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FAST ALGORITHMS
FOR COMPONENT-BY-COMPONENT CONSTRUCTION

OF RANK-1 LATTICE RULES
IN SHIFT-INVARIANT

REPRODUCING KERNEL HILBERT SPACES

DIRK NUYENS AND RONALD COOLS

Abstract. We reformulate the original component-by-component algorithm
for rank-1 lattices in a matrix-vector notation so as to highlight its structural
properties. For function spaces similar to a weighted Korobov space, we derive
a technique which has construction cost O(sn log(n)), in contrast with the
original algorithm which has construction cost O(sn2). Herein s is the number
of dimensions and n the number of points (taken prime). In contrast to other
approaches to speed up construction, our fast algorithm computes exactly the
same quantity as the original algorithm. The presented algorithm can also be
used to construct randomly shifted lattice rules in weighted Sobolev spaces.

1. Introduction

We consider s-dimensional integrals over the unit cube,

I(f) :=
∫

[0,1)s

f(x) dx,

which we want to approximate by an n point rank-1 lattice,

Qn(f) :=
1
n

n−1∑
k=0

f

({
kz
n

})
,

with generating integer vector z. The braces denote the fractional part taken com-
ponentwise, i.e., {x} := x (mod 1), and the components of z are chosen from the
set Zn := {1 ≤ z < n : gcd(z, n) = 1}. As is usual, and for simplicity, we take n
prime so that Zn = {1, 2, . . . , n − 1}.

The generating vector is chosen in such a way as to minimize a certain dis-
crepancy measure. In the case of lattice rules, the integrand functions are usually
supposed to be in a tensor-product reproducing kernel Hilbert space H, with kernel
K, and the worst-case cubature error follows naturally as the discrepancy measure
(we refer to [7] for a more in-depth view of the theory). The worst-case error is
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defined as the supremum of all possible errors made when picking functions in the
unit ball,

e(Qn, K) := sup{|I(f) − Qn(f)| : f ∈ H(K), ‖f‖ ≤ 1}.(1)

In this paper we will only consider periodic functions. For this kind of function
spaces there exist component-by-component construction algorithms for the gener-
ating vector z, which minimize the worst-case error, component by component; see
[12, 8], among others, for construction in a Korobov space. These component-by-
component algorithms have, in principle, a construction cost of O(sn2). Since we
are interested in constructing rank-1 lattice rules with a large number of points, we
would benefit from a reduction of the factor n2. The presented algorithm in this
paper achieves a construction cost of O(sn log(n)), realizing the fast construction
of rank-1 lattice rules.

For simplicity and concreteness we will consider functions in a weighted Ko-
robov space Eα,γ . These are functions which have a converging Fourier series,
are [0, 1)s-periodic, and have suitably decaying Fourier-coefficients, with decay α.
Positive weights γj are assigned to each dimension j to model functions which are
anisotropic, in the sense that the first component x1 is supposed to be more im-
portant than x2, and so on. This means we have a decaying sequence of positive
weights associated with each dimension:

γ1 ≥ γ2 ≥ · · · ≥ γs ≥ 0.

The kernel Ks,γ , for such a weighted Korobov space Eα,γ , is given by

Ks,γ(x,y) =
s∏

j=1

⎛⎝1 + γj

∑
hj∈Z\{0}

exp(2πi hj(xj − yj))
|hj |α

⎞⎠ .(2)

This is a product of 1-dimensional kernels K1,γj
,

K1,γ(x, y) = 1 + γ
∑

h∈Z\{0}

exp(2πi h(x − y))
|h|α ,

where we can substitute x �→ {x − y} and y �→ 0, since the kernel is shift-invariant.
These kernels are defined in the Fourier domain, and thus the two summands in
the above 1-dimensional kernel denote the constant part and the variable part. For
the rest of this paper we will denote the variable part of the kernel as ω(x), which
for a Korobov space is

ω(x) =
∑

h∈Z\{0}

exp(2πi hx)
|h|α .(3)

The quantity ω(x) is independent of the function space weighting, and we have that

K1,γ(x, y) := 1 + γ ω({x − y}).(4)

Note that the infinite sum in (3) can be written in terms of a Bernoulli polynomial
when α ≥ 2 is even [1, page 805],

ω(x) =
(2π)α

(−1)α/2−1α!
Bα(x).

In Section 2 we explain the component-by-component algorithm for weighted
shift-invariant function spaces (such as the weighted Korobov space), which has
direct construction cost O(sn2). We rephrase this algorithm in a slightly different
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form in Section 3, so as to stress the aspects which will turn out to be the key
concepts for speeding up the algorithm. In Section 4 we take a look at the structure
of the most important ingredient of the algorithm, namely the kernel matrix Kn,
and derive a significantly faster algorithm in Section 5, which has construction
cost O(sn log(n)). In Section 6 we will compare some numerical results of the fast
algorithm with some previously reported results, and in Section 7 we summarize
the important aspects of the new algorithm.

2. The component-by-component algorithm

The worst-case error (1) in an s-dimensional reproducing kernel Hilbert space,
with a shift-invariant kernel K, can be written as

e(Pn, K) =

⎧⎨⎩−
∫

[0,1)s

K(x,0) dx +
1
n2

∑
x,y∈Pn

K ({x − y} ,0)

⎫⎬⎭
1/2

,(5)

with Pn the set of n sample points for the cubature rule Qn; see [7].
Since we consider a tensor-product space, and since the difference of two lattice

points is another lattice point, we can rewrite (5) as

e(Pn, K) =

⎧⎨⎩−1 +
1
n

n−1∑
k=0

s∏
j=1

(
1 + γj ω

({
kzj

n

}))⎫⎬⎭
1/2

,(6)

where the double sum over x and y is now replaced by a single sum.
In a component-by-component algorithm we calculate the worst-case error for

increasing dimension s. In each step we choose a zs from the set Zn which minimizes
the worst-case error, and we keep all previous zj , j < s, fixed. Under certain
conditions on the weights, this algorithm will construct a lattice rule with optimal
rate of convergence [8, 4]. The algorithm is presented as Algorithm 1.

Algorithm 1 CBC for shift-invariant tensor-product RKHS

for s = 1 to smax do
for all zs ∈ Zn do

e2
s(zs) = −1 +

1
n

n−1∑
k=0

s∏
j=1

(
1 + γj ω

({
kzj

n

}))
end for
zs = argmin

z∈Zn

e2
s(z)

end for

The apparent construction cost of the algorithm is dictated by the evaluation of
the worst-case error (6), which is O(nsφω), where φω is the cost of evaluating the
function ω, which we assume to be bounded by a constant and so can be neglected.
This worst-case error has to be calculated for each of the n possible choices of zs,
and that for s = 1 to smax, which brings the total direct construction cost of the
algorithm to O(s2

maxn
2).

Because the function space under consideration is a tensor-product space, the
s-dimensional kernel can be written as a product of s 1-dimensional kernels. When
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iterating over increasing dimensions s it is useful to split this product into two
parts,

s∏
j=1

(
1 + γj ω

({
kzj

n

}))
=

⎛⎝s−1∏
j=1

(
1 + γj ω

({
kzj

n

}))⎞⎠
·
(

1 + γs ω

({
kzs

n

}))
,

(7)

and to store the previous n products to reduce the construction cost of a direct
implementation of the algorithm from O(s2

maxn
2) to O(smaxn

2). Moreover, there
is (almost) no reason not to store the previous n products, as the time-penalty for
not doing so is significant. This is especially so for large n. See Section 6 for a
numerical comparison.

In many publications the weighted function space has additional weights βj at-
tached to the constant part of the reproducing kernel, where the 1’s in (2) are
changed into βj ’s. We will not consider these weights. Also note that in some
publications (e.g., [7]) the γj for the variable part are called βj .

3. Component-by-component rephrased

When inspecting Algorithm 1 it is clear that ω(x) is only evaluated in n different
points, and so these can be calculated beforehand as

ω� := ω(�/n), � = 0, . . . , (n − 1),

and stored in a vector ω. When the value of ω({kz/n}) is needed, it is sufficient to
take element k · z (mod n) of the ω vector, which we will write as

ωz·k := ω({kz/n}).(8)

We are now making the choice of storing the n products from the previous
iteration in a vector, as given in (7), explicit, and call this vector p. Since this
vector changes for every iteration, we add a subscript to indicate which products it
represents. So ps−1 stores the products up to dimensions (s − 1). The inner loop
of Algorithm 1 then becomes

for all zs ∈ Zn do

e2
s(zs) = −1 +

1
n

n−1∑
k=0

(
1 + γs ω

({
kzs

n

}))
· ps−1(k)

end for
This loop over zs, together with the sum over k, expresses a matrix-vector prod-

uct. Please note that when a vector already has a subscript, e.g., the dimension
s, we use parentheses to denote a certain element. So ps−1(k) means element k of
vector ps−1. Now by introducing the two (n − 1) × n matrices

Ωn :=
[
ωz,k

]
=
[
ωz·k

]
z=1,...,(n−1)
k=0,...,(n−1)

(9)

and

Kn,γs
:= 1 + γs Ωn,
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we can write this loop as

e2
s = −1 + 1

n Kn,γs
· ps−1

= −1 + 1
n (1 + γs Ωn) · ps−1.(10)

We call the matrix Kn,γs
the kernel matrix and Ωn the variable part of the kernel

matrix. Note that wherever we write a scalar plus a matrix, as in 1 + γs Ωn, it is
meant that this scalar is added to each element of the matrix.

After we pick the value for zs associated with the minimum of the vector e2
s, we

can update the product vector. Looking at (7) it is clear that we must multiply
every element ps−1(k) with 1 + γs ωzs·k to obtain the new element ps(k):

ps(k) = (1 + γs ωzs·k) ps−1(k), for all k.

This is the same as elementwise multiplication with row zs of Kn,γs
. Let diag(x)

denote the diagonal matrix with the elements of x on its diagonal and zero else-
where, and let vzs

denote a (n − 1) selection vector with 1 in position zs and zero
elsewhere. Then we obtain

ps = diag
(
vT

zs
· Kn,γs

)
· ps−1

= diag
(
1 + γs vT

zs
· Ωn

)
· ps−1.(11)

This brings us to the same component-by-component algorithm as in Section 2,
but this time rephrased in a matrix-vector notation, presented as Algorithm 2. The
construction cost of this algorithm is by consequence the same as that of Algorithm 1
with caching: a (general) matrix-vector product has time complexity O(n2), the
time complexity for finding the minima and updating the product vector is O(n),
and so this brings the total construction cost to O(smaxn

2).

Algorithm 2 CBC for shift-invariant tensor-product RKHS (matrix-vector form)

for s = 1 to smax do
e2

s = −1 + 1
n Kn,γs

· ps−1

zs = argmin
z∈Zn

e2
s(z)

ps = diag
(
vT

zs
· Kn,γs

)
· ps−1

end for

So, nothing is new here, except from the computational point of view, where we
can now choose to use a heavily optimized matrix-vector routine to do the hard
work. Even more, we can now use a matrix-vector routine for structured matrices.
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4. The structure of Ωn and Kn,γ

By using the notation introduced in (8) we can clearly demonstrate the structure
of the matrix Ωn defined in (9):

Ωn =

⎡⎢⎢⎢⎣
ω1·0 ω1·1 ω1·2 · · · ω1·(n−1)

ω2·0 ω2·1 ω2·2 · · · ω2·(n−1)

...
...

...
. . .

...
ω(n−1)·0 ω(n−1)·1 ω(n−1)·2 · · · ω(n−1)·(n−1)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
ω0 ω1 ω2 · · · ωn−1

ω0 ω2 ω4 · · · ωn−2

...
...

...
. . .

...
ω0 ωn−1 ωn−2 · · · ω1

⎤⎥⎥⎥⎦ .(12)

Obviously the matrix Kn,γ has the same structure, but it may change in every
iteration due to a different γ, whereas the matrix Ωn is completely defined by the
variable kernel part ω and the number of points n. We will therefore concentrate
on Ωn, which has the appealing visual fractal-like representation of Figure 1.

Let us first define the class of circulant matrices: a matrix Cn is circulant if it is
specified by its first column c as

Cn = circ(c) :=

⎡⎢⎢⎢⎢⎢⎣
c0 cn−1 cn−2 · · · c1

c1 c0 cn−1 · · · c2

c2 c1 c0 · · · c3

...
...

...
. . .

...
cn−1 cn−2 cn−3 · · · c0

⎤⎥⎥⎥⎥⎥⎦ .

A matrix-vector multiplication of a vector x with a circulant matrix Cn = circ(c),
can be seen as the convolution of x and c,

Cn · x = c ∗ x.

Figure 1. The structure of Ωn for n = 61 and n = 122 (using a
Korobov kernel with α = 2)
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In what follows we will write x′ when we need the vector x without its first entry.
Similarly, given a matrix An, with

An =
[
a�,k

]
�=0,...,(n−1)
k=0,...,(n−1)

,

we denote with A′
n the submatrix

A′
n =

[
a�,k

]
�=1,...,(n−1)
k=1,...,(n−1)

,

i.e., An without its first row and column.
We first look closer at a matrix Gn, which looks a lot like the matrix Ωn, but is

a square (n × n)-matrix with the following structure:

Gn :=

⎡⎢⎢⎢⎢⎢⎣
g0 g0 g0 · · · g0

g0 g1 g2 · · · gn−1

g0 g2 g4 · · · gn−2

...
...

...
. . .

...
g0 gn−1 gn−2 · · · g1

⎤⎥⎥⎥⎥⎥⎦ .

This matrix could be concisely defined, with the notation introduced in (8), as

Gn =
[
g�,k

]
=
[
g�·k

]
�=0,...,(n−1)
k=0,...,(n−1)

.(13)

The matrix Gn is fully specified by its second column g. For this kind of structured
matrices we can generalize a factorization for discrete Fourier matrices by the name
of Rader factorization [10, 13]. This factorization is based on the following number-
theoretic permutation (for n prime):

z = ΠT
n,δ · x ⇔ z� = xk,

{
k = � if � = 0,

k = δ�−1 (mod n) if � = 1, . . . , (n − 1),
(14)

where δ is a primitive root of n, and so δ is a generator of the cyclic group of order
(n − 1) with elements δr mod n, r = 0, 1, . . . , n − 2.

Theorem 1 (Rader Factorization). Given a matrix Gn, of order n, with structure
as in (13), and given a primitive root ρ of n, the matrix Gn can be factored as

Gn = Πn,ρ ·
[

g0 g01T
n−1

g01n−1 Cn−1

]
· ΠT

n,ρ−1 .

Here the permutations Πn,ρ and Πn,ρ−1 are defined as in (14), the matrix Cn−1 is
a circulant matrix of order (n − 1) defined by

Cn−1 = circ(c′)

c := ΠT
n,ρ · g,

and 1n−1 is a one-vector of size (n − 1).

Proof. Since row � = 0 and column k = 0 get mapped onto itself, we only have to
prove that [

Cn−1

]
�=1,...,(n−1)
k=1,...,(n−1)

= Π
′T
n,ρ · G′

n · Π′
n,ρ−1

=
[
G′

n

]
ρ�−1,(ρ−1)k−1

,
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and since the elements of Gn are indexed as (i · j) (mod n), we have

ρ�−1 · (ρ−1)k−1 = ρ�−k (mod n).

This is a matrix of which the first column, � = 1, . . . , (n− 1) and k = 1 is given by

Π
′T
n,ρ · g′ = c′,

as stated in the theorem. To prove this matrix is circulant we note that all diagonal
elements are the same, and we are only left to prove that the elements above the
main diagonal, i.e., k > �, match their corresponding element from the first column,

ρn−k+�−1 = ρn−1ρ�−k (mod n)

= ρ�−k (mod n),

where we used the fact that ρn−1 = 1, since ρ is a primitive root of n. �

Note that since we are considering the case n prime, a primitive root of n which
generates {1, . . . , n − 1} always exists, and thus the factorization from Theorem 1
is always possible.

Since our matrix Ωn is just the matrix Gn without its first row, see (9) and (13),
we are able to obtain a similar factorization.

Corollary 1. Given an (n − 1) × n matrix Ωn with structure as in (9), and given
a primitive root ρ of n, the matrix Ωn can be factored as

Ωn = Π′
n,ρ ·

[
ω01n−1 Cn−1

]
· ΠT

n,ρ−1 .

Here the permutations Πn,ρ and Πn,ρ−1 are defined as in (14), and the matrix Cn−1

is a circulant matrix of order (n − 1) defined by

Cn−1 = circ(ψ′),

ψ := ΠT
n,ρ · ω,

and 1n−1 is a one-vector of size (n − 1).

Proof. This is a trivial modification of Theorem 1. �

When the kernel is symmetric, that is ω(x) = ω(1−x), there is another computa-
tionally important structural property of the matrix Ωn: its horizontal and vertical
symmetry, and this in addition to Ωn already being centrosymmetric. These struc-
tural properties are clearly visible in Figure 1 for a Korobov kernel, where only the
first column of Ωn is nonregular.

When the decay parameter α for the Korobov space is even, the kernel is sym-
metric, since [1]

Bα(1 − x) = (−1)αBα(x).

Due to this symmetry we only have to search half of the possible z values, and we
have e2

n−z = e2
z and pn−k = pk. As a consequence we can halve the number of

calculations per z value in (10), winning a constant factor of 4 in total.
If we would transform the matrix Ωn into a more computationally suitable form,

then it would also be nice to keep all of the advantages of its symmetries. We now
show that such horizontal and vertical symmetry results in a periodic form when
using permutations of the form (14) as used in Corollary 1.
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Theorem 2. Given a vector w of length (n− 1), which has symmetry wk = wn−k,
and δ a primitive root of n, we obtain a periodic vector s after permutation (14),

s = Π
′T
n,δ · w =

[
t
t

]
,

with two copies of a vector t with length m = (n − 1)/2.
Likewise, given a matrix G′

n of order (n − 1), with horizontal and vertical sym-
metry, and ρ a primitive root of n, after permutation (14),

Cn−1 = Π
′T
n,ρ · G′

n · Π′
n,ρ−1 =

[
Cm Cm

Cm Cm

]
,

we obtain a horizontally and vertically periodic matrix Cn−1 with four copies of a
circulant matrix Cm of order m = (n − 1)/2.

Proof. Without loss of generality we only prove the periodicity for the vector case.
It is also obvious that Cm is circulant if Cn−1 is circulant, which is proven in
Theorem 1.

The periodicity in the vector s can be expressed as

s� = s�+(n−1)/2,

where these indices are generated by permutation (14) from a source index k, and
we should prove that {

δ�−1 = k,

δ�+(n−1)/2−1 = n − k.

The first part is true by definition (14). Using the fact that δ(n−1)/2 = n− 1 if δ is
a primitive root of n, we find

δ�+(n−1)/2−1 = δ�−1 δ(n−1)/2

= k (n − 1)
= n − k

modulo n, completing the proof. �

5. Component-by-component revisited

With the result of Corollary 1 we can work out the matrix-vector multiplication
for the calculation of the worst-case error vector as it appears in (10). We obtain

Kn,γ · p = (1 + γ Ωn) · p

= Π′
n,ρ ·

⎡⎣ (1 + γ ψ0)1n−1 circ
(
1 + γ ψ′) ⎤⎦ · ΠT

n,ρ−1 · p,

and now set q := ΠT
n,ρ−1 · p and bring q inside:

= Π′
n,ρ ·

[
(1 + γ ψ0) q0 + circ

(
1 + γ ψ′) · q′

]
.



912 DIRK NUYENS AND RONALD COOLS

The circulant matrix-vector multiplication can be rewritten as

circ(1 + γ ψ′) · q′ = (1 + γ ψ′) ∗ q′

= γ (ψ′ ∗ q′) +
n−1∑
k=1

qk,

where in the last step we used (αx + β) ∗ y = α(x ∗ y) + β
∑

k yk.
Putting all the pieces together, the squared worst-case error vector from (10)

can be calculated in the permuted space as

E2
s := Π

′T
n,ρ · e2

s =
1
n

(
γs (ψ′ ∗ q′

s−1) + γs ψ0 qs−1(0) +
n−1∑
k=0

qs−1(k)

)
− 1.(15)

In contrast to formula (10) in the original algorithm, which has time-complexity
O(n2), the above formula can be computed in time O(n log(n)), using a fast-
convolution algorithm, which calculates the convolution product in the Fourier
domain [6, p. 201],

x ∗ y = F -1(diag(F(x)) · F(y)),

where the discrete Fourier transform F is done by an FFT. It is advantageous
to find the minima in the permuted worst-case error vector E2

s. We will call the
associated generator component in the permuted space ws,

ws = argmin
w∈Zn

E2
s (w),

and the unpermuted component zs can be found by mapping ws back:

zs

Π′
n,ρ←−−− ws.

Since we are now working with the permuted version of the product vector, we
seek an update rule, as in (11), but now for qs:

qs = ΠT
n,ρ−1 · ps

= ΠT
n,ρ−1 · diag

(
vT

zs
· Kn,γs

)
· ps−1

= ΠT
n,ρ−1 · diag

(
vT

zs
· Kn,γs

)
· Πn,ρ−1 · qs−1.

Observe that we have the same permutation on the rows and columns of a diagonal
matrix. This can be done by applying this same permutation to the vector that
defines the diagonal:

qs = diag
(
vT

zs
· Kn,γs

· Πn,ρ−1

)
· qs−1

= diag
(
1 + γs vT

zs
· Ωn · Πn,ρ−1

)
· qs−1.

Using Corollary 1 we finally obtain

qs = diag
(
1 + γs (vT

zs
· Π′

n,ρ) ·
[

ψ0 1n−1 circ(ψ′)
])

· qs−1

= diag
(
1 + γs vT

ws
·
[

ψ0 1n−1 circ(ψ′)
])

· qs−1.(16)

This update rule for q is very similar to the update rule for p in (11). Here
we recombine the old q′ vector, elementwise with the row of the circulant matrix
circ(ψ′) which creates the minimal value in the permuted worst-case error E2

s. It
can be seen that the value for qs(0) is independent of the choice for zs, for all s.
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Plugging in (15), for the calculation of the worst-case error, together with the
above update formula for the product vector (16) into Algorithm 2, gives us the
new Algorithm 3: a fast O(smaxn log(n)) component-by-component construction
algorithm. In practice only the Π

′T
n,ρ permutation must be constructed for the

initial calculation of the ψ-vector and to convert each ws value back to a zs value.
Updating q is a simple case of multiplying with the right elements of ψ. Due to
the structure of the circulant matrix, this can be done by stepping through the
ψ-vector in reverse order.

Algorithm 3 Fast CBC for shift-invariant tensor-product RKHS

ψ̃
′
= F(ψ′)

for s = 1 to smax do

E2
s =

1
n

(
γs F -1

(
diag(ψ̃

′
) · F(q′

s−1)
)

+ γs ψ0 qs−1(0) +
n−1∑
k=0

qs−1(k)

)
− 1

ws = argmin
w∈Zn

E2
s (w)

qs = diag
(
1 + γs vT

ws
·
[

ψ0 1n−1 circ(ψ′)
])

· qs−1

end for

6. Numerical results

6.1. Implementation details. In this section we present some numerical results
obtained by implementations of Algorithms 1, 2, and 3. The tests were run on
a Linux workstation equipped with a 2.4 GHz Pentium 4 processor with hyper-
threading and 2 GB of RAM. All implementations used for timings use IEEE double
precision floating point and were all compiled with the same level of optimizations.
Four versions of the component-by-component algorithm were implemented in C:

• fastrank1 : This is the fast algorithm using the ideas from this paper and
presented in Algorithm 3, obtaining a construction cost of O(sn log(n)). We
used the FFTW3 library [5] for shifting back and forth to the frequency
domain and the C99 double complex type for calculating the convolution.

• spmvrank1 : This is an explicit matrix-vector algorithm as given in Algo-
rithm 2, where an optimized level 2 BLAS routine was used for the sym-
metric matrix-vector multiplication (the dspmv routine), obtaining O(sn2).
The BLAS used was the Intel� Math Kernel Library for Linux version 6.

• rank1 : This is the original algorithm with caching of the product vector and
precalculation of the ω-vector as given in Algorithm 2, obtaining O(sn2).

• slowrank1 : This is the original algorithm without caching and no precalcu-
lations, using the least possible memory,1 in other words a straight imple-
mentation of Algorithm 1, obtaining O(s2n2).

All four implementations use the symmetry-trick from Section 4 to search only half
the space of z candidates and to do half the number of calculations per z value.
For the fastrank1 algorithm this trick was justified in Theorem 2.

1Memory consumption is the reason to mention both the rank1 and slowrank1 algorithms,
although what follows will surely discourage the usage of the algorithm in the slowrank1 form.
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Table 1. Time and memory complexity for s dimensions and n points

algorithm total time memory
fastrank1 O(sn log(n)) O(2n)
spmvrank1 O(sn2) O(n2/8)

rank1 O(sn2) O(n)
slowrank1 O(s2n2) –

The spmvrank1 routine was used to obtain an idea of the possible speed of a
completely optimized and tuned rank1 routine. One could use all kinds of (system-
dependent) optimizations: instruction-level parallelism, optimize register and cache
usage, optimize locality, blocking, . . . . But all this work is already incorporated in
an optimized BLAS implementation. In sacrifice of memory we can use a BLAS2
routine to do the matrix-vector multiplication, in order to get an idea of how fast
the rank1 routine could be made. Consequently, this routine is not of practical
interest because the relevant part of the Ωn matrix must be kept in memory, which
is m(m+1)/2 doubles, with m = (n−1)/2. Note that the extra memory needed for
spmvrank1 is just a side-effect of using the BLAS routine, and would not be needed
for a fully optimized rank1 routine (which would also need much less memory
bandwidth).

An overview of the construction cost and memory consumption of all the algo-
rithms is given in Table 1. The constants for the memory complexity are retained
to give an approximate idea about the memory limitations of a certain algorithm.
Since just counting floating point operations does not always give accurate running
time predictions, we also timed the four routines for different n in 20 dimensions.
The total running time is illustrated in Figure 2, which also gives a view on the con-
stants for the time complexity. From the figure it can be seen that the complexity
difference of the new fastrank1 algorithm clearly pays off.
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Figure 2. Total construction times of the four routines for various
point sizes in 20 dimensions
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Three of the four routines spent some of their time in a setup phase, and we can
thus split the time complexity in two parts: a setup time tsetup and an iteration
time tit. The total time needed to construct an s-dimensional rule with n points is
then given by

ttotal(s, n) = tsetup(n) + s tit(n).

Now we briefly explain the time-complexity of each of these two parts for those
routines:

• The rank1 routine’s setup phase consists of precalculating the ω-vector,
having a time complexity of O(n) which can be neglected against the further
quadratic cost (and for all n presented in this paper was less than our timer
resolution of 10 ms).

• The spmvrank1 routine needs O(n2) time for constructing the Ωn matrix,
which is in accordance with its iteration cost.

• The iteration time of the fastrank1 algorithm is clearly O(n log(n)), con-
sisting of two FFTs and n multiplications. In the setup phase the situation
is a little bit more complex. Here we need to find a primitive root of n
and, because we are using FFTW, prepare a plan for the FFTs in the setup
phase. We use a naive algorithm for finding the primitive root which for
every primitive root candidate needs r checks, with r the number of factors
of (n−1). From a statistical point of view it is clear that not many attempts
need to be made to find the generator ρ. The preparation of the FFT plans
were done by the heuristic module2 of FFTW, for which the time is also
dependent on the number of factors of (n − 1) (actually of m). The time
complexity of the setup phase is thereby not transparent but assumed to
be almost linear in the number of factors of (n − 1).

We can thus conclude that the complexity of the iteration time is always the
dominant factor, and this is certainly the case when s is large. This makes the iter-
ation time the preferred measure to compare the different algorithms. In Figure 3
the iteration times for these three routines are shown. From this plot it is clear
that the irregularities in the beginning of the data for fastrank1 in Figure 2 can be
accredited to irregularities in the setup phase for these n.

The documentation of FFTW states that the time complexity of its FFT im-
plementation for an m point FFT is always O(m log(m)) (even for prime m, for
which the original Rader factorization is used on which Theorem 1 is based) [5].
However the performance of the library degrades for large prime factors. Following
the documentation, it is best to choose m of the form

m = 2a 3b 5c 7d 11e 13f ,

with e + f ≤ 1. So the choices for n in this paper were made with the previous
rule in mind. Starting from 421 and each time picking prime numbers which were
approximately twice as large and having factors for (n−1) of at most 7, the largest
n we used was 54 454 681. The importance of picking good n values is illustrated in
Figure 4, where we also timed the iteration time for the previous five primes and
the next five primes for each n.

We now return to our remark about the two original algorithms: slowrank1
(which is a straightforward implementation of Algorithm 1) and rank1 (which is an

2FFTW also includes a mode to first time different possible plans and then pick the best.
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Figure 4. Iteration times of the selected points and their environments

implementation of Algorithm 2). As can be seen in Table 1 the memory cost for
rank1 is n doubles, being m cached products and an m-vector to represent half of
the ω-vector. Suppose we have available a modest memory size of 1 GB for storing
these values; then n = 230/23 = 227. We can use the least-squares fits of Figure 2 to
estimate the time needed for n = 227 ≈ 1.34 · 108 points in 20 dimensions. For our
implementation of the rank1 routine this estimate is more than 120 years. Since
this time estimate makes rank1 infeasible even for a modest memory size of 1 GB,
we cannot imagine that anyone would want to use the slowrank1 routine. Note
that the time needed for fastrank1 is 10 minutes.
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6.2. Results discussion. In the appendix of [9] we list some tables which verify
the correct workings of the fast algorithm by comparing its output with some pub-
lished results. Many of these results match up exactly, while some give a small
difference. Two factors are involved: numerical stability and rounding errors, and
choice between different z which obtain (almost) the same minima. Concerning
the inexactness of the floating point calculations, it is to be expected that the fast
algorithm will make less inexactness errors than the original algorithm due to the
significantly smaller amount of calculations done. This will be investigated in future
work.

In [11] an algorithm for constructing randomly shifted rank-1 lattices in Sobolev
space is presented. A shift-invariant kernel can be associated with the kernel of a
Sobolev space, satisfying the form and structure for our 1-dimensional kernel. This
shift-invariant kernel is the kernel for a weighted Korobov space with parameters

α = 2, β̂j = βj + γj (a2
j − aj +

1
3
), γ̂j =

γj

2π2
.

The worst-case error calculated for this shift-invariant kernel then corresponds to
the expected value for the worst-case error in the Sobolev space; we refer the reader
to [11] for further details. Therefore the presented algorithms can also be used to
construct randomly shifted rank-1 lattices in weighted Sobolev spaces.

In Table 2 and Table 3 we present similar tables as in [8] for different weighted
Korobov spaces and different weighted Sobolev spaces. In these tables the dif-
ferences with the tables in [8] are marked with underlines. Note that our results
were calculated in double precision (i.e., 53 bit mantissa), while those by Kuo were
calculated in long double precision (i.e., 64 bit mantissa).

Table 2. Worst-case error e for 100 dimensions for weighted Ko-
robov space with α = 2, γj as specified above each column, βj = 1
and n as specified in the first column

n 0.9j 0.5j 0.1j j−1 j−2 j−6

4001 2.0242e+02 9.8282e−03 1.9988e−04 1.0759e+01 3.1264e−02 6.8995e−04
8009 1.4256e+02 5.9293e−03 1.0241e−04 7.6069e+00 1.9793e−02 3.5772e−04
16001 1.0151e+02 3.5558e−03 5.1961e−05 5.3817e+00 1.2435e−02 1.8223e−04
32003 7.1876e+01 2.0631e−03 2.6526e−05 3.7939e+00 7.9071e−03 9.3695e−05
64007 5.0634e+01 1.1980e−03 1.3387e−05 2.6762e+00 4.9801e−03 4.7580e−05

Table 3. Worst-case error e for 100 dimensions for the shift-
invariant kernel constructed for a weighted Sobolev space with aj =
1, γj as specified above each column, βj = 1 and n as specified in
the first column

n 0.9j 0.5j 0.1j j−1 j−2 j−6

4001 3.2060e−02 1.9776e−04 3.4727e−05 9.2597e−03 3.7846e−04 1.0653e−04
8009 2.0162e−02 1.0388e−04 1.7383e−05 5.6899e−03 2.0379e−04 5.3402e−05
16001 1.2824e−02 5.4924e−05 8.7074e−06 3.5744e−03 1.1128e−04 2.6767e−05
32003 8.0782e−03 2.8685e−05 4.3617e−06 2.2159e−03 6.0764e−05 1.3423e−05
64007 5.0783e−03 1.4800e−05 2.1803e−06 1.3817e−03 3.2951e−05 6.7183e−06
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Table 4. Worst-case error e for 100 dimensions for the shift-
invariant kernel constructed for a weighted Sobolev space with
aj = 1, γj as specified above each column, βj = 1 and n as speci-
fied in the first column, values for composite n with r factors are
from [2], values for prime n were calculated with fastrank1

n r 0.5j j−2 n r 0.5j j−2

2005001 6.1091e−07 1.6863e−06 2022157 6.0392e−07 1.6746e−06
2005007 2 7.1750e−07 1.9173e−06 2022161 4 8.6847e−07 2.4180e−06
2005019 6.1467e−07 1.6871e−06 2022187 5.9751e−07 1.6699e−06

2825567 4.4693e−07 1.2554e−06 2857159 4.3669e−07 1.2442e−06
2825617 2 5.1953e−07 1.4570e−06 2857177 4 6.4611e−07 1.8787e−06
2825639 4.4360e−07 1.2412e−06 2857181 4.3771e−07 1.2406e−06

4003981 3.2042e−07 9.3030e−07 3963161 3.2586e−07 9.3449e−07
4003997 2 3.7002e−07 1.0686e−06 3963181 4 4.9601e−07 1.3965e−06
4003999 3.2266e−07 9.3199e−07 3963209 3.2574e−07 9.3602e−07

5659627 2.3416e−07 6.9021e−07 5699773 2.3282e−07 6.8156e−07
5659637 2 2.7406e−07 8.0221e−07 5699779 4 3.3709e−07 1.0358e−06
5659651 2.3364e−07 6.9164e−07 5699789 2.3068e−07 6.8772e−07

8037191 1.6884e−07 5.1508e−07 7989011 1.7033e−07 5.1630e−07
8037211 2 1.9148e−07 5.9812e−07 7989013 4 2.5473e−07 7.4932e−07
8037229 1.6788e−07 5.1271e−07 7989067 1.6952e−07 5.8935e−07

1966079 6.1410e−07 1.7121e−06 1937207 6.3266e−07 1.7341e−06
1966087 3 7.8342e−07 2.2806e−06 1937221 5 1.0260e−06 2.8180e−06
1966123 6.1996e−07 1.7204e−06 1937227 6.2941e−07 1.7234e−06

2837381 4.4037e−07 1.2499e−06 2956783 4.2416e−07 1.2011e−06
2837407 3 5.6658e−07 1.6320e−06 2956811 5 7.3529e−07 1.9358e−06
2837431 4.4132e−07 1.2503e−06 2956813 4.2714e−07 1.2029e−06

4055927 3.1438e−07 9.1864e−07 4075289 3.1548e−07 9.1508e−07
4055929 3 4.1256e−07 1.2326e−06 4075291 5 4.8902e−07 1.5027e−06
4055957 3.1800e−07 9.1966e−07 4075297 3.1291e−07 9.1487e−07

5604997 2.3561e−07 7.0158e−07 5513623 2.3793e−07 7.0828e−07
5605027 3 3.1262e−07 9.3287e−07 5513623 5 4.1240e−07 1.1734e−06
5605037 2.3412e−07 6.9903e−07 5513663 2.3706e−07 7.0871e−07

8022409 1.6866e−07 5.1711e−07 7971311 1.6928e−07 5.1866e−07
8022431 3 2.3335e−07 6.7881e−07 7971317 5 2.8110e−07 8.1762e−07
8022437 1.6784e−07 5.1246e−07 7971323 1.7056e−07 5.1687e−07

In [3] and [2], Dick and Kuo present a variation on the original algorithm which
constructs rank-1 lattices for composite n which constructs the generator per factor
of n. They call this algorithm “Partial search” in contrast to the original algorithm
which is then dubbed “Full search”. The “Partial search” algorithm has construc-
tion cost O(sn(p1 + p2 + · · · + pr)), where n is a product of the distinct prime
numbers p1, p2, . . . , pr. In this way they can construct rank-1 lattice rules with
“millions of points”. However in the same papers it is also shown that the the-
oretical convergence of these lattice rules degrades as the number of factors of n
increases. In Table 4 we compare the worst-case error of a lattice rule with n prime
with those published in [2], calculated in long double precision (i.e., 64-bit man-
tissa). These numbers were missing in [2] because they could not be calculated.
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Figures 5 and 6 show the same information. As can be seen in Figure 6, the worst-
case error for n = 7 989 067 and γj = j−2 suffers from numerical noise. This effect
will be investigated at a later time. The other results behave as expected.

In the appendix of [9] we also provide a table for an equally weighted Korobov
space with α = 2, γj = 1/smax and n = 54 454 681 as a reference point.

7. Conclusion

We showed that it is possible to construct rank-1 lattice rules with “millions of
points” without using a composite number of points. In [3] and [2] the theoretical
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rate of convergence is given for composite n consisting of r factors. This theoretical
convergence decreases as r increases, so it seems profitable to be able to construct
rules with the number of points being prime as is done in this paper. Figures 5
and 6 confirm this. While the construction cost depends on the factors of n in [3]
and [2], the construction cost here depends on the factors of (n − 1) and does not
have a negative influence on the theoretical convergence. As already suggested this
algorithm can also be used for the construction of randomly shifted rank-1 lattices
in Sobolev spaces.
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