
MATHEMATICS OF COMPUTATION
Volume 75, Number 254, Pages 791–815
S 0025-5718(05)01801-6
Article electronically published on November 30, 2005

STRUCTURED PRECONDITIONERS
FOR NONSINGULAR MATRICES

OF BLOCK TWO-BY-TWO STRUCTURES

ZHONG-ZHI BAI

Abstract. For the large sparse block two-by-two real nonsingular matrices,
we establish a general framework of practical and efficient structured precon-
ditioners through matrix transformation and matrix approximations. For the
specific versions such as modified block Jacobi-type, modified block Gauss-
Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type
preconditioners, we precisely describe their concrete expressions and deliber-
ately analyze eigenvalue distributions and positive definiteness of the precon-
ditioned matrices. Also, we show that when these structured preconditioners
are employed to precondition the Krylov subspace methods such as GMRES
and restarted GMRES, fast and effective iteration solvers can be obtained for
the large sparse systems of linear equations with block two-by-two coefficient
matrices. In particular, these structured preconditioners can lead to efficient

and high-quality preconditioning matrices for some typical matrices from the
real-world applications.

1. Introduction

Let Rn represent the real n-dimensional vector space, and Rn×n the real
n × n matrix space. Consider an iterative solution of the large sparse system of
linear equations

(1.1) Ax = b, A ∈ R
n×n nonsingular and x, b ∈ R

n.

In this paper, we will study algorithmic constructions and theoretical properties of
practical and efficient structured preconditioners to the matrix A ∈ Rn×n which is
of the block two-by-two structure

A =
[

B E
F C

]
,(1.2)

where B ∈ Rp×p nonsingular, C ∈ Rq×q, E ∈ Rp×q and F ∈ Rq×p, with p ≥ q, such
that A ∈ R

n×n is nonsingular. Evidently, when the matrix block B is nonsingular,
the matrix A is nonsingular if and only if its Schur complement SA = C −FB−1E
is nonsingular.
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Linear systems of the form (1.1)–(1.2) arise in a variety of scientific and engineer-
ing applications, including computational fluid dynamics [21, 23, 26], mixed finite
element approximation of elliptic partial differential equations [16, 38], optimization
[25, 30, 34], optimal control [13], weighted and equality constrained least squares
estimation [14], stationary semiconductor device [36, 42, 43], structural analysis
[44], electrical networks [44], inversion of geophysical data [31], and so on.

As we have known, preconditioned Krylov subspace methods [40] are efficient
iterative solvers for the system of linear equations (1.1)–(1.2), and effective and
high-quality preconditioners play a crucial role to guarantee their fast convergence
and economical costs. A number of structured preconditioners have been studied
in the literature for some special cases of the block two-by-two matrix A in (1.2).
Besides specialized incomplete factorization preconditioners [17, 18] we mention,
among others, algebraic multilevel iteration preconditioners [2, 3, 4, 5, 12], block
and approximate Schur complement preconditioners [21, 23], splitting iteration pre-
conditioners [15, 19, 22, 28, 29, 39, 45], block definite and indefinite preconditioners
[24, 34, 38, 10], and block triangular preconditioners [35, 37, 10]. Theoretical anal-
yses and experimental results have shown that these preconditioners may lead to
nicely clustered eigenvalue distributions of the preconditioned matrices and, hence,
result in fast convergence of the preconditioned Krylov subspace iteration methods
for solving the large sparse system of linear equations (1.1)–(1.2). However, exact
inversions of the matrix block B or C, as well as the Schur complement SA, are
demanded for most of these preconditioners, which makes them less practical and
effective in actual applications.

In this paper, by sufficiently utilizing the matrix structure and property, we first
establish a general framework of a class of practical and efficient structured pre-
conditioners to the matrix A ∈ R

n×n in (1.2) through matrix transformation and
several steps of matrix approximations; these preconditioners can avoid the exact
inversions of the matrix blocks B and C, as well as the Schur complement SA,
and cover the known preconditioners mentioned previously as special cases. Then,
with this framework we further present a family of practical and efficient precon-
ditioners by technically combining it with the modified block relaxation iterations
[6, 7], which includes the modified block Jacobi-type, the modified block Gauss-
Seidel-type and the modified block unsymmetric (symmetric) Gauss-Seidel-type
preconditioners as typical examples. Moreover, we particularly discuss the eigen-
value distributions and the positive definiteness of the preconditioned matrices with
respect to the modified block Jacobi-type, the modified block Gauss-Seidel-type,
and the modified block unsymmetric (symmetric) Gauss-Seidel-type precondition-
ers to the block two-by-two matrix A, and deliberately address the applications
of these preconditioners to three classes of real-world matrices, i.e., the symmet-
ric positive definite matrix, the saddle point matrix and the Hamiltonian matrix.
Besides, we show that when these structured preconditioners are employed to pre-
condition the Krylov subspace methods such as GMRES or restarted GMRES, fast
and effective iteration solvers can be obtained for the large sparse system of linear
equations (1.1)–(1.2).

The organization of this paper is as follows. After establishing the general frame-
work of the structured preconditioners in Section 2, we present the modified block
splitting iteration preconditioners and study the eigenvalue distributions and the
positive definiteness of the corresponding preconditioned matrices in Section 3;
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connections of these preconditioners to Krylov subspace iteration methods are also
briefly discussed in this section. Specifications of these preconditioners to three
classes of real-world matrices are investigated in Section 4. Finally, in Section 5,
we use a brief conclusion and several remarks to end the paper.

2. General framework of the structured preconditioners

The construction of our structured preconditioners basically includes the follow-
ing three steps: Firstly, seek two nonsingular block two-by-two matrices P, Q ∈
Rn×n such that P and Q are easily invertible and A = PHQ holds for a block
two-by-two matrix H ∈ Rn×n of certain good properties; secondly, approximate
the matrix H by another block two-by-two matrix W ∈ R

n×n by dropping some
higher-order small block quantities; thirdly, approximate the matrix W further by
another block two-by-two matrix W ∈ Rn×n that is also easily invertible. Then,
the resulting preconditioners are of the form M = PWQ. See [9, 11].

Let LB, RB ∈ R
p×p and LC , RC ∈ R

q×q be nonsingular matrices such that

(2.1) L−1
B BR−1

B = JB and L−1
C CR−1

C = JC ,

or equivalently,

(2.2) B = LBJBRB and C = LCJCRC ,

where JB ∈ Rp×p is a matrix approximating the identity matrix IB ∈ Rp×p, and
JC ∈ R

q×q is a matrix approximating the identity matrix IC ∈ R
q×q when it is

positive definite and approximating −IC ∈ Rq×q when it is negative definite. For
simplicity, in the sequel we will abbreviate the identity matrices IB and IC as I,
with their dimensions being inferred from the context.

Evidently, LB, RB and LC , RC can be considered as split preconditioners to
the matrix blocks B and C, respectively, whose preconditioning properties can
be measured by the approximation degrees of the matrices JB and ±JC to the
identity matrix I. There are many possible choices of the matrices LB , RB and
LC , RC . For example, they may be the incomplete lower-upper triangular factors
[2, 40], the incomplete orthogonal triangular factors [8], the approximate inverse
preconditioners [40], the splitting iteration matrices [2, 6, 7, 27], the multigrid or the
algebraic multilevel approximations [2, 3, 4, 5, 12], or even technical combinations
of the above-mentioned matrices, to the matrix blocks B and C, respectively.

In particular, when C ∈ Rq×q is singular, besides the possible choices mentioned
above, we may choose LC and RC according to the following cases:

(i) If C is a symmetric positive semidefinite matrix, we may let LC = RC = I.
Hence, JC = C is also symmetric positive semidefinite.

(ii) If C is a symmetric negative semidefinite matrix, we may let LC = −I
and RC = I (or LC = I and RC = −I). Hence, JC = −C is symmetric
positive semidefinite. Or we may let LC = RC = I. Hence, JC = C is also
symmetric negative semidefinite.

(iii) If C is a general singular matrix, we may let LC = RC = I. Hence, JC = C
is also singular.

To construct a high-quality structured preconditioner to the block two-by-two
matrix A ∈ Rn×n, we introduce matrices

DL =
[

LB O
O LC

]
, DR =

[
RB O
O RC

]



794 ZHONG-ZHI BAI

and

(2.3) E = L−1
B ER−1

C , F = L−1
C FR−1

B ,

where O denotes the zero matrix. Then from (2.2) we have

A =
[

B E
F C

]
=

[
LBJBRB E

F LCJCRC

]
=

[
LB O
O LC

] [
JB L−1

B ER−1
C

L−1
C FR−1

B JC

] [
RB O
O RC

]
:= DLADR,

where

A :=
[

JB E
F JC

]
.

Furthermore, we can find a unit lower triangular matrix L ∈ R
n×n and a unit

upper triangular matrix U ∈ Rn×n of block two-by-two structures such that H =
LAU is block-diagonally dominant as far as possible and may also possess some
other desired good properties.

In fact, if we let

L =
[

I O
L21 I

]
and U =

[
I U12

O I

]
,

then by concrete computations we obtain

H =
[

H11 H12

H21 H22

]
:= LAU

=
[

I O
L21 I

] [
JB E
F JC

] [
I U12

O I

]
with{

H11 = JB , H12 = JBU12 + E,
H21 = L21JB + F , H22 = JC + L21JBU12 + L21E + FU12,

and

A = DLADR = DL(L−1HU−1)DR = (DLL−1)H(U−1DR) := PHQ

with

(2.4) P := DLL−1 =
[

LB O
O LC

] [
I O

−L21 I

]
=

[
LB O

−LCL21 LC

]
and

(2.5) Q := U−1DR =
[

I −U12

O I

] [
RB O
O RC

]
=

[
RB −U12RC

O RC

]
.

We can now choose the matrices L and U such that either of the following two
principles is satisfied as far as possible:

(P1) the matrix H is block-diagonally dominant and symmetric;
(P2) the matrix H is block-diagonally dominant and skew-symmetric.
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This is because if the matrix H satisfies either of the principles (P1) and (P2), we
can easily construct a good approximation to it, and hence, obtain a high-quality
preconditioner M to the original matrix A.

According to both (P1) and (P2), we can take L21 and U12 such that{
H21 = L21JB + F ≈ (JBU12 + E)T = ±HT

12,
H21 = L21JB + F ≈ O.

Recalling that JB ≈ I, we can let

L21 = −F and U12 = −E.

Thus, for both cases, it follows from (2.4) and (2.5) that the matrices P and Q have
the following expressions:

(2.6) P =
[

LB O
LCF LC

]
, Q =

[
RB ERC

O RC

]
.

Therefore, for these choices of the matrices P and Q, we have

H =
[

JB (I − JB)E
F (I − JB) JC − FE − F (I − JB)E

]
≈

[
JB (I − JB)E

F (I − JB) JC − FE

]
:= W.

(2.7)

Because the nonsingularity of the matrix A implies that the matrix A and its
Schur complement SA := JC − FJ−1

B E are nonsingular, and

(2.8) JC − FE = SA + F (I − JB)J−1
B E

and the Schur complement of W is

SW := JC − FE − F (I − JB)J−1
B (I − JB)E = SA − F (I − JB)J−1

B E,

we immediately know that when

(2.9) ‖I − JB‖2 < max

{
1

1 + ‖E‖2‖S−1
A

F‖2

,
1

1 + ‖ES−1
A

‖2‖F‖2

}
,

both matrices JC − FE and W are nonsingular.
Now, if we let W ∈ Rn×n be a nonsingular “replacement” of the matrix W , or

in other words, a “replacement” to the matrix H, then the matrix

(2.10) M = PWQ

is a natural preconditioner to the original matrix A ∈ R
n×n, and under the condition

(2.9) this preconditioner is well defined.
Note that here we use the term “replacement” rather than “approximation”.

This is because sometimes we may choose the matrix W being not an approximation
to W in the usual sense so that the obtained preconditioner and the preconditioned
matrix can possess some desired properties such as positive definiteness and, hence,
a specified Krylov subspace iteration method may exploit its efficiency sufficiently.

If M is used as a left preconditioner to A, then

(2.11) M−1A = (PWQ)−1(PHQ) = Q−1(W−1H)Q := Q−1KLQ

with

(2.12) KL = W−1H.
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Therefore, the preconditioning property of M to A is determined by the properties
of the matrices KL and Q. If M is used as a right preconditioner to A, then

(2.13) AM−1 = (PHQ)(PWQ)−1 = P (HW−1)P−1 := PKRP−1

with

(2.14) KR = HW−1.

Therefore, the preconditioning property of M to A is determined by the properties
of the matrices KR and P . In general, if the matrix W admits a split form

(2.15) W = WLWR,

then (2.10) straightforwardly leads to a split preconditioner

(2.16) M = (PWL)(WRQ) := MLMR, with ML = PWL and MR = WRQ

to the original matrix A. Because

(2.17) M−1
L AM−1

R = (PWL)−1(PHQ)(WRQ)−1 = W−1
L HW−1

R := K,

we see that the preconditioning property of M to A is determined by the property
of the matrix K.

Evidently, the matrices KL, KR and K are similar, and hence, they have exactly
the same spectrum. However, the eigenvectors of these kinds of preconditioned
matrices are usually quite different, which may lead to different performance results
of the corresponding preconditioned Krylov subspace iteration methods.

In actual applications, when the matrix M defined in (2.10) is employed as
a preconditioner to some Krylov subspace iteration method for solving the block
two-by-two system of linear equations (1.1), we need to solve a generalized residual
equation of the form

(2.18) Mz = r

at each iteration step, where r is the current residual vector. By making use of the
two-by-two block structure of M , we can obtain the following practical procedure
for computing the generalized residual vector z = M−1r.

Procedure for computing the generalized residual vector. Let r=(rT
1 , rT

2 )T,
z = (zT

1 , zT
2 )T and w = (wT

1 , wT
2 )T, with r1, z1, w1 ∈ Rp and r2, z2, w2 ∈ Rq.

1. Solve LBt1 = r1 and LCt2 = r2 to get t1 and t2, and let t2 := t2 +
Ft1.

2. Solve Ww = t to get w, with t = (tT1 , tT2 )T.
3. Solve RCz2 = w2 and RBz1 = w1 − Ew2 to get z1 and z2.

When the approximation matrix W ∈ Rn×n to the matrix W ∈ Rn×n is specified,
a concrete procedure for computing the generalized residual vector z ∈ R

n defined
by (2.18) can be straightforwardly obtained from this procedure.

Usually, the matrix W ∈ Rn×n may involve information about the matrices JB ,
JC , E and F . Therefore, to solve the linear system Ww = t we may need to
compute the vectors{

w1 = JBw1 = L−1
B BR−1

B w1, w̃1 = Fw1 = L−1
C FR−1

B w1,
w2 = JCw2 = L−1

C CR−1
C w2, w̃2 = Ew2 = L−1

B ER−1
C w2.
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These vectors can be economically computed by the following formulas:
1. Solve RBt1 = w1.
2. Solve LBw1 = Bt1, LCw̃1 = Ft1.
3. Solve RCt2 = w2.
4. Solve LCw2 = Ct2, LBw̃2 = Et2.

3. Several practical structured preconditioners

In this section, we will construct three classes of structured approximations W
to the block two-by-two matrix W , or in other words, to the block two-by-two
matrix H in (2.7), by making use of the modified block Jacobi, the modified block
Gauss-Seidel and the modified block unsymmetric Gauss-Seidel splittings of W .
See [6, 7] for details. Therefore, three types of structured preconditioners to the
original block two-by-two matrix A ∈ Rn×n, called the modified block Jacobi-type
(MBJ-type) preconditioner, the modified block Gauss-Seidel-type (MBGS-type)
preconditioner and the modified block unsymmetric Gauss-Seidel-type (MBUGS-
type) preconditioner, can be obtained, correspondingly.

To analyze the spectral property of the preconditioned matrices with respect to
the above-mentioned preconditioners, we need the following two basic facts.

Lemma 3.1. Let L ∈ R(p+q)×(p+q) and U ∈ R(p+q)×(p+q) be unit lower and upper
triangular matrices of the block two-by-two forms

L =
[

I O
L21 I

]
and U =

[
I U12

O I

]
,

where L21 ∈ Rq×p and U12 ∈ Rp×q. Let

γ(t) =
[
1 +

1
2
t
(
t +

√
t2 + 4

)] 1
2

(3.1)

be a monotone increasing function with respect to t in the interval [0, +∞). Then
it follows that

‖L‖2 = γ(‖L21‖2) and ‖U‖2 = γ(‖U12‖2).

Proof. By direct computations we have

LT L =
[

I LT
21

O I

] [
I O

L21 I

]
=

[
I + LT

21L21 LT
21

L21 I

]
.

Without loss of generality, we assume p ≥ q. From Theorem 2.5.2 in [27, page 70]
we know that the matrix L21 admits a singular value decomposition (SVD), i.e.,
there exist two orthogonal matrices V1 ∈ Rq×q and V2 ∈ Rp×p and a matrix Σ̃ =
[Σ, O] ∈ R

q×p, with Σ = diag(σ1, σ2, . . . , σq) ∈ R
q×q being a nonnegative diagonal

matrix having the maximum diagonal entry σ1 = ‖L21‖2, such that L21 = V T
1 Σ̃V2

holds. Define

V =
[

V2 O
O V1

]
.

Then V is an orthogonal matrix, too. It follows from concrete computations that

LT L = V T

⎡⎣ I + Σ2 O Σ
O I O
Σ O I

⎤⎦V.
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Therefore, detailed analysis shows that the eigenvalues of the matrix LT L are 1
with multiplicity p − q and

1 +
1
2
σk

(
σk ±

√
σ2

k + 4
)

, k = 1, 2, . . . , q.

It then follows straightforwardly that the spectral radius of the matrix LT L, say
ρ(LT L), is given by

ρ(LT L) = 1 +
1
2
σ1

(
σ1 +

√
σ2

1 + 4
)

= 1 +
1
2
‖L21‖2

(
‖L21‖2 +

√
‖L21‖2

2 + 4
)

,

and therefore,

‖L‖2 = ρ(LT L)
1
2 =

[
1 +

1
2
‖L21‖2

(
‖L21‖2 +

√
‖L21‖2

2 + 4
)] 1

2

= γ(‖L21‖2).

The proof of the second equality can be demonstrated in a similar fashion. �

We remark that for the real one-variable function γ(t) defined by (3.1), the
estimate γ(t) ≤ t + 1 holds for all t ∈ [0, +∞) because of

√
t2 + 4 ≤ t + 2 and√

t2 + t + 1 ≤ t + 1.

Lemma 3.2. Let Λ = diag(λ1, λ2, . . . , λn) ∈ Cn×n be a diagonal matrix, and
Y ∈ Cn×n a given matrix, where Cn×n represents the complex n × n matrix space.
If there exists a positive constant ρy such that ‖Λ−Y ‖2 ≤ ρy, then all eigenvalues of
the matrix Y are located within

⋃n
i=1 N (λi, ρy), where N (λi, ρy) denotes the circle

having center λi and radius ρy on the complex plane.

Proof. Let λ be an eigenvalue of the matrix Y ∈ C
n×n and v be the corresponding

normalized eigenvector. Then we have (Λ − Y )v = (Λ − λI)v. Hence,

‖(Λ − λI)v‖2 = ‖(Λ − Y )v‖2 ≤ ‖Λ − Y ‖2 ≤ ρy.

It then follows that ‖Λ − λI‖2 ≤ ρy. Therefore, it follows that |λ − λi| ≤ ρy

(i = 1, 2, . . . , n), or equivalently, λ ∈
⋃n

i=1 N (λi, ρy). �

For the simplicity of our statements, in the sequel we always use γ : (0, +∞) →
(0, +∞) to represent the function defined by (3.1). For the matrices JB in (2.1)
and E, F in (2.3), we write

∆1 = F (I − JB)E and ∆2 = F (I − JB)2E,

and denote the (2, 2)-block entry of the matrix W in (2.7) by S, i.e.,

S = JC − FE.(3.2)

Assume W and S are nonsingular, let S be a nonsingular matrix that is a replace-
ment to S (e.g., S = ±(I − FE) or S = ±(I − diag(FE)), etc.), and define the
quantities

Θ = ‖E‖2, Γ = ‖F‖2, Θs = ‖ES−1‖2, Γs = ‖S−1F‖2.

In addition, in the case that S is an approximation to S, we define the quantities

εL = max{‖I − JB‖2, ‖I − S−1S‖2}, εR = max{‖I − JB‖2, ‖I − SS−1‖2};
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and in the case that S is an approximation to −S, instead of εL and εR we use the
quantities

ε̃L = max{‖I − JB‖2, ‖I + S−1S‖2}, ε̃R = max{‖I − JB‖2, ‖I + SS−1‖2}.

For two positive constants ρ
(ξ)
L and ρ

(ξ)
R , to be specified later, we use N (ξ) to denote

the circle having center (1, 0) and radius ρ(ξ) := min{ρ(ξ)
L εL, ρ

(ξ)
R εR}, and use Ñ (ξ)

to denote the union of the two circles having centers (−1, 0) and (1, 0) and radius
ρ̃(ξ) := min{ρ(ξ)

L ε̃L, ρ
(ξ)
R ε̃R}, on the complex plane, respectively.

By making use of the above notation, the nonsingularity of the matrices S and
W can be precisely described by the following lemma.

Lemma 3.3. The matrices S and W are nonsingular, provided either of the fol-
lowing conditions holds:

(1) S is an approximation to S, and
(a) εL < 1 + ΘΓs −

√
ΘΓs(ΘΓs + 2), or

(b) εR < 1 + ΘsΓ −
√

ΘsΓ(ΘsΓ + 2);
(2) S is an approximation to −S, and

(a) ε̃L < 1 + ΘΓs −
√

ΘΓs(ΘΓs + 2), or
(b) ε̃R < 1 + ΘsΓ −

√
ΘsΓ(ΘsΓ + 2).

Proof. We only prove (1a), as the other conclusions can be demonstrated analo-
gously.

Because ‖I − JB‖2 ≤ εL < 1, it follows that

‖J−1
B ‖2 = ‖[I − (I − JB)]−1‖2 ≤ 1

1 − ‖I − JB‖2
.

From (2.8) we have

SA = S − F (I − JB)J−1
B E.

Hence,

‖I − S−1SA‖2 ≤ ‖I − S−1S‖2 + ‖E‖2‖S−1F‖2 ·
‖I − JB‖2

1 − ‖I − JB‖2

≤
(

1 +
ΘΓs

1 − ‖I − JB‖2

)
· max{‖I − JB‖2, ‖I − S−1S‖2}

≤
(

1 +
ΘΓs

1 − εL

)
εL

< 1.

It then follows that

‖S−1
A

F‖2 ≤ ‖S−1F‖2

1 − ‖I − S−1SA‖2
≤ Γs(1 − εL)

(1 − εL)2 − ΘΓsεL
.

Now, we easily see that (2.9) holds when

εL <
1

1 + ΘΓs(1−εL)
(1−εL)2−ΘΓsεL

=
(1 − εL)2 − ΘΓsεL

(1 − εL)2 − ΘΓsεL + ΘΓs(1 − εL)
,
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or equivalently, ε2L − 2(1 + ΘΓs)εL + 1 > 0. Therefore, when

εL < 1 + ΘΓs −
√

ΘΓs(ΘΓs + 2),

the matrices S and W are nonsingular. �

We first consider the case that S ≈ S. The case that S ≈ −S will be discussed
in Section 3.4.

3.1. The MBJ-type preconditioners. If the matrix W ∈ Rn×n in (2.10) is taken
to be the modified block Jacobi splitting matrix [6, 7] of the matrix W in (2.7), i.e.,

(3.3) W (J) := W =
[

I O
O S

]
,

then we obtain the modified block Jacobi-type (MBJ-type) preconditioner M =
PW (J)Q to the original matrix A ∈ Rn×n. Note that when S ∈ Rq×q is symmetric
positive definite, W (J) is a symmetric positive definite matrix, and when S ∈ Rq×q

is symmetric negative definite, W (J) is a symmetric indefinite matrix.
The following theorem describes the eigenvalue distribution of the preconditioned

matrix with respect to the MBJ-type preconditioner.

Theorem 3.1. Let M = PW (J)Q be the MBJ-type preconditioner to the block
two-by-two matrix A = PHQ ∈ Rn×n in (1.2), where P and Q are given by (2.6),
H is given by (2.7), and W (J) is defined by (3.3). Let KL = W (J)−1

H and KR =
HW (J)−1

. Then it follows that

(i) ‖I − KL‖2 ≤ ρ
(J)
L εL, with ρ

(J)
L = γ(Θ) · γ(Γs); and

(ii) ‖I − KR‖2 ≤ ρ
(J)
R εR, with ρ

(J)
R = γ(Θs) · γ(Γ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the
matrices M−1A and AM−1 are located within a circle having center (1, 0) and radii
ρ
(J)
L εL and ρ

(J)
R εR, respectively, and therefore, they are all within the circle N (J).

Proof. We only prove (i), as (ii) can be verified analogously.
From (2.7) and (3.3) we have

KL = W (J)−1
H =

[
JB (I − JB)E

S−1F (I − JB) S−1S − S−1∆1

]
.

Hence,

I − KL =
[

I O
−S−1F I

] [
I − JB O

O I − S−1S

] [
I −E
O I

]
.

By making use of Lemma 3.1 we can immediately obtain

‖I − KL‖2 ≤ γ(‖S−1F‖2) · γ(‖E‖2) · max{‖I − JB‖2, ‖I − S−1S‖2}
= γ(Θ) · γ(Γs) · max{‖I − JB‖2, ‖I − S−1S‖2}

= ρ
(J)
L εL. �

Furthermore, when the matrix JB is positive definite, we can demonstrate the
positive definiteness of the matrices KL = W (J)−1

H and KR = HW (J)−1
.
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Theorem 3.2. Let the matrix JB be positive definite. Then

(i) the matrix KL = W (J)−1
H is positive definite, provided εL < δ

(J)
L , where

δ
(J)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + (Θ + Γs)2
)

4 − (Θ − Γs)2
< 1;

(ii) the matrix KR = HW (J)−1
is positive definite, provided εR < δ

(J)
R , where

δ
(J)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ2 + (Θs + Γ)2
)

4 − (Θs − Γ)2
< 1.

Proof. We only prove the validity of (i), as (ii) can be demonstrated similarly.
Some straightforward computations immediately show that δ

(J)
L < 1. Let

T =
[

T11 T12

T21 T22

]
≡ 1

2
(KL + KT

L ).

Then from the proof of Theorem 3.1 we easily obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
T11 = 1

2 (JB + JT
B ),

T12 = 1
2 [(I − JB)E + (I − JT

B )F
T
S−T ],

T21 = 1
2 [S−1F (I − JB) + E

T
(I − JT

B )],
T22 = 1

2 [S−1S + S
T
S−T ] − 1

2 [S−1∆1 + ∆
T

1 S−T ].

Because JB is positive definite, we know that its symmetric part 1
2 (JB + JT

B ) is
symmetric positive definite. Therefore, the matrix T is symmetric positive definite
if and only if so is its Schur complement ST := T22 − T21T

−1
11 T12.

Since

‖I − T11‖2 ≤ ‖I − JB‖2 ≤ εL < δ
(J)
L < 1,

we have

‖T−1
11 ‖2 = ‖[I − (I − T11)]−1‖2 ≤ 1

1 − ‖I − JB‖2
.

By direct computations we immediately obtain

‖T12‖2 = ‖T21‖2 ≤ 1
2

(
‖S−1F‖2‖I − JB‖2 + ‖ET ‖2‖I − JT

B‖2

)
=

1
2
(Θ + Γs)‖I − JB‖2

and

‖I − T22‖2 ≤ 1
2

(
‖I − S−1S‖2 + ‖I − S

T
S−T ‖2

)
+

1
2

(
‖S−1∆1‖2 + ‖∆T

1 S−T ‖2

)
≤ ‖I − S−1S‖2 + ‖S−1F‖2‖E‖2‖I − JB‖2

≤ (1 + ΘΓs) · max{‖I − JB‖2, ‖I − S−1S‖2}
= (1 + ΘΓs)εL.
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It then follows that

min
x�=0

〈x, ST x〉
〈x, x〉 ≥ 1 − max

x�=0

〈x, (I − T22)x〉
〈x, x〉 − max

x�=0

〈x, T21T
−1
11 T12x〉

〈x, x〉
≥ 1 − ‖I − T22‖2 − ‖T21T

−1
11 T12‖2

≥ 1 −
(

(1 + ΘΓs)εL +
(Θ + Γs)2‖I − JB‖2

2

4(1 − ‖I − JB‖2)

)
≥ 1 −

(
1 + ΘΓs +

(Θ + Γs)2

4(1 − ‖I − JB‖2)
· ‖I − JB‖2

)
εL

≥ 1 −
(

1 + ΘΓs +
(Θ + Γs)2

4(1 − εL)
· εL

)
εL.

Noticing that (
1 + ΘΓs +

(Θ + Γs)2

4(1 − εL)
· εL

)
εL < 1

holds if and only if

4ΘΓsεL + (Θ − Γs)2ε2L < 4(1 − εL)2,

or equivalently,

εL <
2

(
ΘΓs + 2 −

√
Θ2Γ2

s + (Θ + Γs)2
)

4 − (Θ − Γs)2
,

we therefore know that minx�=0
〈x,ST x〉
〈x,x〉 > 0 holds true when εL < δ

(J)
L . Hence, ST

is a symmetric positive definite matrix, and KL is a positive definite matrix. �

3.2. The MBGS-type preconditioners. If the matrix W ∈ R
n×n in (2.10) is

taken to be the modified block Gauss-Seidel splitting matrix [6, 7] of the matrix W
in (2.7), i.e.,

(3.4) W (GS) := W =
[

I O
F (I − JB) S

]
,

then we obtain the modified block Gauss-Seidel-type (MBGS-type) preconditioner
M = PW (GS)Q to the original matrix A ∈ R

n×n.
The following theorem describes the eigenvalue distribution of the preconditioned

matrix with respect to the MBGS-type preconditioner.

Theorem 3.3. Let M = PW (GS)Q be the MBGS-type preconditioner to the block
two-by-two matrix A = PHQ ∈ Rn×n in (1.2), where P and Q are given by (2.6),
H is given by (2.7), and W (GS) is defined by (3.4). Let KL = W (GS)−1

H and
KR = HW (GS)−1

. Then it follows that

(i) ‖I −KL‖2 ≤ ρ
(GS)
L εL, with ρ

(GS)
L = γ(Θ) · γ(Γs‖I − JB‖2) · (1 + ΘΓs); and

(ii) ‖I − KR‖2 ≤ ρ
(GS)
R εR, with ρ

(GS)
R = γ(Θs) · γ(Γ‖I − JB‖2) · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of
the matrices M−1A and AM−1 are located within a circle having center (1, 0) and
radii ρ

(GS)
L εL and ρ

(GS)
R εR, respectively, and therefore, they are all within the circle

N (GS).
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Proof. We only prove (i), as (ii) can be verified analogously.
From (2.7) and (3.4) we have

KL = W (GS)−1
H =

[
JB (I − JB)E

S−1F (I − JB)2 S−1S − S−1(∆1 + ∆2)

]
.

Hence,

I − KL =
[

I O
−S−1F (I − JB) I

][
I − JB O

O I − S−1S + S−1∆1

][
I −E
O I

]
.

By making use of Lemma 3.1 we can immediately obtain

‖I − KL‖2 ≤ γ(‖S−1F (I − JB)‖2) · γ(‖E‖2)

· max{‖I − JB‖2, ‖I − S−1S‖2 + ‖S−1F‖2‖E‖2‖I − JB‖2}
≤ γ(Θ) · γ(Γs‖I − JB‖2) · (1 + ΘΓs)

· max{‖I − JB‖2, ‖I − S−1S‖2}

= ρ
(GS)
L εL. �

Furthermore, when the matrix JB is positive definite, we can demonstrate the
positive definiteness of the matrices KL = W (GS)−1

H and KR = HW (GS)−1
.

Theorem 3.4. Let the matrix JB be positive definite. Then

(i) the matrix KL = W (GS)−1
H is positive definite, provided εL < δ

(GS)
L , where

δ
(GS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Θ + Γs)2
)

4 − (Θ + Γs)2
< 1;

(ii) the matrix KR = HW (GS)−1
is positive definite, provided εR < δ

(GS)
R , where

δ
(GS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ2 + 4ΘsΓ + (Θs + (1 + ΘsΓ)Γ)2
)

4 − (Θs + (1 + ΘsΓ)Γ)2
< 1.

Proof. We only prove the validity of (i), as (ii) can be demonstrated similarly.
Some straightforward computations immediately show that δ

(GS)
L < 1. Let

T =
[

T11 T12

T21 T22

]
≡ 1

2
(KL + KT

L ).

Then from the proof of Theorem 3.3 we can easily obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩
T11 = 1

2 (JB + JT
B ),

T12 = 1
2 [(I − JB)E + (I − JT

B )2F
T
S−T ],

T21 = 1
2 [S−1F (I − JB)2 + E

T
(I − JT

B )],
T22 = 1

2 [S−1S + S
T
S−T ] − 1

2 [S−1∆1 + ∆
T

1 S−T ] − 1
2 [S−1∆2 + ∆

T

2 S−T ].

Because JB is positive definite, we know that its symmetric part 1
2 (JB + JT

B ) is
symmetric positive definite. Therefore, the matrix T is symmetric positive definite
if and only if so is its Schur complement ST := T22 − T21T

−1
11 T12.
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Since
‖I − T11‖2 ≤ ‖I − JB‖2 ≤ εL < δ

(GS)
L < 1,

we have

‖T−1
11 ‖2 = ‖[I − (I − T11)]−1‖2 ≤ 1

1 − ‖I − JB‖2
.

By direct computations we immediately get

‖T12‖2 = ‖T21‖2 ≤ 1
2

(
‖S−1F (I − JB)2‖2 + ‖ET

(I − JT
B )‖2

)
≤ 1

2
(Θ + Γs‖I − JB‖2)‖I − JB‖2

and

‖I − T22‖2 ≤ 1
2

(
‖I − S−1S‖2 + ‖I − S

T
S−T ‖2

)
+

1
2

(
‖S−1F (I − JB)E‖2 + ‖ET

(I − JT
B )F

T
S−T ‖2

)
+

1
2

(
‖S−1F (I − JB)2E‖2 + ‖ET

(I − JT
B )2F

T
S−T ‖2

)
≤ ‖I − S−1S‖2 + ΘΓs(1 + ‖I − JB‖2)‖I − JB‖2

≤ [1 + ΘΓs(1 + ‖I − JB‖2)] · max{‖I − JB‖2, ‖I − S−1S‖2}
≤ [1 + ΘΓs(1 + εL)]εL.

It then follows that

min
x�=0

〈x, ST x〉
〈x, x〉 ≥ 1 − max

x�=0

〈x, (I − T22)x〉
〈x, x〉 − max

x�=0

〈x, T21T
−1
11 T12x〉

〈x, x〉
≥ 1 − ‖I − T22‖2 − ‖T21T

−1
11 T12‖2

≥ 1 − [1 + ΘΓs(1 + εL)]εL − (Θ + Γs‖I − JB‖2)2‖I − JB‖2
2

4(1 − ‖I − JB‖2)

≥ 1 −
(

1 + ΘΓs(1 + εL) +
(Θ + ΓsεL)2

4(1 − εL)
· εL

)
εL.

Notice that (
1 + ΘΓs(1 + εL) +

(Θ + ΓsεL)2

4(1 − εL)
· εL

)
εL < 1

holds if and only if

4ΘΓs(1 − ε2L)εL + (Θ + ΓsεL)2ε2L < 4(1 − εL)2,

and this inequality holds when

4ΘΓsεL + (Θ + Γs)2ε2L < 4(1 − εL)2,

or equivalently,

εL <
2

(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Θ + Γs)2
)

4 − (Θ + Γs)2
.

Therefore, we know that minx�=0
〈x,ST x〉
〈x,x〉 > 0 holds true when εL < δ

(GS)
L . Hence,

ST is a symmetric positive definite matrix, and KL is a positive definite matrix. �



PRECONDITIONERS FOR BLOCK TWO-BY-TWO NONSINGULAR MATRICES 805

Alternatively, if the matrix W ∈ Rn×n in (2.10) is taken to be the modified block
Gauss-Seidel splitting matrix [6, 7] of the matrix W in (2.7), i.e.,

(3.5) W (GS) := W =
[

I (I − JB)E
O S

]
,

then we obtain another modified block Gauss-Seidel-type (MBGS-type) precon-
ditioner M = PW (GS)Q to the original matrix A ∈ Rn×n. Exactly following the
demonstrations of Theorems 3.3 and 3.4, we can obtain the following results for the
eigenvalue distribution and the positive definiteness of the preconditioned matrix
with respect to the MBGS-type preconditioner (3.5).

Theorem 3.5. Let M = PW (GS)Q be the MBGS-type preconditioner to the block
two-by-two matrix A = PHQ ∈ Rn×n in (1.2), where P and Q are given by (2.6),
H is given by (2.7), and W (GS) is defined by (3.5). Let KL = W (GS)−1

H and
KR = HW (GS)−1

. Then it follows that

(i) ‖I −KL‖2 ≤ ρ
(GS)
L εL, with ρ

(GS)
L = γ(Θ‖I − JB‖2) · γ(Γs) · (1 + ΘΓs); and

(ii) ‖I − KR‖2 ≤ ρ
(GS)
R εR, with ρ

(GS)
R = γ(Θs‖I − JB‖2) · γ(Γ) · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of
the matrices M−1A and AM−1 are located within a circle having center (1, 0) and
radii ρ

(GS)
L εL and ρ

(GS)
R εR, respectively, and therefore, they are all within the circle

N (GS).

Theorem 3.6. Let the matrix JB be positive definite. Then

(i) the matrix KL = W (GS)−1
H is positive definite, provided εL < δ

(GS)
L , where

δ
(GS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (Γs + (1 + ΘΓs)Θ)2
)

4 − (Γs + (1 + ΘΓs)Θ)2
< 1;

(ii) the matrix KR = HW (GS)−1
is positive definite, provided εR < δ

(GS)
R , where

δ
(GS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ2 + 4ΘsΓ + (Θs + Γ)2
)

4 − (Θs + Γ)2
< 1.

3.3. The MBUGS-type preconditioners. If the matrix W ∈ Rn×n in (2.10) is
taken to be the modified block unsymmetric Gauss-Seidel splitting matrix [6, 7] of
the matrix W in (2.7), i.e.,

(3.6) W (UGS) := W =
[

I (I − JB)E
O S

] [
I O
O S

]−1 [
I O

F (I − JB) S

]
,

then we obtain the modified block unsymmetric Gauss-Seidel-type (MBUGS-type)
preconditioner M = PW (UGS)Q to the original matrix A ∈ Rn×n.

The following theorem describes the eigenvalue distribution of the preconditioned
matrix with respect to the MBUGS-type preconditioner.

Theorem 3.7. Let M = PW (UGS)Q be the MBUGS-type preconditioner to the
block two-by-two matrix A = PHQ ∈ Rn×n in (1.2), where P and Q are given by
(2.6), H is given by (2.7), and W (UGS) is defined by (3.6). Let KL = W (UGS)−1

H

and KR = HW (UGS)−1
. Then it follows that
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(i) ‖I − KL‖2 ≤ ρ
(UGS)
L εL, with

ρ
(UGS)
L = γ(Γs‖I − JB‖2) · [γ(Θ‖I − JB‖2) + ΘΓs‖I − JB‖2] · (1 + ΘΓs); and

(ii) ‖I − KR‖2 ≤ ρ
(UGS)
R εR, with

ρ
(UGS)
R = γ(Θs‖I − JB‖2) · [γ(Γ‖I − JB‖2) + ΘsΓ‖I − JB‖2] · (1 + ΘsΓ).

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of the
matrices M−1A and AM−1 are located within a circle having center (1, 0) and radii
ρ
(UGS)
L εL and ρ

(UGS)
R εR, respectively, and therefore, they are all within the circle

N (UGS).

Proof. It is analogous to the proofs of Theorems 3.1 and 3.3 and hence is omitted.
�

Furthermore, when the matrix JB is positive definite, we can demonstrate the
positive definiteness of the matrices KL = W (UGS)−1

H and KR = HW (UGS)−1
.

Theorem 3.8. Let the matrix JB be positive definite. Then

(i) the matrix KL = W (UGS)−1
H is positive definite, provided εL < δ

(UGS)
L ,

where

δ
(UGS)
L =

2
(
ΘΓs + 2 −

√
Θ2Γ2

s + 4ΘΓs + (1 + ΘΓs)2(Θ + Γs)2
)

4 − (1 + ΘΓs)2(Θ + Γs)2
< 1;

(ii) the matrix KR = HW (UGS)−1
is positive definite, provided εR < δ

(UGS)
R ,

where

δ
(UGS)
R =

2
(
ΘsΓ + 2 −

√
Θ2

sΓ2 + 4ΘsΓ + (1 + ΘsΓ)2(Θs + Γ)2
)

4 − (1 + ΘsΓ)2(Θs + Γ)2
< 1.

Proof. It is analogous to the proofs of Theorems 3.2 and 3.4 and hence is omitted.
�

Alternatively, if the matrix W (UGS) defined by (3.6) is considered to possess the
split form W (UGS) = W

(UGS)
L W

(UGS)
R , with

(3.7) W
(UGS)
L =

[
I (I − JB)ES−1

O I

]
, W

(UGS)
R =

[
I O

F (I − JB) S

]
or

(3.8) W
(UGS)
L =

[
I (I − JB)E
O S

]
, W

(UGS)
R =

[
I O

S−1F (I − JB) I

]
,

then we can obtain other modified block unsymmetric Gauss-Seidel-type precondi-
tioners M = M

(UGS)
L M

(UGS)
R to the original matrix A ∈ Rn×n, where

M
(UGS)
L = PW

(UGS)
L and M

(UGS)
R = W

(UGS)
R Q,

and P and Q are given by (2.6). Exactly following the demonstrations of The-
orems 3.7 and 3.8, we can obtain the results about the eigenvalue distributions
and the positive definiteness of the preconditioned matrices with respect to the
MBUGS-type preconditioners (3.7)–(3.8).

We remark that when F = E
T
, the above-discussed modified block unsymmetric

Gauss-Seidel-type preconditioners naturally reduce to the modified block symmetric
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Gauss-Seidel-type (MBSGS-type) preconditioners to the matrix A ∈ Rn×n in
(1.2), correspondingly.

3.4. The case S ≈ −S. In the case that S is negative definite, we may let S be
an approximation to −S in order to obtain a preconditioner of positive definiteness
in nature. Hence, some specified preconditioned Krylov subspace iteration method
can exploit its efficiency sufficiently.

When S ≈ −S, for the MBJ-, the MBGS-, and the MBUGS-type preconditioners
discussed above, we can demonstrate that the eigenvalues of the preconditioned
matrices are, correspondingly, located within two circles having center (−1, 0) and
(1, 0) in the complex plane. These results are precisely summarized in the following
theorem. Since their proofs are essentially the same as those of Theorems 3.1, 3.3,
3.5 and 3.7 with only the identity matrix I being replaced by the matrix

J :=
[

I O
O −I

]
, I ∈ R

p×p and − I ∈ R
q×q,

we only state the theorem but omit its proof.

Theorem 3.9. Let M = PWQ ∈ Rn×n in (2.10) be the preconditioner to the block
two-by-two matrix A = PHQ ∈ R

n×n in (1.2), with P and Q being given by (2.6)
and H being given by (2.7). Let KL = W−1H and KR = HW−1.

(i) If W = W (J) is defined by (3.3), then

‖J − KL‖2 ≤ ρ
(J)
L ε̃L, ‖J − KR‖2 ≤ ρ

(J)
R ε̃R,

where ρ
(J)
L and ρ

(J)
R are the same as in Theorem 3.1.

(ii) If W = W (GS) is defined by (3.4), then

‖J − KL‖2 ≤ ρ
(GS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(GS)
R ε̃R,

where ρ
(GS)
L and ρ

(GS)
R are the same as in Theorem 3.3.

(iii) If W = W (GS) is defined by (3.5), then

‖J − KL‖2 ≤ ρ
(GS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(GS)
R ε̃R,

where ρ
(GS)
L and ρ

(GS)
R are the same as in Theorem 3.5.

(iv) If W = W (UGS) is defined by (3.6), then

‖J − KL‖2 ≤ ρ
(UGS)
L ε̃L, ‖J − KR‖2 ≤ ρ

(UGS)
R ε̃R,

where ρ
(UGS)
L and ρ

(UGS)
R are the same as in Theorem 3.7.

It follows from Lemma 3.2 as well as (2.11) and (2.13) that the eigenvalues of
the preconditioned matrix M−1A are located within the union of two circles having
centers (−1, 0) and (1, 0) and radius ρ

(ξ)
L ε̃L, and those of the preconditioned matrix

AM−1 are located within the union of two circles having centers (−1, 0) and (1, 0)
and radius ρ

(ξ)
R ε̃R, respectively. Therefore, they are all within Ñ (ξ). Here, ξ = J ,

GS and UGS.

We observe from the demonstrations of Theorems 3.1-3.9 that when JB = I or
S = S, the results in these theorems can be considerably improved and made more
accurate.
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3.5. Connections to Krylov subspace methods. The preconditioning matrix
M defined in (2.10) can be used to accelerate the Krylov subspace methods such
as GMRES or its restarted variant GMRES(m) [41, 40] for solving the large sparse
system of linear equations (1.1)–(1.2). This preconditioning matrix can be used as
a left (see (2.11)–(2.12)), a right (see (2.13)–(2.14)), or a split (see (2.15)–(2.17))
preconditioner to the system of linear equations (1.1). The obtained equivalent
linear systems can be solved by GMRES or GMRES(m).

Assume that the coefficient matrices A of the above preconditioned linear sys-
tems are diagonalizable, i.e., there exist a nonsingular matrix X ∈ Cn×n and a di-
agonal matrix D ∈ Cn×n such that A = XDX−1. Then it is well known from [41,
Theorem 4] that the residual norm ‖r(k)‖2 at the k-th step of the preconditioned
GMRES is bounded by ‖r(k)‖2 ≤ κ(X)ε(k)‖r(0)‖2, where κ(X) is the Euclidean
condition number of X and ε(k) := minP∈Pk

maxλi∈σ(A) |P(λi)|. Here, Pk denotes
the set of all polynomials P(λ) of degree not greater than k such that P(0) = 1,
and σ(A) denotes the spectrum of the matrix A.

Consider S defined by (3.2); see also (2.1) and (2.3). When the matrix S is an
approximation to the matrix S, from Theorems 3.1, 3.3, 3.5 and 3.7 we know that
all eigenvalues of the matrix A are contained in either of the circles N (ξ), ξ = J ,
GS and UGS. Therefore, when ρ(ξ) < 1, a special case of Theorem 5 in [41] implies
that ε(k) ≤ (ρ(ξ))k, ξ = J , GS and UGS.

Alternatively, the preconditioning matrix M can also be used as a left, a right,
or a split preconditioner to the system of linear equations (1.1) to obtain a pre-
conditioned linear system of coefficient matrix Ã = KL, KR, or K, respectively.
Because Theorems 3.2, 3.4, 3.6 and 3.8 guarantee the positive definiteness of the
preconditioned matrix Ã, it is known from [20] and [41, p. 866] that the following
error bound for the correspondingly preconditioned GMRES holds:

‖r(k)‖2 ≤
(

1 − (λmin(H̃))2

λmax(ÃT Ã)

) k
2

‖r(0)‖2,

where H̃ = 1
2 (Ã + ÃT ) denotes the symmetric part of the matrix Ã, and λmin(·)

and λmax(·) denote, respectively, the smallest and the largest eigenvalues of the
corresponding matrix. This gives a guarantee for the convergence of the restarted
preconditioned GMRES iteration, say PGMRES(m), for all m, when the coefficient
matrix Ã is positive definite.

When the matrix S is an approximation to the matrix −S, because the precon-
ditioned matrix A or Ã may be usually not positive definite, instead of GMRES
and GMRES(m) we may use other Krylov subspace methods such as BiCGSTAB,
QMR and TFQMR to solve the preconditioned linear systems. In particular, when
the original coefficient matrix A is symmetric indefinite, MINRES is a possible can-
didate if a symmetric positive definite or indefinite preconditioner M is obtainable.
See [2, 27, 40].

4. Applications to three typical matrices

In this section, we will investigate the concretizations of the structured precon-
ditioners established in Sections 2 and 3 to three special classes of matrices arising
from real-world applications.
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4.1. The symmetric positive definite matrix. When the matrix blocks B ∈
Rp×p and C ∈ Rq×q are symmetric positive definite, F = ET and the Schur com-
plement SA = C − ET B−1E is symmetric positive definite, the matrix A ∈ R

n×n

reduces to the block two-by-two symmetric positive definite matrix

A =
[

B E
ET C

]
.

These kinds of matrices may arise in the red/black ordering of a symmetric pos-
itive definite linear system, or in discretization incorporated with a domain de-
composition technique of a boundary value problem of a self-adjoint elliptic partial
differential equation, etc. See [2, 3, 6, 7, 27, 40].

Let LB ∈ R
p×p and LC ∈ R

q×q be nonsingular matrices such that either (2.1)
or (2.2) holds with RB = LT

B and RC = LT
C . Then from (2.10) and (2.6) we know

that M = PWQ is the structured preconditioner to the matrix A, where

P =
[

LB O

ET L−T
B LC

]
, Q =

[
LT

B L−1
B E

O LT
C

]
= PT ,

and W ∈ Rn×n is an approximation to the matrix

W =

[
JB (I − JB)E

E
T
(I − JB) S

]
≈ H

defined by (2.7), with E = L−1
B EL−T

C and S = JC − E
T
E.

Note that S and W are symmetric positive definite. Let S ∈ R
q×q be an ap-

proximation to the matrix I − E
T
E ≈ S. To guarantee the symmetric positive

definiteness of the preconditioning matrix M , we can choose W to be the modified
block Jacobi splitting matrix in (3.3) or the modified block symmetric Gauss-Seidel
splitting matrix in (3.6), obtaining the modified block Jacobi-type preconditioner
or the modified block symmetric Gauss-Seidel-type preconditioner to the matrix A,
respectively.

4.2. The saddle point matrix. When the matrix block B ∈ Rp×p is symmetric
positive definite, C = O and F = ±ET is of full row rank, the matrix A ∈ Rn×n

reduces to the saddle point matrices

A± =
[

B E
±ET O

]
.

These kinds of matrices may arise in constrained optimization as well as least-
squares, saddle-point and Stokes problems, without a regularizing/stabilizing term,
etc. See [14, 16, 24, 25, 28, 37, 44].

Let LB ∈ R
p×p be a nonsingular matrix such that either (2.1) or (2.2) holds

with RB = LT
B and LC = RC = I. Then from (2.10) and (2.6) we know that

M± = P±W±Q± are the preconditioners to the matrices A±, respectively, where

P± =
[

LB O

±ET L−T
B I

]
, Q± =

[
LT

B L−1
B E

O I

]
,
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and W± ∈ Rn×n are approximations to the matrices

W
±

=

[
JB (I − JB)E

±E
T
(I − JB) S

±

]
≈ H±

defined by (2.7), with E = L−1
B E and S

±
= ∓E

T
E.

Let S± ∈ Rq×q be approximations to the matrices S
±

. By choosing the matrices
W± to be the modified block Jacobi splitting matrices in (3.3), the modified block
Gauss-Seidel splitting matrices in (3.4) or (3.5), or the modified block unsymmetric
Gauss-Seidel splitting matrices in (3.6), we can obtain the modified block Jacobi-
type preconditioners, the modified block Gauss-Seidel-type preconditioners, or the
modified block unsymmetric Gauss-Seidel-type preconditioners to the matrices A±,
respectively.

4.3. The Hamiltonian matrix. When the matrix block B ∈ R
p×p is symmetric

positive definite and C ∈ Rq×q is symmetric positive/negative definite (denoted
by C+/C−, respectively), and F = ∓ET , the matrix A ∈ Rn×n reduces to the
Hamiltonian matrices

A± =
[

B E
∓ET C±

]
.

These kinds of matrices may arise in stationary semiconductor devices [36, 43, 42], in
constrained optimization as well as least-squares, saddle-point and Stokes problems,
with a regularizing/stabilizing term [28].

Let LB ∈ Rp×p and LC± ∈ Rq×q be nonsingular matrices such that either (2.1)
or (2.2) holds with RB = LT

B and RC± = LT
C±

. Then from (2.10) and (2.6) we
know that M± = P±W±Q± are the preconditioners to the matrices A±, where

P± =
[

LB O

∓ET L−T
B LC±

]
, Q± =

[
LT

B L−1
B E

O LT
C±

]
,

and W± ∈ R
n×n are approximations to the matrices

W
±

=

[
JB (I − JB)E

±

∓(E
±

)T (I − JB) S
±

]
≈ H±

defined by (2.7), with E
±

= L−1
B EL−T

C±
and S

±
= JC ± (E

±
)T E

±
.

Let S± ∈ Rq×q be approximations to the matrices I±(E
±

)T E
± ≈ S

±
. By choos-

ing the matrices W± to be the modified block Jacobi splitting matrices in (3.3),
the modified block Gauss-Seidel splitting matrices in (3.4) or (3.5), or the modi-
fied block unsymmetric Gauss-Seidel splitting matrices in (3.6), we can obtain the
modified block Jacobi-type preconditioners, the modified block Gauss-Seidel-type
preconditioners, or the modified block unsymmetric Gauss-Seidel-type precondi-
tioners to the matrices A±, respectively.

4.4. An illustrative example. Let us consider the electromagnetic scattering
problem from a large rectangular cavity on the (x, y)-plane in which the medium
is y-directional inhomogeneous. In the transverse magnetic polarization case, when
the model Helmholtz equation with positive wave number is discretized by the five-
point finite difference scheme with uniform stepsize h, we obtain a block two-by-two
system of linear equations (1.1)–(1.2), in which

B = V ⊗ I + I ⊗ V − I ⊗ Ω ∈ R
p×p, C = I − hG ∈ R

q×q, E = I ⊗ eq ∈ R
p×q
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and F = −ET , where h = 1
q+1 , p = q2, θ ≥ 0 is a real constant, eq is the q-th unit

vector in Rq, I is the q-by-q identity matrix, V = tridiag(−1 + 1
2θh, 2,−1− 1

2θh) ∈
Rq×q is a tridiagonal matrix, Ω = h2 · diag(ω2

1 , ω2
2 , . . . , ω

2
q ) ∈ Rq×q is a nonnegative

diagonal matrix, G = (gij) ∈ Rq×q, and ⊗ denotes the Kronecker product. See
[33, 1].

Concretely, in our computations we take θ = 1, ωi = 16π (i = 1, 2, . . . , q), and
gij = 1

(i+j)2 (i, j = 1, 2, . . . , q).
Let B ≈ LBRB be an incomplete triangular factorization of the matrix block B,

and LC = RC = I. Then we have

E = L−1
B E, F = −ET R−1

B , JC = C and S = C − FE.

Now, by choosing S = band�b
(C) − FE with band�b

(C) being the band matrix of
half-band width 
b truncated from the matrix C, after straightforward computations
we can obtain the results listed in Tables 1-4 for the discretization stepsizes h = 1

16 ,
1
24 , 1

32 and 1
64 , or equivalently, for the problem sizes (p, q) = (225, 15), (529, 23),

(961, 31) and (3969, 63), respectively.
In Table 1 we list the half-band width 
b, the quantities

Θ = ‖E‖2, Γ = ‖F‖2, Θs = ‖ES−1‖2 and Γs = ‖S−1F‖2

with respect to the matrix norms, and

εL = max{‖I − JB‖2, ‖I − S−1S‖2} and εR = max{‖I − JB‖2, ‖I − SS−1‖2}

with respect to the matrix approximation accuracies. For ξ = J , GS and UGS,
in Tables 2-4 we list the radii ρ

(ξ)
L εL and ρ

(ξ)
R εR of the circles centered at (1, 0)

where all eigenvalues of the matrices KL and KR are located within ρ(ξ) =
min{ρ(J)

L εL, ρ
(J)
R εR} and the radii ρ

(ξ)
∗ of the smallest circles that include all eigen-

values of the corresponding preconditioned matrices (see Theorems 3.1, 3.3 and
3.7), and the quantities δ

(ξ)
L and δ

(ξ)
R that guarantee the positive definiteness of

the preconditioned matrices KL and KR whenever εL < δ
(ξ)
L and εR < δ

(ξ)
R (see

Theorems 3.2, 3.4 and 3.8), respectively.

Table 1. Quantities with respect to the preconditioned matrices

h 1
16

1
24

1
32

1
64


b 2 4 6 30
Θ 11.9704 15.8432 25.3679 28.8844
Γ 6.05339 7.38068 8.95453 14.7829
Θs 5.77108 6.57523 11.0775 39.2410
Γs 2.82323 3.28938 3.93560 19.5354
εL 2.95e − 03 1.52e − 03 6.39e − 04 5.75e − 05
εR 4.13e − 03 2.15e − 03 7.89e − 04 4.63e − 05
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Table 2. Bounds with respect to the MBJ-type preconditioner
M = PW (J)Q with W (J) being defined by (3.3)

h 1
16

1
24

1
32

1
64

ρ
(J)
L εL 0.111566 8.62e-02 6.78e-02 3.26e-02

ρ
(J)
R εR 0.152507 0.108497 7.98e-02 2.70e-02
ρ(J) 0.111566 8.62e-02 6.78e-02 2.70e-02
δ
(J)
L 2.75e − 02 1.82e − 02 9.71e − 03 1.77e − 02

δ
(J)
R 2.71e − 02 1.98e − 02 9.88e − 03 1.72e − 03

ρ
(J)
∗ 2.31e − 03 1.24e − 03 4.63e − 04 3.93e − 05

Table 3. Bounds with respect to the MBGS-type preconditioner
M = PW (GS)Q with W (GS) being defined by (3.4)

h 1
16

1
24

1
32

1
64

ρ
(GS)
L εL 3.55e − 02 2.41e − 02 1.62e − 02 1.66e − 03

ρ
(GS)
R εR 2.45e − 02 1.44e − 02 8.81e − 03 1.82e − 03
ρ(GS) 2.45e − 02 1.44e − 02 8.81e − 03 1.66e − 03
δ
(GS)
L 2.69e − 02 1.79e − 02 9.63e − 03 1.76e − 03

δ
(GS)
R 7.60e − 03 4.69e − 03 1.97e − 03 2.17e − 04

ρ
(GS)
∗ 2.31e − 03 1.24e − 03 4.63e − 04 3.93e − 05

Table 4. Bounds with respect to the MBUGS-type preconditioner
M = PW (UGS)Q with W (UGS) being defined by (3.6)

h 1
16

1
24

1
32

1
64

ρ
(UGS)
L εL 0.102518 8.06e − 02 0.166135 3.25e − 02

ρ
(UGS)
R εR 0.148479 0.106365 0.216704 2.69e − 02
ρ(UGS) 0.102518 8.06e − 02 0.166135 2.69e − 02
δ
(UGS)
L 3.62e − 03 1.87e − 03 6.54e − 04 7.16e − 05

δ
(UGS)
R 4.32e − 03 2.69e − 03 9.47e − 04 6.25e − 05

ρ
(UGS)
∗ 2.31e − 03 1.24e − 03 4.63e − 04 3.93e − 05

The results in Tables 2-4 clearly show that

(i) for ξ = J , GS and UGS, ρ
(ξ)
L εL < 1 and ρ

(ξ)
R εR < 1. It follows that

ρ(ξ) < 1. As ρ
(ξ)
L εL and ρ

(ξ)
R εR are quite small, the eigenvalues of the

preconditioned matrices, with respect to the MBJ-, the MBGS- and the
MBUGS-type preconditioners, are tightly clustered around the point (1, 0);
see Theorems 3.1, 3.3 and 3.7. Hence, a Krylov subspace method such as
GMRES, when applied to the preconditoned systems of linear equations,
will achieve fast convergence; see Section 3.5.

(ii) for ξ = J , GS and UGS, εL < δ
(ξ)
L < 1 and εR < δ

(ξ)
R < 1. It follows that

the preconditioned matrices, with respect to the MBJ-, the MBGS- and the
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MBUGS-type preconditioners, are positive definite, and the convergence of
the restarted GMRES methods preconditioned by these preconditioners are
guaranteed; see Theorems 3.2, 3.4 and 3.8 as well as Section 3.5.

(iii) for ξ = J , GS and UGS, ρ
(ξ)
∗ ≤ ρ(ξ). This shows that the eigenvalues of

the preconditioned matrices, with respect to the MBJ-, the MBGS- and the
MBUGS-type preconditioners, are really located within the theoretically
estimated circles centered at (1, 0) with radii ρ(ξ) given in Theorems 3.1,
3.3 and 3.7, respectively.

In summary, this example shows that the conditions of our theorems are reasonable
and the conclusions of them are correct.

5. Conclusion and remarks

We have established a general framework of practical and efficient structured
preconditioners to the large sparse block two-by-two nonsingular matrices. For sev-
eral special cases associated with the modified block relaxation iteration methods,
we have studied the eigenvalue distributions and the positive definiteness of the
preconditioned matrices. Theoretical analyses have shown that this precondition-
ing technique can afford effective and high-quality preconditioners to the Krylov
subspace iteration methods for solving large sparse systems of linear equations with
block two-by-two coefficient matrices.

We remark that our preconditioning technique and the corresponding theory can
be straightforwardly developed to the following cases.

(a) The approximation matrix W ∈ Rn×n in (2.10) that is generated by a
multi-step variant of the modified block Jacobi, the modified block Gauss-
Seidel or the modified block unsymmetric Gauss-Seidel splitting matrix of
the matrix W ∈ R

n×n in (2.7) [6, 7].
(b) Alternatively, the approximation matrix W ∈ Rn×n in (2.10) that is gener-

ated by a single- or multiple-step variant of the modified block successive
overrelaxation (SOR), the modified block unsymmetric SOR, the modified
block accelerated overrelaxation (AOR) or the modified block unsymmetric
AOR splitting matrix of the matrix W ∈ Rn×n in (2.7) [32, 6, 7].

(c) More generally, the approximation matrix W ∈ R
n×n in (2.10) that is

generated by any suitable direct or iterative method induced by the matrix
W ∈ Rn×n in (2.7).

(d) The matrix A ∈ Rn×n that is of a general 
-by-
 block structure. More
concretely, A = (Ai,j) ∈ R

n×n, where Ai,j ∈ R
ni×nj , i, j = 1, 2, . . . , 
, and

ni (i = 1, 2, . . . , 
) are positive integers satisfying n1 + n2 + . . . + n� = n.
For the structured preconditioners based on the relaxation iteration methods

involving parameters, we can further optimize them through choices of the optimal
parameters. In addition, we should point out that, although all results in this paper
are demonstrated in the ‖ · ‖2-norm, they trivially hold for other consistent matrix
norms such as the ‖ · ‖1-norm and the ‖ · ‖∞-norm.
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