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LOCKING-FREE ADAPTIVE DISCONTINUOUS GALERKIN
FEM FOR LINEAR ELASTICITY PROBLEMS

THOMAS P. WIHLER

Abstract. An adaptive discontinuous Galerkin finite element method for lin-
ear elasticity problems is presented. We develop an a posteriori error estimate
and prove its robustness with respect to nearly incompressible materials (ab-
sence of volume locking). Furthermore, we present some numerical experiments
which illustrate the performance of the scheme on adaptively refined meshes.

1. Introduction

In structural mechanics, many applications involve a certain parameter-depen-
dency in their corresponding mathematical formulations. It is well known (see
e.g., [2]) that the numerical approximation of such problems by low-order finite
element methods may significantly degrade as one or more of the parameters ap-
proach a certain critical (problem-dependent) limit. This nonrobustness of the FEM
is widely termed “locking” and appears in various forms. For example, very thin
domains in shell and plate models may lead to the so-called shear locking. Moreover,
the interaction between bending and membrane energies, arising in shell theories,
can cause membrane locking. Finally, volume locking is observed in applications
dealing with nearly incompressible materials, such as the elasticity problems in this
paper.

In order to avoid the locking effects, several approaches have been suggested. We
mention here the mixed finite element methods in [8, 10], the nonconforming meth-
ods proposed in [7, 18], and the higher-order methods in [24]. All these methods
have been quite extensively studied within an a priori context.

Another way of circumventing locking is the use of discontinuous Galerkin (DG,
for short) finite element methods. In the recent article [12] on linear elasticity (see
also [26]), a priori results for these schemes have been presented; in particular, it has
been shown that they are free of volume locking, even in the low-order case. Based
on this knowledge, the aim of this paper is to establish a locking-free a posteriori
error analysis of discontinuous Galerkin methods for linear elasticity problems.

At present, only a small number of results on the a posteriori error estimation
of discontinuous Galerkin methods for elliptic problems has been published. We
mention here the articles [4, 17], where energy norm a posteriori error estimates
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for diffusion problems have been derived, the paper [21] on L2-error estimation for
DGFEM, and the work in [14] about energy norm a posteriori estimation of mixed
DGFEM for the time-harmonic Maxwell equations.

In this paper, we apply a new error estimation technique for DG methods, which
was recently proposed in [15]. We develop a computable upper bound (up to a
generic constant C) on the (broken) H1-norm of the DG error ‖eh‖1,h in terms of
the DG approximation uh; more precisely, we derive a function Φ (error estimator)
such that

‖eh‖1,h ≤ CΦ(uh).

Our main result (Theorem 4.1) states that the constant C and the term Φ(uh)
are uniformly bounded with respect to the incompressibility parameter arising in
linear elasticity problems. We remark that the quantity Φ(uh) may be computed
element-wise, thereby allowing for a standard adaptive procedure—based on auto-
matic mesh refinement (see [23])—that may be implemented easily. Related work
on nonconforming methods can be found in [9] and the references therein.

The main idea of our analysis is to rewrite the method in a nonconsistent way
using a lifting operator (see e.g., [1, 20, 22]), and to decompose the discontinuous
finite element spaces as described in [13]. Then, according to this decomposition,
the error of the DGFEM may be split into two parts which may be analyzed sepa-
rately using an appropriate inf-sup stability, some suitable interpolation properties
and a recent norm equivalence result from [13].

The outline of the paper is as follows. In Section 2, the linear elasticity problem
is described. Section 3 introduces the discontinuous Galerkin FEM. In Section 4,
the (locking-free) a posteriori error estimate is derived. Section 5 is dedicated to a
series of numerical experiments illustrating the performance of the proposed error
estimator within an automatic mesh refinement procedure; in particular, we show
that our numerical results are robust with respect to volume locking. Finally, we
summarize our work in Section 6.

2. Problem formulation

In the following section, we establish an appropriate functional setting for this
paper and introduce the linear elasticity problems under consideration.

2.1. Notation. For a bounded Lipschitz domain D in R
d, d ≥ 1, let L2(D) be the

Lebesgue space of square integrable functions, endowed with the usual norm ‖ · ‖0,D.
The standard Sobolev spaces of functions with integer regularity exponents s ≥ 0
are denoted by Hs(D). We write ‖·‖s,D and |·|s,D for the corresponding norms and
semi-norms, respectively, and set H0(D) = L2(D). The trace space of H1(D) is
denoted by H

1
2 (∂D) and, as usual, we define H1

0 (D) as the subspace of functions in
H1(D) with zero trace on ∂D. Furthermore, for a function space X(D), let X(D)d

and X(D)d×d be the spaces of all vector and tensor fields whose components belong
to X(D), respectively. Without further specification, these spaces are equipped
with the usual product norms (which, for simplicity, are denoted similarly as the
norm in X(D)). For vectors v,w ∈ R

d, and matrices σ, τ ∈ R
d×d, we use the

standard notation (∇v)ij = ∂jvi, (∇·σ)i =
∑d

j=1 ∂jσij , and σ : τ =
∑d

i,j=1 σijτij .
Furthermore, let v ⊗ w be the matrix whose ij-th component is vi wj . Note that
the identity v · σ · w =

∑d
i,j=1 viσijwj = σ : (v ⊗ w) holds.
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2.2. The Lamé system. Given a polygonal domain Ω in R
2 with boundary Γ =

∂Ω and an external force f ∈ L2(Ω)2, the linear elasticity problem considered in
this paper is to find a vector field u = (u1, u2) ∈ H1

0 (Ω)2 (displacement) such that

−∇ · σ(u) = f in Ω,(2.1)

u = 0 on Γ.(2.2)

Here ∇· is the divergence operator, σ(u) = {σij(u)}2
i,j=1 is the stress tensor for

homogeneous isotropic material given by

σ(u) = 2µε(u) + λ(∇ · u) D2×2,

where ε(u) = {εij(u)}2
i,j=1, with

εij(u) =
1
2
(∂iuj + ∂jui),

denotes the symmetric gradient of u, and

D2×2 =
(

1 0
0 1

)
is the 2× 2 identity matrix. Moreover, µ, λ > 0 are the so-called Lamé coefficients.
Standard arguments imply the unique solvability of the system (2.1)–(2.2).

Note that from the weak formulation of (2.1)–(2.2), which is to find u ∈ H1
0 (Ω)2

such that

(2.3)
∫

Ω

σ(u) : ε(v) dx =
∫

Ω

f · v dx ∀v ∈ H1
0 (Ω)2,

the stability estimate

‖u‖2
1,Ω + λ‖∇ · u‖2

0,Ω ≤ C‖f‖2
0,Ω,

easily follows, where C > 0 is a constant independent of λ. This implies that, for
λ → ∞, there arises the constraint ∇·u → 0 which corresponds to (nearly) incom-
pressible materials. It is well known (see [2]) that this incompressibility constraint
may cause a loss of uniformity (with respect to λ) in the convergence regime of
low-order (conforming) finite element methods. This does not mean that the FEM
does not converge; however, it may happen that the convergence begins to take
place at such high numbers of degrees of freedom that the method is not feasible in
practice. This nonrobustness of the FEM with respect to incompressible materials
is called volume locking. In [12] it was shown that this effect may be overcome by
the use of discontinuous Galerkin methods (see also [26]).

3. DG discretization

In this section, we introduce the discontinuous Galerkin FEM for the discretiza-
tion of the elasticity problem (2.1)–(2.2), and discuss its well-posedness.

3.1. Meshes and traces. Let Th be a finite element mesh on Ω consisting of
triangles {K}K∈Th

. For each K ∈ Th, we denote by nK the unit outward normal
vector on the boundary ∂K, and by hK the elemental diameter. We assume that
the triangles in Th are shape regular, i.e., there exists a constant C > 0 such that for
all K ∈ Th, hK ≤ CρK holds, where ρK is the radius of the largest inscribed-circle
in K. In addition, we suppose that the intersection between two elements of Th is
either empty, a common vertex or a common edge. These properties imply that
the local mesh sizes are of bounded variation, that is, there is a positive constant
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C such that ChK ≤ hK′ ≤ C−1hK , whenever K and K ′ share a common edge. As
usual, we define the mesh size by h = maxK∈Th

hK .
An interior edge of Th is the (nonempty) one-dimensional interior of ∂K+∩∂K−,

where K+ and K− are two adjacent elements of Th. Similarly, a boundary edge of
Th is the (nonempty) one-dimensional interior of ∂K ∩ Γ which consists of entire
edges of ∂K. By EI we denote the union of all interior edges. Similarly, EB is the
union of all boundary edges. We set E = EI ∪ EB.

Next, we define the trace operators that are required for the DG method. To
this end, let K+ and K− be two adjacent elements of Th, and x an arbitrary point
on the interior edge e = ∂K+ ∩ ∂K− ⊂ EI . Furthermore, let q, v, and τ be some
scalar-, vector-, and matrix-valued functions, respectively, that are smooth inside
each element K±. By (q±,v±, τ±), we denote the traces of (q,v, τ) on e taken from
within the interior of K±, respectively. Then, we introduce the following averages
at x ∈ e:

{{q}} =
1
2
(q+ + q−), {{v}} =

1
2
(v+ + v−), {{τ}} =

1
2
(τ+ + τ−).

Similarly, the jumps at x ∈ e are given by

[[q]] = q+ nK+ + q− nK− , [[v]] = v+ · nK+ + v− · nK− ,
[[v]] = v+ ⊗ nK+ + v− ⊗ nK− , [[τ ]] = τ+nK+ + τ−nK− .

On boundary edges e ⊂ EB, we set {{q}} = q, {{v}} = v, {{τ}} = τ , as well as
[[q]] = qn, [[v]] = v · n, [[v]] = v ⊗ n, and [[τ ]] = τn. Here n is the unit outward
normal vector to the boundary Γ.

3.2. The discontinuous Galerkin method. On a given mesh Th, we define the
finite element space

Vh = {v ∈ L2(Ω)2 : v|K ∈ P1(K)2, K ∈ Th},
where P1(K) = {v : v(x1, x2) = aKx1 + bKx2 + cK , aK , bK , cK ∈ R}, K ∈ Th,
denotes the space of all linear polynomials on K. Furthermore, we consider the
following discontinuous Galerkin finite element formulation for the approximation
of the linear elasticity problem (2.1)–(2.2): find uh ∈ Vh such that

(3.1) ah(uh,v) = lh(v)

for all v ∈ Vh. The bilinear forms ah and the linear functional lh are defined by

ah(u,v) =
∫

Ω

σh(u) : εh(v) dx−
∫
E

(
{{σh(u)}} : [[v]] + [[u]] : {{σh(v)}}

)
ds

+
∫
E
c[[u]] : [[v]] ds + λ

∫
E
c[[u]][[v]] ds

(3.2)

and

lh(v) =
∫

Ω

f · v dx,(3.3)

respectively; see [12]. Here σh and εh are the stress tensor and symmetric gradient,
respectively, taken element-wise. Furthermore, the function c ∈ L∞(E) is the
so-called discontinuity stabilization function which is chosen as follows: writing
h ∈ L∞(E) to denote the auxiliary mesh function defined by

h(x) =

{
min{hK , hK′}, x ∈ e = ∂K ∩ ∂K ′ ⊂ EI ,

hK , x ∈ e = ∂K ∩ ∂Ω ⊂ EB,
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we set

(3.4) c = γh−1,

with a parameter γ > 0 that is independent of the mesh size.

Remark 3.1. The DG scheme (3.1), based on the bilinear form ah in (3.2), is
called the interior penalty (IP) discontinuous Galerkin method. It was previously
introduced for the discretization of closely related diffusion problems; see, e.g., [3,
11, 25]. For those problems, there exists a remarkable number of other DG methods
(see [1] and the references therein) which could also be used for the approximation
of the elasticity problems in this paper.

Remark 3.2. In the case of inhomogeneous Dirichlet boundary conditions u = g on
Γ, with a datum g, the functional lh in (3.3) must be replaced by

lh(v) =
∫

Ω

f · v dx −
∫
EB

(g ⊗ n) : σh(v) ds +
∫
EB

cg · v ds

+ λ

∫
EB

c(g · n)(v · n) ds.

3.3. Well-posedness. The existence of a unique solution of the DGFEM (3.1)
follows directly by the coercivity of the DG bilinear form ah.

Proposition 3.3. There exist constants C, γmin > 0 independent of the Lamé
coefficient λ and of the mesh size such that for all γ in (3.4) with γ > γmin, it
follows that

(3.5) ah(u,u) ≥ C‖u‖2
DG ∀u ∈ Vh.

Here

‖u‖2
DG = ‖εh(u)‖2

0,Ω + λ‖∇h · u‖2
0,Ω +

∫
E
c|[[u]]|2 ds + λ

∫
E
c|[[u]]|2 ds.

Proof. This can be proved as in [12, Proposition 6]. �
Henceforth, we always assume that

(3.6) γ > max(1, γmin),

where γmin is the constant from the previous Proposition 3.3.

4. Locking-free a posteriori error estimation

Our main result is a locking-free a posteriori error estimate for the DGFEM (3.1)
with respect to the norm

‖v‖2
1,h = ‖∇hv‖2

0,Ω +
∫
E
c[[v]]2 ds,

where ∇h is the element-wise gradient on Th.

Theorem 4.1. Let u ∈ H1
0 (Ω)2 be the exact solution of the linear elasticity problem

(2.1)–(2.2), and uh its DG approximation obtained by (3.1). Then, there exists a
constant C > 0 independent of the Lamé coefficient λ (incompressibility parameter),
the mesh size and of the stability parameter γ, such that the following a posteriori
error bound holds true:

(4.1) ‖u − uh‖2
1,h ≤ C

∑
K∈Th

η2
K .
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Here the elemental error indicators ηK , K ∈ Th, are given by

(4.2) η2
K = h2

K‖f‖2
0,K + hK‖[[εh(uh)]]‖2

0,∂K\∂Ω + γ2h−1
K ‖[[uh]]‖2

0,∂K .

The error estimator, i.e., the right-hand side of (4.1), is bounded independently
of λ.

Remark 4.2. The above a posteriori result is a computable upper bound on the
energy norm of the DG error u − uh (in terms of the DG approximation uh)
which may be easily integrated in an automatic mesh refinement procedure (see
the adaptive algorithm in Section 5.1). We stress the fact that this upper bound is
uniformly bounded with respect to the incompressibility parameter λ. This clearly
confirms the absence of volume locking in the DG method which was previously
studied in the a priori analyses [12, 26].

The proof of Theorem 4.1 is worked out in Section 4.4. It follows from several
auxiliary results, which are developed in the ensuing Sections 4.1–4.3. The main
idea is to rewrite the method using a lifting operator (see e.g., [1, 20, 22]), and
to decompose the DG spaces in an appropriate way (see [13]). This approach
was recently presented in [15] for the a posteriori error estimation of mixed DG
discretizations for the Stokes problem.

4.1. Lifting operator and nonconsistent DG form. Due to the (possibly) low
regularity of the exact solution u ∈ H1

0 (Ω)2 of the elasticity problem (2.1)–(2.2),
we first reformulate the DGFEM (3.1) using a lifting operator; this results in a new
(nonconsistent) formulation of the DGFEM that is well defined on H1

0 (Ω)2. To do
so, we introduce the spaces

V(h) = H1
0 (Ω)2 + Vh

and
Σh = {τ ∈ L2(Ω)2×2 : τ |K ∈ P1(K)2×2, K ∈ Th}.

Then, the lifting operator L : V(h) → Σh is defined by

(4.3)
∫

Ω

L(v) : τ dx =
∫
E

[[v]] : {{τ}} ds ∀τ ∈ Σh.

Note that L is stable (see e.g., [1]), i.e., there exists a constant C > 0 independent
of the mesh size such that

(4.4) ‖L(v)‖2
0,Ω ≤ C

∫
E
h−1|[[v]]|2 ds

for any v ∈ V(h).

Remark 4.3. For v ∈ H1
0 (Ω)2, we have L(v) = [[v]] = 0 and [[v]] = 0 on E .

With these definitions, we can now introduce the following (nonconsistent) DG
form on V(h) × V(h):

ãh(u,v) =
∫

Ω

σh(u) : εh(v) dx−
∫

Ω

(
L(v) : σh(u) + L(u) : σh(v)

)
dx

+
∫
E
c[[u]] : [[v]] ds + λ

∫
E
c[[u]][[v]] ds.
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Note that, due to (4.3), ãh(u,v) = ah(u,v), for all u,v ∈ Vh, where ah is the
bilinear form (3.2). Hence, the DGFEM (3.1) is equivalent to finding uh ∈ Vh such
that

(4.5) ãh(uh,v) = lh(v) ∀v ∈ Vh.

Here lh is again the linear functional from (3.3).

4.2. Inf-sup stability. In order to prove an a posteriori error estimate for the
DGFEM that is robust (locking-free) with respect to nearly incompressible ma-
terials, the following stability result, which is explicit with respect to the Lamé
coefficient λ, is required.

Lemma 4.4. For any u ∈ H1
0 (Ω)2, there exists a function vu ∈ H1

0 (Ω)2 such that

(4.6) ãh(u,vu) = |u|21,Ω

and

(4.7) |vu|21,Ω + λ2‖∇ · vu‖2
0,Ω ≤ C|u|21,Ω,

where C > 0 is a constant independent of λ and of the mesh size.

Proof. We define vu as the unique solution in H1
0 (Ω)2 of

(4.8) ãh(vu,w) =
∫

Ω

∇u : ∇w dx ∀w ∈ H1
0 (Ω)2.

Then, taking w = u in (4.8) and using the symmetry of the form ãh, results in (4.6).
It remains to prove (4.7). Selecting w = vu in (4.8) and using Remark 4.3, leads

to

2µ‖ε(vu)‖2
0,Ω + λ‖∇ · vu‖2

0,Ω =
∫

Ω

∇u : ∇vu dx ≤ |u|1,Ω|vu|1,Ω.

Here the first Korn inequality (see [19], for example) implies that

‖ε(vu)‖2
0,Ω ≥ CKorn|vu|21,Ω,

for a constant CKorn > 0, and hence we have

2µCKorn|vu|21,Ω ≤ |u|1,Ω|vu|1,Ω.

Squaring both sides of the above inequality and dividing by |vu|21,Ω results in

(4.9) 4µ2C2
Korn|vu|21,Ω ≤ |u|21,Ω.

Furthermore, by [6, Lemma 9.2.3] (and the references therein), there exists φ ∈
H1

0 (Ω)2 such that

∇ · φ = λ∇ · vu, |φ|1,Ω ≤ κλ‖∇ · vu‖0,Ω,

where κ > 0 is a constant independent of vu, λ, and of the mesh size. Therefore,
taking w = φ in (4.8), leads to

ãh(vu, φ) =
∫

Ω

∇u : ∇φ dx

≤ |u|1,Ω|φ|1,Ω

≤ κλ|u|1,Ω‖∇ · vu‖0,Ω

≤ κ2|u|21,Ω +
λ2

4
‖∇ · vu‖2

0,Ω.

(4.10)
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Moreover, recalling again Remark 4.3, it holds that

ãh(vu, φ) = 2µ
∫

Ω

ε(vu) : ε(φ) dx + λ

∫
Ω

(∇ · vu)(∇ · φ) dx

≥ −2µ‖ε(vu)‖0,Ω‖ε(φ)‖0,Ω + λ2‖∇ · vu‖2
0,Ω

≥ −2µ|vu|1,Ω|φ|1,Ω + λ2‖∇ · vu‖2
0,Ω

≥ −2µκλ|vu|1,Ω‖∇ · vu‖0,Ω + λ2‖∇ · vu‖2
0,Ω

≥ −4µ2κ2|vu|21,Ω +
3
4
λ2‖∇ · vu‖2

0,Ω.

(4.11)

Combining (4.10) and (4.11), results in

(4.12) −4µ2κ2|vu|21,Ω +
λ2

2
‖∇ · vu‖2

0,Ω ≤ κ2|u|21,Ω.

Hence, (4.7) follows by choosing a suitable linear combination of the inequali-
ties (4.9) and (4.12) (independently of λ). �

4.3. The BDM interpolant. Although the so-called Brezzi-Douglas-Marini in-
terpolant (BDM) was originally introduced for the analysis of mixed FEM, it has
been recently shown (see [12], for example) that it is also ideally suited for the
analysis of DG methods for linear elasticity problems. The reason for this is that
the BDM interpolant provides some essential properties for the circumvention of
volume locking which are not available for conforming elements (see also [7, 26] for
related considerations based on the Crouzeix-Raviart interpolant). Referring to [8],
we collect some of its basic properties.

Lemma 4.5. Let K ∈ Th and v ∈ H1(K)2. Then, the BDM interpolant

IK : H1(K)2 → P1(K)2

on K is uniquely defined by

(4.13)
∫

e

(v − IKv) · neq ds = 0 ∀q ∈ P1(e), ∀e ∈ EK .

Here EK = {e ∈ E : e ⊂ ∂K} is the set of all edges of K, ne is the unit outward
vector of K on e ∈ EK , and P1(e) is the space of all polynomials on e ∈ EK of
degree at most 1. The following approximation properties hold true:

(a)

h−1
K ‖v − IKv‖0,K + |v − IKv|1,K ≤ C|v|1,K ;

(b)

‖v − IKv‖0,∂K ≤ Ch
1/2

K |v|1,K ;

(c)
‖∇ · (v − IKv)‖0,K ≤ C‖∇ · v‖0,K .

Proof. This follows directly from the results in [8, §III.3]. �

We are now ready to derive a locking-free a posteriori error estimator for the DG
method (3.1).
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4.4. Proof of Theorem 4.1. We start with the proof of the a posteriori error
estimate (4.1). To do so, we proceed in several steps.

Step 1: We first decompose the discontinuous finite element space Vh into two
orthogonal parts: a conforming part and a purely nonconforming part. To this end,
let Vc

h = Vh ∩ H1
0 (Ω)2. The orthogonal complement in Vh of Vc

h with respect to
the norm ‖ · ‖1,h, is denoted by V⊥

h ; i.e.,

(4.14) Vh = Vc
h ⊕ V⊥

h .

Then, decomposing the solution uh ∈ Vh of the DGFEM (3.1) into uh = uc
h ⊕u⊥

h ,
according to (4.14), we can write the error of the DG approximation as

(4.15) eh = u − uh = ec
h − u⊥

h ,

where ec
h = u − uc

h ∈ H1
0 (Ω)2, and it holds that

(4.16) ‖eh‖2
1,h ≤ 2

(
‖ec

h‖2
1,h + ‖u⊥

h ‖2
1,h

)
.

Furthermore, refering to [13, Theorem 5.3], we have the estimate

(4.17) ‖u⊥
h ‖2

1,h ≤ C

∫
E
c|[[uh]]|2 ds,

for a constant C > 0 independent of the mesh size and of the stability constant γ.
Thus, using (3.6) and (4.16), we obtain
(4.18)

‖eh‖2
1,h ≤ C

(
‖ec

h‖2
1,h +

∫
E
c|[[uh]]|2 ds

)
≤ C

(
‖ec

h‖2
1,h + γ2

∑
K∈Th

h−1
K |[[uh]]|20,∂K

)
,

and it remains to bound the term ‖ec
h‖1,h.

Step 2: Since ec
h ∈ H1

0 (Ω)2, we notice that ‖ec
h‖1,h = |ec

h|1,Ω (cf. Remark 4.3).
Furthermore, we can apply Lemma 4.4 to find w ∈ H1

0 (Ω)2 such that

ãh(ec
h,w) = |ec

h|21,Ω

and

(4.19) |w|21,Ω + λ2‖∇ · w‖2
0,Ω ≤ C|ec

h|21,Ω.

Hence, due to (4.15), we have

|ec
h|21,Ω = ãh(eh,w) + ãh(u⊥

h ,w).

Moreover, due to Remark 4.3, the exact solution u ∈ H1
0 (Ω)2 of (2.1)–(2.2), respec-

tively (2.3), satisfies ãh(u,v) = lh(v) for all v ∈ H1
0 (Ω)2, and therefore, it follows

that

|ec
h|21,Ω = ãh(u,w) − ãh(uh,w) + ãh(u⊥

h ,w) = lh(w) − ãh(uh,w) + ãh(u⊥
h ,w).

Now let Ih : H1
0 (Ω)2 → Vh be the global BDM interpolant defined by Ih|K = IK

∀K ∈ Th, where IK , K ∈ Th, is the local BDM interpolant from Lemma 4.5. Then,
using (4.5), we obtain that

(4.20) |ec
h|21,Ω = lh(w − Ihw) − ãh(uh,w − Ihw) + ãh(u⊥

h ,w) = E1 − E2 + E3.

Step 3: We analyze the terms E1, E2, E3 separately. For convenience, we write
ξh = w − Ihw. Using the definition of lh results in

E1 =
∑

K∈Th

∫
K

f · ξh dx ≤
∑

K∈Th

‖f‖0,K‖ξh‖0,K .
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For the estimation of E2, we integrate by parts. Notice that ∇h · σh(uh) ≡ 0 (since
uh is element-wise linear) on Ω and recall the definition of the lifting operator L.
This leads to

−E2 = −
∑

K∈Th

∫
∂K

σh(uh) : (ξh ⊗ nK) ds

+
∫

Ω

(
L(ξh) : σh(uh) + L(uh) : σh(ξh)

)
dx

−
∫
E
c[[uh]] : [[ξh]] ds − λ

∫
E
c[[uh]][[ξh]] ds

= −
∫
EI

{{ξh}} · [[σh(uh)]] ds +
∫

Ω

L(uh) : σh(ξh) dx

−
∫
E
c[[uh]] : [[ξh]] ds − λ

∫
E
c[[uh]][[ξh]] ds.

(4.21)

Since ∇h ·uh is element-wise constant on E , it holds, with the definition of Ih, that∫
EI

{{ξh}} · [[(∇h · uh)D2×2]] ds =
∑
e∈EI

∫
e

{{ξh}} · [[∇h · uh]] ds = 0,

and thus, ∫
EI

{{ξh}} · [[σh(uh)]] ds = 2µ

∫
EI

{{ξh}} · [[εh(uh)]] ds.

Moreover, observing that, for e ∈ E , [[uh]]|e ∈ P1(e), and applying again the defini-
tion of Ih, yields ∫

E
c[[uh]][[ξh]] ds =

∑
e∈E

∫
e

c[[uh]][[ξh]] ds = 0.

Substituting these identities into (4.21) results in

−E2 = −2µ

∫
EI

{{ξh}} · [[εh(uh)]] ds +
∫

Ω

L(uh) : σh(ξh) dx−
∫
E
c[[uh]] : [[ξh]] ds

≤ C
∑

K∈Th

(
‖ξh‖0,∂K‖[[εh(uh)]]‖0,∂K\Γ

+ ‖L(uh)‖0,K‖σh(ξh)‖0,K + γh−1
K ‖[[uh]]‖0,∂K‖ξh‖0,∂K

)
.

Finally, in order to bound E3, we use the fact that w ∈ H1
0 (Ω)2 and Remark 4.3:

E3 =
∫

Ω

σh(u⊥
h ) : ε(w) dx−

∫
Ω

L(u⊥
h ) : σ(w) dx

=
∫

Ω

εh(u⊥
h ) : σ(w) dx−

∫
Ω

L(u⊥
h ) : σ(w) dx

≤
∑

K∈Th

(
‖εh(u⊥

h )‖0,K + ‖L(u⊥
h )‖0,K

)
‖σ(w)‖0,K .

Step 4: Inserting the above estimates for E1, E2, E3 into (4.20), applying Cauchy-
Schwarz inequalities, recalling (3.6) and the stability (4.4) of the lifting operator L,
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and using the fact that [[u⊥
h ]] = [[uh]] on E , we conclude that

|ec
h|21,Ω ≤ C

( ∑
K∈Th

h2
K‖f‖2

0,K + hK‖[[εh(uh)]]‖2
0,∂K\Γ

+ γ2h−1
K ‖[[uh]]‖2

0,∂K + ‖ε(u⊥
h )‖2

0,K

)1/2

×
( ∑

K∈Th

h−2
K ‖ξh‖2

0,K + ‖σh(ξh)‖2
0,K + h−1

K ‖ξh‖2
0,∂K + ‖σ(w)‖2

0,K

)1/2

.

The term ‖ε(u⊥
h )‖2

0,K is estimated using (4.17) as follows:∑
K∈Th

‖ε(u⊥
h )‖2

0,K ≤ C‖u⊥
h ‖2

1,h ≤ C

∫
E
c|[[uh]]|2 ds.

By the definition of σh, this leads to

|ec
h|21,Ω ≤ C

( ∑
K∈Th

η2
K

)1/2( ∑
K∈Th

h−2
K ‖ξh‖2

0,K + h−1
K ‖ξh‖2

0,∂K

+ |ξh|21,K +λ2‖∇ · ξh‖2
0,K +|w|21,K +λ2‖∇ · w‖2

0,K

)1/2

.

Step 5: Recalling that ξh|K = w − IKw, K ∈ Th, where IK is the BDM inter-
polant (4.13), and applying the approximation properties (a)–(c) from Lemma 4.5,
leads to

|ec
h|21,Ω ≤ C

( ∑
K∈Th

η2
K

)1/2(
|w|21,Ω + λ2‖∇ · w‖2

0,Ω

)1/2

.

Estimating the second factor on the right-hand side of the above bound using (4.19),
and dividing both sides of the resulting inequality by |ec

h|1,Ω, completes, together
with (4.18), the proof of (4.1).

Finally, we need to show that the a posteriori error estimator
∑

K∈Th
η2

K is
bounded independently of λ. To do so, we note that it holds the inverse estimate∑

K∈Th

hK‖[[εh(uh)]]‖2
0,∂K ≤ C‖εh(uh)‖2

0,Ω,

and hence, we have ∑
K∈Th

η2
K ≤ C(‖uh‖2

DG + ‖f‖2
0,Ω),

where ‖ · ‖DG is the norm from Proposition 3.3. Therefore, it is sufficient to show
that

(4.22) ‖uh‖DG ≤ C‖f‖0,Ω,

for a constant C > 0 independent of λ.
Indeed, by the coercivity (3.5) of ah, the definition (3.1) of uh, and the Cauchy-

Schwarz inequality, we have

‖uh‖2
DG ≤ Cah(uh,uh) ≤ C‖f‖0,Ω‖uh‖0,Ω.

Moreover, applying a broken Korn inequality (see [5]), implies

‖uh‖0,Ω ≤ C
(
‖εh(uh)‖2

0,Ω +
∫
E
h−1|[[uh]]|2

)1/2

,
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and thus, we conclude

‖uh‖2
DG ≤ C‖f‖0,Ω

(
‖εh(uh)‖2

0,Ω +
∫
E
h−1|[[uh]]|2

)1/2

≤ C‖f‖0,Ω‖uh‖DG.

Hence, dividing both sides by ‖uh‖DG, implies (4.22).
This completes the proof of Theorem 4.1. �

5. Numerical experiments

The goal of this section is to illustrate the practical performance of the a pos-
teriori error estimator from Theorem 4.1 within an automatic mesh refinement
procedure.

5.1. Adaptive algorithm. Starting from an initial (coarse) grid T (0)
h , our adap-

tive mesh refinement process operates in the following (widely used) way (see [23]):
(1) Set k = 0.
(2) Compute the DG solution u(k)

h from (3.1) on T (k)
h .

(3) Compute the local error indicators ηK, according to (4.2).
(4) If

∑
K∈Th

η2
K is sufficiently small then stop. Otherwise, find

ηmax = max
K∈T (k)

h
ηK, and refine those elements K∈Th with ηK >

θηmax. Set k = k + 1 and go to (2).

Here 0 < θ < 1 is a fixed threshold. In our numerical experiments, we always
set θ = 0.5.

5.2. Model problem. Let Ω be the polygonal domain in Figure 1 with a reentrant
corner at the origin O = (0, 0). We set µ = 1 and f = 0. Then, using polar
coordinates (r, φ), we impose an appropriate boundary condition for u on ∂Ω such
that

u(r, θ) =
1
2µ

rα

(
−(α + 1) cos((α + 1)θ) + (C2 − (α + 1))C1 cos((α − 1)θ)

(α + 1) sin((α + 1)θ) + (C2 + α − 1)C1 sin((α − 1)θ)

)
.

Here α = 0.544484... is the solution of the equation

α sin(2ω) + sin(2ωα) = 0,

Ω

x

y

O

1

1

−1

−1

Figure 1. Polygonal domain Ω
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with ω = 3π/4, and C1, C2 are constants given by

C1 = −cos((α + 1)ω)
cos((α − 1)ω)

, C2 =
2(λ + 2µ)

λ + µ
.

Note that u is analytic inside the domain Ω. However, ∇u is singular at the origin;
especially, u �∈ H2(Ω)2. This solution exhibits the typical (singular) behavior of
solutions of linear elasticity problems near reentrant corners.

5.3. Discussion of the numerical results. In all our computations, we set the
stability constant γ from (3.4) equal to 10 which, for the example under consider-
ation, is sufficiently large to ensure the stability of the DG method (cf. Proposi-
tion 3.3). The adaptively refined meshes are constructed using the red-blue-green
refinement strategy (see [23]). In order to incorporate the inhomogeneous boundary
conditions on ∂Ω, the jump terms h−1

K ‖[[uh]]‖2
0,∂K in the local error indicators ηK

(for all K ∈ Th with ∂K ∩ ∂Ω �= ∅) have been modified appropriately.
Figure 2 shows the adaptively refined meshes for λ = 1 and λ = 5000 after

14 refinement steps. Both meshes have been strongly refined near the reentrant
corner O, thereby accounting for the singularity of the exact solution u at this
point. We see that the refinement of the meshes is (nearly) circular around the
origin and symmetric with respect to the x-axis.

The performance of the DGFEM with respect to the (global) L2-norm ‖ · ‖0,Ω

and the DG energy norm ‖ · ‖1,h for λ ∈ {1, 10, 100, 1000, 5000} is presented in
Figure 3. We see that the convergence is optimal already for a reasonably low
number of degrees of freedom. Moreover, we observe that the convergence regime of
the DGFEM is (asymptotically) robust with respect to the parameter λ as λ → ∞.

In Figure 4 we compare the energy error of the DGFEM on adaptively and uni-
formly refined meshes. We see that, although the DGFEM still converges robustly
with respect to λ on uniformly refined meshes, the above-mentioned optimal con-
vergence rate on adaptively refined meshes cannot be obtained due to the presence
of the corner singularity; see also [26].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2. Meshes after 14 adaptive refinement steps for λ = 1
(left) and λ = 5000 (right)
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L2errors
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Figure 3. L2 and DG energy norm of the error
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adaptive refinement
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Figure 4. DG Energy norm of the error for uniform and adaptive
mesh refinement

Finally, in Figure 5, we show a comparison of the actual and estimated DG
energy norm of the error. We see that the error estimator over estimates the true
error by an approximately consistent factor; indeed, we observe that the efficiency
indices ieff , defined by the ratio of the error estimator and the true error, lie in
the range between 3 and 6. In particular, we see that, although the efficiency
indices grow very slightly (a similar phenomenon has been observed in [15]), this
range is (asymptotically) independent of the choice of λ, which again indicates the
DGFEM’s robustness with respect to volume locking.
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Figure 5. Left: Actual and estimated DG energy norm of the
error. Right: Efficiency indices.

6. Conclusions

In this paper, we have presented an a posteriori error analysis of a discontinuous
Galerkin FEM for linear elasticity problems. The main result is an a posteriori
error estimate that is robust with respect to incompressible materials. Our numer-
ical experiments show that the proposed error estimator converges to zero at the
same asymptotic rate as the DG energy norm of the actual error on a sequence of
(nonuniform) adaptively refined meshes. Moreover, the results confirm the absence
of volume locking in the scheme.

Future work will include an extension of the low-order results in this paper to
an hp-context; see also [16], where an hp-a posteriori error analysis for a mixed DG
method for linear elasticity problems has been established.
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