on the distance of
√
|D|/3 to the

next integer (cf. Table 1). It remains to discuss whether other S-euclidean sets
can be found for this algorithm which would lead to a smaller running time in D.
Assuming the GRH one can conjecture that the size of the S-euclidean set can be
bounded by 6 ln2 |D|, because the prime numbers p ≤ 6 ln2 |D| generates the class
group [40, Section 4.4].

However, the running time of Algorithm 4.2 IDEALSUMOD
is not changed by

a factor if we consider D as an input. Furthermore the discriminant D is coded in
the chosen integral basis, and a suitable integral basis can be coded in O(log |D|)
bits. For that reason this algorithm is uniformly fast for any discriminant and class
number such that it is well suited for large discriminants.

Both different approaches are not suitable in an obvious manner for the compu-
tation of ideal sums in number fields of higher degrees because we used the corre-
spondence between ideals and binary quadratic forms and their fast reduction. It
is not possible to transfer the concept of the S-euclidean domains to number fields
of higher degrees because their rings of algebraic integers are not discrete subrings
of C [33, Theorem 30]. Certainly the theory of S-euclidean domains can be applied
to number fields of higher degrees whose rings of algebraic integers are euclidean
w. r. t. | · |.

References

1. T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, second ed., Grad.
Texts in Math., vol. 41, Springer-Verlag, Berlin, 1997. MR1027834 (90j:11001)

2. R. Brauer, On the Zeta-Function of Algebraic Number Fields, Amer. J. Math. 69 (1947),
243–250. MR0020597 (8:567h)

3. , On the Zeta-Function of Algebraic Number Fields II, Amer. J. Math. 72 (1950),
739–746. MR0039009 (12:482g)

http://www.ams.org/mathscinet-getitem?mr=1027834
http://www.ams.org/mathscinet-getitem?mr=1027834
http://www.ams.org/mathscinet-getitem?mr=0020597
http://www.ams.org/mathscinet-getitem?mr=0020597
http://www.ams.org/mathscinet-getitem?mr=0039009
http://www.ams.org/mathscinet-getitem?mr=0039009

980 ANDRÉ WEILERT

4. J. Buchmann, C. Thiel, and H. Williams, Short Representation of Quadratic Integers, Com-
putational Algebra and Number Theory (Sydney University, November 1992) (W. Bosma and
A. van der Poorten, eds.), Math. Appl., vol. 325, Kluwer Academic Publishers, Dordrecht,
Netherlands, 1995, pp. 159–185. MR1344929 (96c:11144)

5. D. A. Buell, Binary Quadratic Forms, Classical Theory and Modern Computations, Springer-
Verlag, Berlin, 1989. MR1012948 (92b:11021)

6. B. F. Caviness, A Lehmer-Type Greatest Common Divisor Algorithm for Gaussian Integers,

SIAM Rev. 15 (1973), no. 2, 414.
7. B. F. Caviness and G. E. Collins, Algorithms for Gaussian Integer Arithmetic, Proceedings of

the 1976 ACM Symposium on Symbolic and Algebraic Computation SYMSAC’76 (Yorktown
Heights) (R. D. Jenks, ed.), 1976, pp. 36–45.

8. H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., vol.
138, Springer-Verlag, Berlin, 1996, Third, Corrected Printing. MR1228206 (94i:11105)

9. , Hermite and Smith Normal Form Algorithms over Dedekind Domains, Math. Comp.
65 (1996), no. 216, 1681–1699. MR1361805 (97e:11159)

10. , Advanced Topics in Computational Number Theory, Grad. Texts in Math., vol. 193,
Springer-Verlag, Berlin, 2000. MR1728313 (2000k:11144)

11. G. E. Collins, A Fast Euclidean Algorithm for Gaussian Integers, J. Symbolic Comput. 33
(2002), 385–392. MR1890576 (2003a:11159)

12. C. F. Gauß, Untersuchungen über höhere Arithmetik (Disquisitiones Arithmeticae), Chelsea

Publishing Company, Bronx, New York, 1889, Neudruck 1965, Übersetzung ins Deutsche von
H. Maser (ed.). MR0188045 (32:5488)

13. J. L. Hafner and K. S. McCurley, Asymptotically Fast Triangulation of Matrices over Rings,
SIAM J. Comput. 20 (1991), no. 6, 1068–1083. MR1135749 (93d:15021)

14. T. L. Heath, The Thirteen Books of Euclid’s Elements, second ed., vol. 2, Cambridge Univer-
sity Press, New York, 1956, Books III–IX. MR0075873 (17:814b)

15. K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second ed.,
Grad. Texts in Math., vol. 84, Springer-Verlag, Berlin, 1990. MR1070716 (92e:11001)

16. E. Kaltofen and H. Rolletschek, Arithmetic in Quadratic Fields with Unique Factorization,
Proceedings of the EUROCAL’85 Conference on Computer Algebra (Linz, Austria, April 1–3,
1985) B. F. Caviness, ed., Lecture Notes in Comput. Sci., vol. 204, Springer-Verlag, Berlin,
1985, pp. 279–288. MR0826569 (87c:11099)

17. , Computing Greatest Common Divisors and Factorizations in Quadratic Number
Fields, Math. Comp. 53 (1989), no. 188, 697–720. MR0982367 (90a:11154)

18. D. E. Knuth, The Analysis of Algorithms, Actes du Congrès International des Mathématiciens
(1/10 septembre 1970, Nice, France) (Paris) (Comité d’Organisation du Congrès, ed.), vol. 3,
Gauthier-Villars, 1971, pp. 269–274. MR0423865 (54:11839)

19. , Seminumerical Algorithms, third ed., The Art of Computer Programming, vol. 2,
Addison-Wesley, Reading, MA, 1998. MR0633878 (83i:68003)

20. S. Lang, Algebra, third ed., Addison-Wesley, Reading, MA, 1993. MR1878556 (2003e:00003)
21. , Algebraic Number Theory, second ed., Grad. Texts in Math., vol. 110, Springer-

Verlag, Berlin, 1994. MR1282723 (95f:11085)
22. D. H. Lehmer, Euclid’s Algorithm for Large Numbers, Amer. Math. Monthly 45 (1938), 227–

233.
23. F. Lemmermeyer, The Euclidean Algorithm in Algebraic Number Fields, Exposition. Math.

13 (1995), 385–416. MR1362867 (96i:11115)
24. H. W. Lenstra, Jr, On the Computation of Regulators and Class Numbers of Quadratic Fields,

London Math. Soc. Lecture Note Ser. 56 (1982), 123–150. MR0697260 (86g:11080)
25. U. Manber, Introduction to Algorithms. A Creative Approach, Addison-Wesley, Reading, MA,

1989. MR1091251 (93a:68002)
26. J. Neukirch, Algebraic Number Theory, Grundlehren Math. Wiss., vol. 322, Springer-Verlag,

Berlin, 1999. MR1697859 (2000m:11104)
27. D. J. Newman, Analytic Number Theory, Grad. Texts in Math., vol. 177, Springer-Verlag,

Berlin, 1998. MR1488421 (98m:11001)
28. A. Schönhage, Schnelle Berechnung von Kettenbruchentwicklungen, Acta Inform. 1 (1971),

139–144.
29. , IGCDOC, Computation of Integer GCD’s, Unpublished Manuscript, 1987.

http://www.ams.org/mathscinet-getitem?mr=1344929
http://www.ams.org/mathscinet-getitem?mr=1344929
http://www.ams.org/mathscinet-getitem?mr=1012948
http://www.ams.org/mathscinet-getitem?mr=1012948
http://www.ams.org/mathscinet-getitem?mr=1228206
http://www.ams.org/mathscinet-getitem?mr=1228206
http://www.ams.org/mathscinet-getitem?mr=1361805
http://www.ams.org/mathscinet-getitem?mr=1361805
http://www.ams.org/mathscinet-getitem?mr=1728313
http://www.ams.org/mathscinet-getitem?mr=1728313
http://www.ams.org/mathscinet-getitem?mr=1890576
http://www.ams.org/mathscinet-getitem?mr=1890576
http://www.ams.org/mathscinet-getitem?mr=0188045
http://www.ams.org/mathscinet-getitem?mr=0188045
http://www.ams.org/mathscinet-getitem?mr=1135749
http://www.ams.org/mathscinet-getitem?mr=1135749
http://www.ams.org/mathscinet-getitem?mr=0075873
http://www.ams.org/mathscinet-getitem?mr=0075873
http://www.ams.org/mathscinet-getitem?mr=1070716
http://www.ams.org/mathscinet-getitem?mr=1070716
http://www.ams.org/mathscinet-getitem?mr=0826569
http://www.ams.org/mathscinet-getitem?mr=0826569
http://www.ams.org/mathscinet-getitem?mr=0982367
http://www.ams.org/mathscinet-getitem?mr=0982367
http://www.ams.org/mathscinet-getitem?mr=0423865
http://www.ams.org/mathscinet-getitem?mr=0423865
http://www.ams.org/mathscinet-getitem?mr=0633878
http://www.ams.org/mathscinet-getitem?mr=0633878
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.ams.org/mathscinet-getitem?mr=1282723
http://www.ams.org/mathscinet-getitem?mr=1282723
http://www.ams.org/mathscinet-getitem?mr=1362867
http://www.ams.org/mathscinet-getitem?mr=1362867
http://www.ams.org/mathscinet-getitem?mr=0697260
http://www.ams.org/mathscinet-getitem?mr=0697260
http://www.ams.org/mathscinet-getitem?mr=1091251
http://www.ams.org/mathscinet-getitem?mr=1091251
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1697859
http://www.ams.org/mathscinet-getitem?mr=1488421
http://www.ams.org/mathscinet-getitem?mr=1488421

COMPUTATION OF IDEAL SUMS IN QUADRATIC ORDERS 981

30. , Fast Reduction and Composition of Binary Quadratic Forms, Proceedings of the
1991 International Symposium on Symbolic and Algebraic Computation ISSAC’91 (Bonn,
Germany, July 15–17, 1991) S. M. Watt, ed., ACM Press, New York, 1991, pp. 128–133.

31. A. Schönhage, A. F. W. Grotefeld, and E. Vetter, Fast Algorithms – A Multitape Turing
Machine Implementation, BI Wissenschaftsverlag, Mannheim, Germany, 1994. MR1290996
(96c:68043)

32. A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing 7 (1971),

281–292. MR0292344 (45:1431)
33. M. A. Shokrollahi and V. Stemann, Approximation of Complex Numbers by Cyclotomic Inte-

gers, Technical Report TR-96-033, International Computer Science Institute, Berkeley, Sep-
tember 1996.

34. C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83–86.
35. D. Stehle and P. Zimmermann, A Binary Recursive GCD Algorithm, Proceedings of the Sixth

International Algorithmic Number Theory Symposium ANTS VI (Burlington, VT, June 13–
18, 2004) D. Buell, ed., Lecture Notes in Comput. Sci., vol. 3076, Springer-Verlag, Berlin,
2004, pp. 411–425.

36. J. Stein, Computational Problems Associated with Racah Algebra, J. Comput. Phys. 1 (1967),
397–405.

37. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press,
New York, 1999. MR1689167 (2000j:68205)

38. A. Weilert, (1 + i)-ary GCD Computation in Z[i] as an Analogue to the Binary GCD Algo-
rithm, J. Symbolic Comput. 30 (2000), 605–617. MR1797272 (2001k:11265)

39. , Asymptotically Fast GCD Computation in Z[i], Proceedings of the Fourth Interna-
tional Algorithmic Number Theory Symposium ANTS IV (Leiden, The Netherlands, July
2–7, 2000) W. Bosma, ed., Lecture Notes in Comput. Sci., vol. 1838, Springer-Verlag, Berlin,
2000, pp. 595–613. MR1850636 (2002k:11226)

40. , Effiziente Algorithmen zur Berechnung von Idealsummen in quadratischen Ordnun-
gen, Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Rheinischen-Friedrich-
Wilhelms Universität Bonn, Juli 2000.

41. , Fast Computation of the Biquadratic Residue Symbol, J. Number Theory 96 (2002),

133–151. MR1931197 (2003j:11006)

Department of Computer Science II, University of Bonn, Römerstraße 164, 53117

Bonn, Germany

Current address: Liliencronstr. 8, 12167 Berlin, Germany
E-mail address: andre@weilert.de

http://www.ams.org/mathscinet-getitem?mr=1290996
http://www.ams.org/mathscinet-getitem?mr=1290996
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=0292344
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=1689167
http://www.ams.org/mathscinet-getitem?mr=1797272
http://www.ams.org/mathscinet-getitem?mr=1797272
http://www.ams.org/mathscinet-getitem?mr=1850636
http://www.ams.org/mathscinet-getitem?mr=1850636
http://www.ams.org/mathscinet-getitem?mr=1931197
http://www.ams.org/mathscinet-getitem?mr=1931197

	1. Introduction
	1.1. Historical overview
	1.2. Notations

	2. Concept of S-euclidean domains
	2.1. Generalization of euclidean domains
	2.2. Controlled S-euclidean descent in S-euclidean domains

	3. GCD computation in imaginary quadratic ringsof algebraic integers
	3.1. Imaginary quadratic orders as examples of S-euclidean domains
	3.2. Fast GCD computation in rings of algebraic integers of imaginary quadratic number fields using the concept of S-euclidean domains

	4. Ideal sums in quadratic orders
	4.1. Coding of ideals
	4.2. The algorithm IDEALSUM
	4.3. Imaginary quadratic orders
	4.4. Real quadratic orders

	5. Conclusion
	References

