
MATHEMATICS OF COMPUTATION
Volume 75, Number 254, Pages 565–594
S 0025-5718(06)01820-5
Article electronically published on February 2, 2006

A NONLINEAR APPROACH
TO ABSORBING BOUNDARY CONDITIONS
FOR THE SEMILINEAR WAVE EQUATION

JÉRÉMIE SZEFTEL

Abstract. We construct a family of absorbing boundary conditions for the
semilinear wave equation. Our principal tool is the paradifferential calculus
which enables us to deal with nonlinear terms. We show that the corresponding
initial boundary value problems are well posed. We finally present numerical
experiments illustrating the efficiency of the method.

1. Introduction

The semilinear wave equation in R models various phenomena as the dislocation
in crystals, laser pulses in two state media, etc. (see for instance [22]). Numerical
computations of this equation are therefore often necessary. Though the problem
is defined in the whole space, it is often sufficient to know the solution only on a
bounded domain: the domain of interest. An artificial domain which includes this
region of interest is then defined. Inside the domain the equations are discretized
in the usual way, but there remains the question of the choice of reliable boundary
conditions on the artificial boundary. Thus the boundary conditions have to be
well posed and accurate in order to be able to approximate the restriction of the
solution to the domain of interest.

In the case of linear constant coefficients equations, the transparent boundary
condition (the boundary condition satisfied by the exact solution) can be explicitly
computed when choosing special geometries for the computational domain (half-
spaces, spheres or cylinders). This boundary condition is a nonlocal operator and
can be approximated by local boundary conditions [13], [7], [21] or fast evaluated
[8], [2], [9]. One can also replace the boundary condition by a reflectionless sponge
layer damping propagating waves [3].

In the case of linear variable coefficients equations, the previous methods fail
since the transparent boundary condition cannot be explicitly computed. A strategy
has been developed to design boundary conditions which minimize the reflection of
the solution at the artificial boundary. These absorbing boundary conditions have
been constructed for hyperbolic problems [7] and parabolic problems [10], with
success, using pseudodifferential calculus. In the case of the wave equation, the
method relies on the factorization of the operator in a product of two first-order
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operators. One operator corresponds to the incident wave and the other to the
reflected wave with respect to the boundary of the computational domain. As the
boundary is artificial, the transparent boundary condition consists in annihilating
the operator corresponding to the reflected wave. Finally, the transparent condition
is not very manageable for numerical simulation and is approximated with absorbing
boundary conditions, which are easy to implement.

For nonlinear problems, very little is known. To extend the strategy designed for
linear variable coefficient equations to nonlinear equations, one of the first ideas is
to use the absorbing boundary conditions of the linearized problem. We obtained
good results in the case of reaction-diffusion equations [19] using this strategy. In
the case of nonlinear Schrödinger equations, we showed in [20] that the solution
computed with this method is very different from the solution of the nonlinear
problem set on R.

This motivates the introduction of a new method. It consists in following the
same steps as in the linear case, replacing the pseudodifferential calculus with
the paradifferential calculus. This enables us to deal with the nonlinear terms.
E. Dubach [6] used this method in a formal way for nonlinear parabolic equations.
Here, we develop this strategy in a rigorous way for the semilinear wave equation.
The present work consists of six parts:

• First, we state the main results which will be established in the next sec-
tions.

• In section 3, we recall how to obtain the absorbing boundary conditions
for the wave equation with variable coefficients following B. Engquist and
A. Majda [7]. We deduce a first way to construct absorbing boundary
conditions for the nonlinear problem.

• In section 4, we recall the properties of the paradifferential calculus that we
use in the sequel to find absorbing boundary conditions. We give various
properties of the paradifferential calculus of J. M. Bony [4], then we recall
various properties of the tangential paradifferential calculus of M. Sablé-
Tougeron [17].

• In section 5, we show that the solution of the semilinear wave equation also
satisfies a paradifferential equation modulo a regular remainder. We factor-
ize this paradifferential operator in a product of two first-order operators
as in the linear case [7]. Relying on a result of reflection of singularities,
we show that the solution of the semilinear wave equation annihilates the
first-order operator corresponding to the reflected wave modulo a regu-
lar remainder. This operator defines the transparent boundary condition.
However, this boundary condition contains paradifferential operators which
are nonlocal in time. Thus, giving local approximations of those operators,
we find absorbing boundary conditions.

• In section 6, we prove the well-posedness (local existence and uniqueness)
for the semilinear wave equation with our absorbing boundary conditions.
We study a linear nonhomogeneous problem which allows us to define an
iterative scheme and show its convergence.

• In section 7, we numerically compute the solution of the semilinear wave
equation with our absorbing boundary conditions. The schemes that we use
are easy to implement. We show the qualities of the method and compare
it with the one using pseudodifferential calculus.
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Remark. We study the one-dimensional case in order to emphasize the efficiency
of our method in a simple case. The multidimensional study contains additional
difficulties due to the geometry (see [10] in the case of linear parabolic equations
on curved boundaries) and should be the heart of a forthcoming paper.

Remark. The reader more focused on applications may skip the rather technical
sections 4 to 6.

2. Statement of the main results

Let s be an integer such that s > 2 and let f in C∞(R3, R) be such that
f(0, 0, 0) = 0 and f and all its derivatives are bounded. For all u0 in Hs(R)
and for all u1 in Hs−1(R), there exists a time T > 0 and a unique solution uex in
L∞(]0, T [, Hs(R)) ∩ W 1,+∞(]0, T [, Hs−1(R)) of

(2.1)

{
(∂2

t − ∂2
x)uex = f(uex, ∂tuex, ∂xuex) in ]0, T [×R,

uex = u0, ∂tuex = u1 at t = 0.

Moreover, ∂αuex belongs to L∞(]0, T [, L2(R)) for |α| ≤ s. Therefore, uex is in
Hs(]0, T [×R). This result is proved for instance in [12].

We want to approximate the solution uex of (2.1) restricted to R
−. Suppose that

u0 and u1 have support in R
−. We look for a condition satisfied by uex at x = 0 of

the form (∂x −B)uex|x=0 = 0, where B(uex, t, Dt) is an operator. Then, uex is the
solution of the problem

(2.2)

⎧⎪⎨⎪⎩
(∂2

t − ∂2
x)uex = f(uex, ∂tuex, ∂xuex) in ]0, T [×R

−,

∂xuex = B(uex, t, Dt)uex at x = 0,

uex = u0, ∂tuex = u1 at t = 0.

Remark. In the case of linear equations, the operator B does not depend of uex

(see for instance [7] and [10]).

We use two methods relying respectively on the pseudodifferential calculus and
on the paradifferential calculus. These methods yield the absorbing boundary con-
dition (abs) of order 0:

(2.3) ∂xu + ∂tu = 0 at x = 0.

We sum up the first-order and second-order absorbing boundary conditions given by
the pseudodifferential strategy and the paradifferential strategy for functions f of
the type f(u, ut, ux) = f1(u)+ f2(u)ut + f3(u)ux, where fj is in C∞(R), 1 ≤ j ≤ 3,
and f1(0) = 0.

Pseudodifferential strategy. The first-order absorbing boundary condition is

(2.4) (∂xu + ∂tu − (f2(u) − f3(u))u/2)|x=0 = 0,

and the second-order absorbing boundary condition is

(∂t∂xu + ∂2
t u − 1/2f1(u)

+ (f2(u)2 − f3(u)2)u/8 + 1/2(f3(u) − 3f2(u))∂tu

+ (f ′
3(u) − f ′

2(u))(∂tu + ∂xu)u/4)|x=0 = 0.

(2.5)
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Table 1. First-order and second-order absorbing boundary con-
ditions for (∂2

t − ∂2
x)u = f(u) at x = 0.

pseudodifferential strategy paradifferential strategy
first-order abc ∂xu + ∂tu = 0 ∂xu + ∂tu = 0

second-order abc ∂t∂xu + ∂2
t u − f(u)/2 = 0 ∂t∂xu + ∂2

t u − f(u)/2 = 0

Table 2. First-order and second-order absorbing boundary con-
ditions for (∂2

t − ∂2
x)u = −u2∂tu at x = 0.

pseudodifferential strategy paradifferential strategy
first-order abc ∂xu + ∂tu + u3/2 = 0 ∂xu + ∂tu + u3/6 = 0

second-order abc ∂t∂xu + ∂2
t u + ∂xuu2/2 ∂t∂xu + ∂2

t u + 3∂tuu2/4
+∂tuu2 − u5/8 = 0 +∂xuu2/4 = 0

Table 3. First-order and second-order absorbing boundary con-
ditions for (∂2

t − ∂2
x)u = u2∂xu at x = 0.

pseudodifferential strategy paradifferential strategy
first-order abc ∂xu + ∂tu + u3/2 = 0 ∂xu + ∂tu + u3/6 = 0

second-order abc ∂t∂xu + ∂2
t u + ∂xuu2/2 ∂t∂xu + ∂2

t u + ∂tuu2/4
+∂tuu2 + u5/8 = 0 −∂xuu2/4 = 0

Paradifferential strategy. The first-order absorbing boundary condition is

(2.6) (∂xu + ∂tu − F (u)/2)|x=0 = 0,

where F is the primitive of f2 − f3 vanishing at 0. The second-order absorbing
boundary condition is
(2.7)
(∂t∂xu+∂2

t u−1/2f1(u)+1/4(f3(u)−3f2(u))∂tu−1/4(f2(u)+f3(u))∂xu)|x=0 = 0.

Using (2.4), (2.5), (2.6) and (2.7), we give the first-order and second-order
absorbing boundary conditions obtained with the pseudodifferential and the
paradifferential strategy for three examples of function f studied in section 7:
f(u, ∂tu, ∂xu) = f(u), f(u, ∂tu, ∂xu) = −u2∂tu and f(u, ∂tu, ∂xu) = u2∂xu.

We obtain the same absorbing boundary conditions for the pseudodifferential
and the paradifferential strategy, which is a coincidence, as we will see in the other
examples.

Considering (2.2), we approximate uex by the solution u of

(2.8)

⎧⎪⎨⎪⎩
(∂2

t − ∂2
x)u = f(u, ∂tu, ∂xu) in ]0, T [×R

−,

∂xu + ∂tu + ∂−1
t (f1(u, ∂tu, ∂xu)) = 0, at x = 0,

u = u0, ∂tu = u1 at t = 0,

where ∂−1
t v =

∫ t

0
v(s)ds, f1 is a C∞ function in R

3 such that f1(0, 0, 0) = 0, and
f1 corresponds to one of the boundary conditions (2.4), (2.5), (2.6) and (2.7).
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The following theorem shows that (2.8) is well posed.

Theorem 1. For all u0 in H2(R−) and u1 in H1(R−) with support in R
−, there

is a time T > 0 such that problem (2.8) has a unique solution u with ∂αu in
L∞(]0, T [, L2(R−)) for all |α| ≤ 2.

3. Absorbing boundary conditions

using pseudodifferential calculus

We first recall the strategy of B. Engquist and A. Majda [7] used to design
absorbing boundary conditions for the wave equation with variable coefficients.
Let u0 and u1 have compact support in R

−, and let uex be the solution of

(3.1)

{
(∂2

t − ∂2
x)uex + α(t, x)uex + β(t, x)∂tuex + γ(t, x)∂xuex = 0 in R

+ × R,

uex = u0, ∂tuex = u1 at t = 0,

where α, β and γ are C∞ functions in time and space. We want to approximate
the restriction of uex to R

−. Therefore, we look for a condition satisfied by uex at
x = 0 of the form (∂x − B)uex|x=0 = 0, where B is an operator. We factorize the
operator in (3.1) using L. Nirenberg’s procedure [16]:

(3.2) ∂2
t − ∂2

x + α(t, x) + β(t, x)∂t + γ(t, x)∂x

= −(∂x − a(x, t, Dt))(∂x − b(x, t, Dt)) + r(x, t, Dt),

where Dt = −i∂t, r is C∞ in x with values in S−∞(R2) defined by

S−∞ = {q ∈ C∞(R2)/ |∂k
t ∂l

τq(t, τ )| ≤ CklN (1 + τ2)−N , ∀(k, l, N) ∈ N
3},

and where a and b are C∞ in x with values in the usual pseudodifferential algebra
S1(R2) defined by

S1 = {q ∈ C∞(R2)/ |∂k
t ∂l

τq(t, τ )| ≤ Ckl(1 + τ2)
1−l
2 , ∀(k, l) ∈ N

2}.

The calculations of a and b in (3.2) are done in the following way. The symbols of
a and b admit expansions

a(x, t, τ) =
∑
j≥0

a1−j(x, t, τ)

and
b(x, t, τ) =

∑
j≥0

b1−j(x, t, τ),

where a1−j(x, t, τ) and b1−j(x, t, τ) are homogeneous of degree 1−j in τ . The sym-
bol of the product of pseudodifferential operators a(t, x, Dt)b(t, x, Dt) is asymptotic
to ∑

k,l,n

1
inn!

∂n
τ a1−l(x, t, τ)∂n

t b1−k(x, t, τ).

The coefficients are then given by

(3.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a1−j + b1−j = δj1γ, j ≥ 0,

b1 = −iτ and a1 = iτ,∑
l+k+n=j+1

1
inn!∂

n
τ a1−l∂

n
t b1−k − ∂b1−j

∂x = −δj1α − δj0βiτ, j ≥ 0,
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with δjk = 1 if j = k and 0 otherwise. We obtain in particular

(3.4)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b1 = −iτ and a1 = iτ,

b0 =
γ − β

2
and a0 =

β + γ

2
,

b−1 =
−α + (β2 − γ2)/4 + (∂x − ∂t)(γ − β)/2

2iτ
= −a−1.

(3.1) restricted to R
+ becomes

(3.5)

{
(∂2

t − ∂2
x)uex+ α(t, x)uex+ β(t, x)∂tuex+ γ(t, x)∂xuex = 0 in R

+ × R
+,

uex = 0, ∂tuex = 0 at t = 0,

which together with (3.2) and Theorems 1 and 2 of [14] implies

(3.6) (∂x − b(0, t, Dt))uex|x=0 ∈ C∞.

B. Engquist and A. Majda propose to take B = b(0, t, Dt), although (3.6) is weaker
than (∂x − B)uex|x=0 = 0. In fact, we do not know how to improve (3.6), and the
numerical results obtained with this choice are good.

B has an infinite expansion which is not manageable for numerical simulations.
The strategy of the absorbing boundary conditions consists in truncating this ex-
pansion after a finite number of terms. For an integer k, the absorbing boundary
condition of order k is

(3.7) (∂x −
k∑

j=0

b1−j(0, t, Dt))u|x=0 = 0,

and we approximate the solution of (3.1) by the solution u of

(3.8)

⎧⎪⎨⎪⎩
(∂2

t − ∂2
x)u + α(t, x)u + β(t, x)∂tu + γ(t, x)∂xu = 0 in R

+ × R
−,

(∂x −
∑k

j=0 b1−j(0, t, Dt))u|x=0 = 0,

u = u0, ∂tu = u1 at t = 0.

This method gives good results, and we note an improvement as k increases (see
section 7).

We now consider the nonlinear case. Let uex be the solution of (2.1). As
f(0, 0, 0) = 0, we may rewrite f as

f(u1, u2, u3) = −α(u1, u2, u3)u1 − β(u1, u2, u3)u2 − γ(u1, u2, u3)u3,

and uex satisfies (3.1), where α, β and γ now depend on uex. A first idea is to
follow the strategy of the linear case. For a function f of the type f(u, ut, ux) =
f1(u) + f2(u)ut + f3(u)ux where fj is in C∞(R), 1 ≤ j ≤ 3, and f1(0) = 0, we
set (α, β, γ) = (−f1(u)/u,−f2(u),−f3(u)). With this choice, we obtain the first-
order absorbing boundary condition (2.4) and the second-order absorbing boundary
condition (2.5).

Remark. The pseudodifferential strategy is valid if the multiplication by α, β and
γ are pseudodifferential operators, i.e., if α, β and γ are C∞. Thus, in the non-
linear case, this strategy is valid when uex is smooth, but not when uex has finite
regularity. This justifies the use of the paradifferential calculus.
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A second idea is to linearize equation (2.1). Then, we set

(α, β, γ) = (−f ′
1(u) − f ′

2(u)∂tu − f ′
3(u)∂xu,−f2(u),−f3(u)),

and we follow the strategy of the linear case. We do not write the boundary
conditions obtained in this case, as they provide poorer numerical results than
those given by boundary conditions (2.4) and (2.5).

4. The paradifferential calculus

4.1. The paradifferential calculus of J. M. Bony. In nonlinear problems,
we have to give a sense to the multiplication of functions having low regularity.
J. M. Bony [4] proposes to replace the multiplication by a function u(x), x ∈ R

d,
by the operator Tu defined as follows:

(4.1) F(Tuv)(ξ) = (2π)−d

∫
Rd

χ(ξ − η, η)Fu(ξ − η)Fv(η)dη,

where F is the Fourier transform and χ is a C∞ function in R
d × (Rd \ {0})

homogeneous of degree 0 in (ξ, η) and satisfying

(4.2)
{

χ(ξ, η) = 1 if |ξ| ≤ ε1|η|,
χ(ξ, η) = 0 if |ξ| ≥ ε2|η|,

with 0 < ε1 < ε2 < 1.

Remark. If χ = 1, and if u and v are sufficiently smooth, (4.1) is exactly the
multiplication of v by u.

The paramultiplication satisfies the following properties:
(a) If u is in L∞(Rd) and v is in Hs(Rd), then Tuv is in Hs(Rd) and ‖Tuv‖Hs(Rd)

≤ Cs‖u‖L∞(Rd)‖v‖Hs(Rd) for any real s (see for instance [5]).
(b) Let s > d/2 and let u be in Hs(Rd). A change of function χ in Tu modifies

Tu by the addition of a s − d/2-regularizing operator, i.e., an operator
mapping Ht(Rd) in Ht+s−d/2(Rd) for any real t.

(c) The following result of J. M. Bony with the improvement of Y. Meyer
[15] shows the relationship between the paramultiplication and nonlinear
functions. Let F be a real function in C∞(RN ) such that F (0) = 0 and let
u1, . . . , uN be real functions in Hs(Rd) with s > d

2 . Then, F (u1, . . . , uN )
is in Hs(Rd) and there is r in H2s− d

2 (Rd) such that

(4.3) F (u1, . . . , uN ) =
N∑

j=1

T ∂F
∂uj

(u1,...,uN )uj + r.

4.2. The tangential paradifferential calculus of M. Sablé-Tougeron. For
boundary problems, L. Hörmander [11] introduces for s and s′ real numbers and
d ≥ 2 an integer the spaces Hs,s′

(Rd) defined by

Hs,s′
(Rd)

=
{

u∈S ′(Rd) / ‖u‖s,s′ =(2π)−d

∫
(1+|ξ|2)s(1+|ξ′|2)s′

|Fu(ξ)|2dξ<+∞
}

,

where S ′(Rd) is the space of tempered distributions and where ξ (resp. ξ′) is the
dual variable of x (resp. x′) with x = (x′, xd) and x′ ∈ R

d−1. L. Hörmander also
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introduces the space Hs,s′
(R

d

+) as the set of functions u in D′(Rd
+) such that there

is U in Hs,s′
(Rd) satisfying U = u in R

d
+. M. Sablé-Tougeron [17] proves

(d) Let s and s′ be real numbers such that

(4.4) s >
1
2
, s + s′ >

d

2
and s + 2s′ >

1
2
,

then Hs,s′
is a multiplicative algebra.

M. Sablé-Tougeron defines a tangential paramultiplication which acts only on
the variable x′:
(4.5)

Fx′(T ′
uv)(ξ′, xd) = (2π)−d+1

∫
Rd−1

χ′(ξ′ − η′, η′)Fx′u(ξ′ − η′, xd)Fx′v(η′, xd)dη′,

where Fx′ is the Fourier transform with respect to x′ and χ′ is a C∞ function in
R

d−1 × (Rd−1 \ {0}) homogeneous of degree 0 in (ξ′, η′) and satisfying

(4.6)
{

χ′(ξ′, η′) = 1 if |ξ′| ≤ ε1|η′|,
χ′(ξ′, η′) = 0 if |ξ′| ≥ ε2|η′|,

where 0 < ε1 < ε2 < 1. She proves the analog of (4.3):

(e) Let F be a real function in C∞(R
d

+ × R
N ) with compact support in x and

let u1, . . . , uN be real functions in Hs,s′
(R

d

+) where s and s′ satisfy (4.4).

Then F (x, u1, . . . , uN ) is in Hs,s′
(R

d

+), and there is r in Hs,s′+ρ(R
d

+) such
that

F (x, u1, . . . , uN ) =
N∑

j=1

T ′
∂F
∂uj

(x,u1,...,uN )
uj + r,

where ρ > 0 is defined by

(4.7)
ρ = min(s − 1

2 , s + s′ − d
2 ) if s′ �= (d − 1)/2,

0 < ρ < s − 1
2 if s′ = (d − 1)/2.

Let m′ be in R, and let s and s′ be such that

(4.8) −d − 1
2

≤ s′ <
d − 1

2
and s + s′ >

d

2
.

To include the tangential paramultiplication and the tangential pseudodifferential
operators in an algebra, she introduces the classes Σm′

s,s′(R
d

+) of symbols p(x, ξ′)
satisfying

p =
∑

j≤s+s′− d
2

pm′−j ,

where pm′−j is homogeneous in ξ′ of degree m′−j, C∞ in ξ′ �= 0 and in Hs−j,s′
(R

d

+)
with respect to x. The tangential paradifferential operator T ′

p is defined by

Fx′(T ′
pv)(ξ′, xd)

= (2π)−d

∫
Rd−1

χ′(ξ′ − η′, η′)Fx′p(ξ′ − η′, xd, η
′)φ(η′)Fx′v(η′, xd)dη,

(4.9)

where χ′ is chosen as before, φ is in C∞ equal to 1 outside a compact and equal
to 0 in the neighborhood of 0, and Fx′p is the Fourier transform of p(x, ξ′) with
respect to x′. We have the following properties:
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(f) A change of function χ′ in T ′
p modifies T ′

p by the addition of a continuous

operator from Ht,t′(R
d

+) to Ht,t′−m′+s+s′− d
2 (R

d

+) for −(s − [s + s′ − d
2 ]) <

t ≤ s − [s + s′ − d
2 ] and for all t′ ([y] is the integral part of y).

(g) T ′
p is continuous from Ht,t′(R

d

+) to Ht,t′−m′
(R

d

+) for −(s − [s + s′ − d
2 ]) <

t ≤ s − [s + s′ − d
2 ] and for all t′.

(h) A linear continuous operator A from C∞
0 (Rd

+) to C∞(Rd
+) is said to be

properly supported if for all compact K of R
d
+, there exists a compact K ′

of R
d
+ such that

suppu ⊂ K ⇒ suppAu ⊂ K ′ and u = 0 on K ′ ⇒ Au = 0 on K.

u ∈ Ht,t′

loc (R
d

+) is said to be microlocally of class H̃t,σ′
at a point (x0, ξ

′
0) of

R
d

+×(Rd−1\{0}) if there is a properly supported tangential pseudodifferen-

tial operator Q of order 0 elliptic at (x0, ξ
′
0) such that Qu is in Ht,σ′

(R
d

+).
Let t be such that −(s − [s + s′ − d

2 ]) < t ≤ s − [s + s′ − d
2 ] and let u

be in Ht,t′(R
d

+). If u is microlocally of class H̃t,σ′
at (x0, ξ

′
0), then T ′

pu is
microlocally of class H̃t,min(t′−m′+ρ,σ′−m′) at (x0, ξ

′
0), where ρ is defined as

in (4.7).
(i) If p is in Σm′

s,s′(R
d

+) and q is in Σm′′

s,s′(R
d

+), then there is r bounded in xd ≥ 0
with values in the s + s′ − d

2 − m′ − m′′-regularizing operators such that

(4.10) T ′
pT

′
q = T ′

p#q + r(x, Dx′),

where p#q is in Σm′+m′′

s,s′ (R
d

+) and defined by

p#q =
∑

j+k+|α′|≤s+s′− d
2

1
i|α′|α′!

∂α′

ξ′ pm′−j∂
α′

x′ qm′′−k.

In R
d−1×[0, x1

d], we consider the operator of evolution L(x, Dx) = ∂xd
−T ′

p where

p is in Σ1
s,s′(R

d

+), (s, s′) satisfies (4.4) with ρ > 1 (ρ is defined by (4.7)) and the
principal symbol p1(x, ξ′) of p(x, ξ′) is purely imaginary and C2 in (x, ξ′). A point
(x0, ξ

′
0) being fixed in R

d−1 × {0} × (Rd−1 \ {0}), we define γ̃ as the projection on
ξd = 0 of the bicharacteristic of l(x, ξ) = ξd+ip1(x, ξ′) through (x0, ξ

′
0,−ip1(x0, ξ

′
0)).

Suppose that x1
d is small enough such that γ̃, parametrized by xd, is defined for xd

in [0, x1
d]. A. Alabidi [1] proves in particular the following result:

(j) Let t and σ be two real numbers such that t ≤ σ ≤ t + ρ − 1 and let u

be in H1,t−1(Rd
+). Suppose that Lu is microlocally of class H̃0,σ on γ̃ and

that u is microlocally of class H̃1,σ−1 at γ̃(x2
d) with 0 < x2

d < x1
d. Then, for

0 ≤ xd ≤ x1
d, u(., xd) is microlocally of class Hσ at the point (x′, ξ′) such

that (x′, xd, ξ
′) belongs to γ̃.

5. Absorbing boundary conditions using paradifferential calculus

5.1. The transparent boundary condition. Let s, f , u0 and u1 satisfy the
hypothesis of section 2. Let uex in Hs(]0, T [×R) be the solution of (2.1). In order
to approximate uex, we look for a condition satisfied by uex at x = 0 of the form
(∂x − B)uex|x=0 = 0, where B(uex, t, Dt) is an operator. In view of the linear
case and in particular of (3.6), we will limit ourselves to look for B satisfying
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(∂x − B)uex|x=0 ∈ Hs+σ
loc (]0, T [), where σ is as large as possible. In this study, we

obtain σ = s − 3. Without conditions on B, (∂x − B)uex|x=0 belongs at most to
Hs− 3

2 (]0, T [). A judicious choice of B therefore implies a s − 3
2 gain in regularity.

If two operators B and B′ are well-suited, R = B − B′ satisfies Ruex|x=0 ∈
H2s−3

loc (]0, T [) for all u0, u1 with compact support in R
− and uex a solution of (2.1).

Then, for all h in Hs− 1
2 (]0, T [), Rh belongs to H2s−3

loc (]0, T [) (assuming that the
map (u0, u1) → uex|x=0 is onto Hs− 1

2 (]0, T [)). Therefore, the difference of two such
operators is s − 5

2 -regularizing. As B is a paradifferential operator in our study,
this has a link with points (b) and (f).

Remarks 1. Our method is valid for weak singularities (s > 2), and the larger s is,
the better are the results. On the other hand, it does not work for strong singu-
larities (like shock waves, expansion waves,...) where the paradifferential calculus
is not valid (for instance, (4.3) requires s > d

2 ).
2. In the case of linear equations, we obtain σ = +∞ (see for instance [7] and

[10]).

We extend uex by 0 to t < 0. As u0 and u1 have compact support in R
− and uex

satisfies (2.1), uex is in Hs(]−∞, T [×R+). Moreover, as f(0, 0, 0) = 0, uex satisfies

(5.1) (∂2
t − ∂2

x)uex = f(Juex) in ] −∞, T [×R+,

where for a function v depending on (t, x), we define

(5.2) Jv(t, x) = (v(t, x), ∂tv(t, x), ∂xv(t, x)).

We will look for B as a tangential paradifferential operator with the symbol b in
Σ1

s,0(] − ∞, T [×R+) ((s, 0) satisfies (4.8) because d = 2 in this study). Thus, we
look for b such that

(5.3) (∂x − T ′
b)uex|x=0 ∈ H2s−3(] −∞, T [).

As uex is in Hs,0(]−∞, T [×R+), (s−1, 0) satisfies (4.4), and as f is in C∞(R3, R),
(e) implies

(5.4) f(Juex) − T ′
∂f

∂u1

uex − T ′
∂f

∂u2

∂tuex − T ′
∂f

∂u3

∂xuex ∈ Hs−1,s−2(] −∞, T [×R+).

Then, (5.1) and (5.4) yield

(5.5) ∂2
xuex−∂2

t uex +T ′
∂f

∂u1

uex +T ′
∂f

∂u2

∂tuex +T ′
∂f

∂u3

∂xuex ∈ H0,2s−3(]−∞, T [×R+).

We define L = ∂2
x − ∂2

t + T ′
∂f

∂u1

+ T ′
∂f

∂u2

∂t + T ′
∂f

∂u3

∂x, where ∂f
∂uj

= ∂f
∂uj

(Juex) for

1 ≤ j ≤ 3. The following factorization is parallel to L. Nirenberg’s factorization
[16] for classical pseudodifferential operators:

Proposition 1. There exist a and b in Σ1
s,0(] −∞, T [×R+) such that Im (a1) and

τ have the same sign, and

(5.6) L = (∂x − T ′
a)(∂x − T ′

b) + r(t, x, Dt), (t, x) ∈] −∞, T [×R+,

where r(t, x, Dt) is bounded in xd ≥ 0 with values in the s−3-regularizing operators.

Proof. It is done by identification and induction. We first have

(∂x − T ′
a)(∂x − T ′

b) = ∂2
x − (T ′

a + T ′
b)∂x + T ′

aT ′
b − T ′

∂b
∂x

.
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Thus, L = (∂x − T ′
a)(∂x − T ′

b) + r(t, x, Dt) is equivalent to

(5.7)

⎧⎨⎩ T ′
a + T ′

b = −T ′
∂f

∂u3

,

T ′
aT ′

b − T ′
∂b
∂x

+ r(t, x, Dt) = −∂2
t + T ′

∂f
∂u1

+ T ′
∂f

∂u2

∂t.

As (s, 0) satisfies (4.8), (i) implies that (5.7) is equivalent to
(5.8)⎧⎪⎨⎪⎩

a1−j + b1−j = −δj1
∂f
∂u3

, 0 ≤ j ≤ s − 1,

a1b1 = τ2,∑
l+k+n=j+1

1
inn!∂

n
τ a1−l∂

n
t b1−k − ∂b1−j

∂x = δj1
∂f
∂u1

+ δj0
∂f
∂u2

iτ, 0 ≤ j ≤ s − 2.

The two first equalities in (5.8) and the fact that Im (a1) and τ have the same sign
yield a1 = iτ and b1 = −iτ . Suppose we have found a1−k and b1−k homogeneous of
degree 1− k in τ and in Hs−k,0(]−∞, T [×R+) with respect to (t, x) for 0 ≤ k ≤ j
and j ≤ s − 2 satisfying (5.8). Then j + 1 ≤ s − 1 and the first and the third
equality of (5.8) yield

2iτb−j = −
∑

l+k+n=j+1, k,l≤j

1
inn!

∂n
τ a1−l∂

n
t b1−k

+
∂b1−j

∂x
+ δj1

∂f

∂u1
+ δj0

∂f

∂u2
iτ − δj0

∂f

∂u3
iτ.

(5.9)

The induction hypothesis implies that ∂b1−j

∂x is homogeneous of degree 1 − j in
τ and in Hs−j−1,0(] − ∞, T [×R+) with respect to (t, x). Moreover, as uex is in
Hs,0(] −∞, T [×R+) and (s − 1, 0) satisfies (4.4), (e) yields

δj1
∂f
∂u1

+ δj0
∂f
∂u2

iτ − δj0
∂f
∂u3

iτ is homogeneous of degree 1 − j in τ

and in Hs−j−1,0(] −∞, T [×R+) with respect to (t, x).

If j < s − 2, Hs−j−1,0(] − ∞, T [×R+) is an algebra by (d), thus the induction
hypothesis implies

(5.10)

∑
l+k+n=j+1, k,l≤j

1
inn!

∂n
τ a1−l∂

n
t b1−kis homogeneous of degree 1 − j

in τ and in Hs−j−1,0(] −∞, T [×R+) with respect to (t, x).

If j = s− 2, Hs−j−1,0(]−∞, T [×R+) = H1,0(]−∞, T [×R+) is not an algebra, but
the multiplication is continuous from Ht,0(]−∞, T [×R+)×H1,0(]−∞, T [×R+) into
H1,0(]−∞, T [×R+) for all t > 1. In fact, by the definition of Ht,t′(]−∞, T [×R+),
it suffices to show that the multiplication is continuous from Ht(R2)×H1(R2) into
H1(R2) for all t > 1, which follows from the results in [5]. Thus, the induction
hypothesis implies (5.10).

Therefore, b−j is homogeneous of degree −j in τ and in Hs−j−1,0(]−∞, T [×R+)
with respect to (t, x) by (5.9). The first equality of (5.8) implies that a−j satisfies
the same properties as b−j , which concludes the proposition by induction. �

The following theorem allows us to compute the transparent boundary condition
(5.3):
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Theorem 2. Let s > 2, let u0 be in Hs(R) and u1 in Hs−1(R) with compact
support in R

− and let uex be the solution of (2.1). Let b in Σ1
s,0(]−∞, T [×R+) be

given by b1 = −iτ and (5.8). Then

(5.11) (∂x − T ′
b)uex|x=0 ∈ H2s−3(] −∞, T [).

Proof. We define w = (∂x−T ′
b)uex, and we prove that w|x=0 is in H2s−3

loc (]−∞, T [).
It suffices to show that w|x=0 is microlocally of class H2s−3 with respect to (t, τ )
for any t in ] −∞, T [ and for all τ �= 0.

uex is in Hs(] − ∞, T [×R+) and thus in H1,s−1(] − ∞, T [×R+). As b is in
Σ1

s,0(] −∞, T [×R+) and −(s − [s − 1]) < 1 ≤ s − [s − 1], T ′
buex is in

H1,s−2(] −∞, T [×R+)

by (g). Moreover, ∂xuex belongs to H1,s−2(] − ∞, T [×R+) because uex is in
Hs(] − ∞, T [×R+) and thus in H2,s−2(] − ∞, T [×R+) as s − 2 > 0. Therefore,
w belongs to H1,s−2(] −∞, T [×R+). The factorization of Proposition 1 yields

(5.12) (∂x − T ′
a)w = Luex − r(t, x, Dt)uex.

uex is in H0,s(] − ∞, T [×R+) and r(t, x, Dt) is bounded in xd ≥ 0 with values in
the s − 3-regularizing operators. Therefore, r(t, x, Dt)uex belongs to

H0,2s−3(] −∞, T [×R+).

(5.5) and (5.12) yield

(5.13) (∂x − T ′
a)w ∈ H0,2s−3(] −∞, T [×R+).

Let (t0, τ0) be such that t0 ∈] − ∞, T [ and τ0 �= 0. The bicharacteristic of
ξ + ia1 = ξ − τ through (t0, x = 0, τ0) satisfies x + t = t0 and τ = τ0. Therefore,
there exists (t1, x1) in ] −∞, T [×R+ on this bicharacteristic such that t1 < 0. As
t1 < 0 and uex = 0 for t < 0, uex is microlocally of class H̃1,+∞ in (t1, x1, τ0). As
−(s− [s− 1]) < 1 ≤ s− [s− 1], T ′

buex is microlocally of class H̃1,2s−3 in (t1, x1, τ0)
by (h). As s > 2, ρ = s−1 > 1, and (5.13) and (j) imply that w|x=0 is microlocally
of class H2s−3 in (t0, τ0) (we can use (j) with t = s−1 and σ = 2s−2 for instance).
Therefore, w|x=0 is microlocally of class H2s−3 with respect to (t, τ ) for all t in
] −∞, T [ and for all τ �= 0. This implies

�(5.14) (∂x − T ′
b)uex|x=0 ∈ H2s−3

loc (] −∞, T [).

Thanks to (5.8), we can compute the symbol of b. In particular, we obtain

(5.15)

b1 = −iτ,

b0 = 1
2 ( ∂f

∂u2
− ∂f

∂u3
),

b−1 = 1
4iτ (∂t( ∂f

∂u3
) + ∂x( ∂f

∂u2
) − ∂t( ∂f

∂u2
) − ∂x( ∂f

∂u3
))

+ 1
8iτ (( ∂f

∂u2
)2 − ( ∂f

∂u3
)2) + 1

2iτ
∂f
∂u1

.

5.2. The absorbing boundary conditions. Theorem 2 implies the following
corollary.

Corollary 1. Let s > 2, let u0 be in Hs(R) and u1 be in Hs−1(R) with compact
support in R

−, and let uex be the solution of (2.1). Let b in Σ1
s,0(]−∞, T [×R+) be

given by b1 = −iτ and (5.8). For 0 ≤ k ≤ s − 2, we define bk =
∑k

j=0 b1−j. Then

(5.16) (∂x − T ′
bk)uex|x=0 ∈ Hmin(s+k−1/2,2s−3)(] −∞, T [).
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Proof. b − bk =
∑

k<j≤s−1 b1−j , thus b − bk is in Σ−k
s−k,0(] −∞, T [×R+). As uex is

in Hs(]−∞, T [×R), uex is in H1,s−1(]−∞, T [×R+), and (g) implies that T ′
b−bkuex

belongs to H1,s−1+k(] −∞, T [×R+). Taking the trace at x = 0, we obtain

(5.17) T ′
b−bkuex|x=0 ∈ Hs+k−1/2(] −∞, T [).

As (∂x − T ′
bk)uex|x=0 = (∂x − T ′

b)uex|x=0 − T ′
bk−buex|x=0, (5.11) and (5.17) imply

(5.16). �
Remark. T ′

bkuex|x=0 = Tbkuex|x=0, where T is the one-dimensional paramultiplica-
tion of J. M. Bony.

Corollary 1 motivates the following definition:

Definition 1. Let k be a positive integer. The absorbing boundary condition of
order k is

(5.18) (∂x − Tbk)u|x=0 = 0.

The absorbing boundary condition of order 0 is

(5.19) ∂xu + ∂tu = 0.

For k ≥ 1, Tbku|x=0 is a paradifferential operator. In order to simplify the
numerical computations, we prefer to replace this operator in (5.18) with other
nonlinear operators, using (c). Thus, we look for a boundary condition of the
following type:

(5.20) (∂lk
t ∂xu + ∂lk+1

t u + fk(Jlku))|x=0 = 0,

where lk ≥ k − 1, fk is a C∞ function such that fk(0) = 0, Jlku = (∂l
tu, 0 ≤ l ≤

lk, ∂j
t ∂xu, 0 ≤ j ≤ lk − 1), and satisfying

(5.21)
(∂lk

t ∂xuex + ∂lk+1
t uex + fk(Jlkuex))|x=0 ∈ H

min(s+k−lk−1/2,2s−3−lk)
loc (] −∞, T [).

When such a function fk exists, we call (5.20) an absorbing boundary condition of
order k, and we prefer it to (5.18). We give the first absorbing boundary condition in
the general case, and the second absorbing boundary condition for a nonlinearity
f of the type f(u, ut, ux) = f1(u) + f2(u)ut + f3(u)ux, where fj is in C∞(R),
1 ≤ j ≤ 3, and f1(0) = 0.

5.2.1. The first-order absorbing boundary condition. When k = 1 and s ≥ 3, (5.16)
becomes

(5.22) (∂x + ∂t − Tb0)uex|x=0 ∈ Hmin(s+1/2,2s−3)(] −∞, T [).

Differentiating in time and using the fact that T∂tb0uex|x=0 is in Hs−1/2(]−∞, T [)
by (a), we obtain

(5.23) ((∂t∂x + ∂2
t )uex − Tb0∂tuex)|x=0 ∈ Hmin(s−1/2,2s−4)(] −∞, T [).

Using that (∂t + ∂x)uex|x=0 ∈ Hmin(s−1/2,2s−4)(] −∞, T [) by (5.16), we have

(5.24)
Tb0∂tuex|x=0 = 1/2(T ∂f

∂u2
∂tuex|x=0 − T ∂f

∂u3
∂tuex|x=0)

= 1/2(T ∂f
∂u2

∂tuex|x=0 + T ∂f
∂u3

∂xuex|x=0) + Hmin(s−1/2,2s−4)(] −∞, T [).

As

(f(Juex) − T ∂f
∂u1

uex − T ∂f
∂u2

∂tuex − T ∂f
∂u3

∂xuex)|x=0 ∈ H2s−7/2(] −∞, T [)
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by (c) and as T ∂f
∂u1

uex|x=0 ∈ Hs−1/2(] −∞, T [) by (a), we get

(5.25) Tb0∂tuex|x=0 = 1/2f(uex, ∂tuex, ∂xuex)|x=0 + Hmin(s−1/2,2s−4)(] −∞, T [).

(5.23) and (5.25) yield

(5.26) ((∂t∂x+∂2
t )uex−1/2f(uex, ∂tuex, ∂xuex))|x=0 ∈ Hmin(s−1/2,2s−4)(]−∞, T [),

which by (5.20) and (5.21) implies

Proposition 2. We have the first-order absorbing boundary condition

(5.27) (∂t∂xu + ∂2
t u − f(u, ∂tu, ∂xu)/2)|x=0 = 0.

5.2.2. The case f(u, ut, ux) = f1(u)+f2(u)ut +f3(u)ux. For f(u, ut, ux) = f1(u)+
f2(u)ut + f3(u)ux, (5.15) implies b0 = (f2(u) − f3(u))/2 and b−1 = f ′

1(u)/(2iτ) +
(f ′

2(u) + f ′
3(u))(∂xu + ∂tu)/(4iτ) + (f2

2 (u) − f2
3 (u))/(8iτ). When k = 1 and s ≥ 3,

(5.16) becomes

(5.28) (∂x + ∂t − 1/2Tf2(uex)−f3(uex))uex|x=0 ∈ Hmin(s+1/2,2s−3)(] −∞, T [).

uex|x=0 is in Hs−1/2(] − ∞, T [), so that (Tf2(uex)−f3(uex)uex − F (uex))|x=0 is in
H2s−3/2(] −∞, T [) by (c), where F is a primitive of f2 − f3 vanishing at 0. (5.28)
becomes

(5.29) (∂xuex + ∂tuex − F (uex)/2)|x=0 ∈ Hmin(s+1/2,2s−3)(] −∞, T [),

which by (5.20) and (5.21) implies

Proposition 3. When f(u, ut, ux) = f1(u) + f2(u)ut + f3(u)ux, we have the first-
order absorbing boundary condition

(5.30) (∂xu + ∂tu − F (u)/2)|x=0 = 0,

where F is the primitive of f2 − f3 vanishing at 0.

When k = 2 and s ≥ 4, (5.16) becomes
(5.31)
((∂x + ∂t − 1/2Tf2(uex)−f3(uex))uex − Tb−1uex)|x=0 ∈ Hmin(s+3/2,2s−3)(] −∞, T [).

Using the fact that (Tf2(uex)−f3(uex)uex − F (uex))|x=0 is in H2s−3/2(] −∞, T [) by
(c) and T∂tb−1uex|x=0 is in Hs+1/2(] − ∞, T [) by (a), and differentiating in time,
we obtain

(5.32)
(∂t∂xuex + ∂2

t uex + 1/2(f3(uex) − f2(uex))∂tuex − Tb−1∂tuex)|x=0

∈ Hmin(s+1/2,2s−4)(] −∞, T [).

By (c) we have

(5.33)

Tb−1∂tuex =1/2Tf ′
1(u)uex + 1/4T(f ′

2(uex)+f ′
3(uex))(∂xuex+∂tuex)uex

+ 1/8T(f2(uex))2−(f3(uex))2uex

=f1(uex)/2 + (f3(uex) + f2(uex))(∂xuex + ∂tuex)/4

− 1/4Tf2(uex)+f3(uex)(∂xuex + ∂tuex) + 1/8F1(uex)

+ H2s−7/2(] −∞, T [),

where F1 is a primitive of f2
2 − f2

3 vanishing at 0. (5.29) yields

(5.34)
Tf2(uex)+f3(uex)(∂xuex + ∂tuex) = 1/2Tf2(uex)+f3(uex)F (uex)

+Hmin(s+1/2,2s−3)(] −∞, T [),
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and using (c) implies

(5.35) Tf2(uex)+f3(uex)F (uex) = −F1(uex) + Hs+1/2(] −∞, T [).

(5.32), (5.33), (5.34) and (5.35) yield

(∂t∂xuex + ∂2
t uex − 1/2f1(uex)

+ 1/4(f3(uex) − 3f2(uex))∂tuex − 1/4(f2(uex) + f3(uex))∂xuex)|x=0

∈ Hmin(s+1/2,2s−4)(] −∞, T [),

(5.36)

and using (5.20) and (5.21) we get

Proposition 4. When f(u, ut, ux) = f1(u)+f2(u)ut+f3(u)ux, we have the second-
order absorbing boundary condition
(5.37)
(∂t∂xu+∂2

t u−1/2f1(u)+1/4(f3(u)−3f2(u))∂tu−1/4(f2(u)+f3(u))∂xu)|x=0 = 0.

Remarks 1. Proposition 1 is similar to Nirenberg’s pseudodifferential factorization
[16] used in [7]. However, paralinearizing (5.1) in (5.5) and replacing paradifferential
operators by local operators (section 5.2) are specific to our strategy. In particular,
it is different from the strategy consisting in the linearization of f(uex, ∂tuex, ∂xuex)
(see the end of section 3 for an explanation of this strategy). In fact, the operators
T ′

∂uj
f , 1 ≤ j ≤ 3, appearing in the paralinearization of (5.1) in (5.5) are quite differ-

ent from the multiplication by ∂uj
f , 1 ≤ j ≤ 3, which comes from the linearization

of (5.1).
2. In the linear case, our strategy gives the same absorbing boundary conditions

as those obtained with the pseudodifferential calculus.

6. Existence and uniqueness results

for the nonlinear approximate problems

In this section, we prove Theorem 1. The proof contains two steps:

• First step: We show the existence and uniqueness of a u solution of a linear
nonhomogeneous problem in sufficiently regular spaces so that f(Ju) and
f1(Ju) are well defined, where J is defined by (5.2).

• Second step: We define an iterative scheme where ul+1 is the solution of
the linear problem of the previous step having f(Jul) as the right-hand
side and where f1 is estimated at ul. We use the first step to show that the
scheme is well defined. The convergence for sufficiently small T is obtained
through energy estimates.

6.1. The linear nonhomogeneous problem. We study the following linear non-
homogeneous problem:⎧⎪⎨⎪⎩

(∂2
t − ∂2

x)u + u = g in ]0, T [×R
−,

(∂x + ∂t)u = h at x = 0,

u = u0, ∂tu = u1 at t = 0 in R
−.

We have a result of existence, uniqueness and regularity for the weak formulation:
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Proposition 5. Let u0 be in H2(R−) and u1 in H1(R−) with support in R
−. Let

g be in H1(]0, T [×R
−) and let h in H1(]0, T [) be such that h(0) = 0. Then, there

exists a unique solution u with ∂αu in L∞(]0, T [, L2(R−)) for all |α| ≤ 2 of the
following weak formulation:

(6.1)

⎧⎪⎨⎪⎩
∀v ∈ H1(R−) :
d2

dt2 (u, v) + (∂xu, ∂xv) + (u, v) + d
dtu(., 0)v(0)

= hv(0) + (g, v) in D′(0, T ).

Moreover
max
|α|≤2

‖∂αu‖2
L∞(]0,T [,L2(R−))

≤ CeT (‖g‖2
H1(]0,T [×R−) + ‖h‖2

H1(]0,T [)

+ ‖u0‖2
H2(R−) + ‖u1‖2

H1(R−) + ‖g(0, .)‖2
L2(R−)),

(6.2)

where C is a universal constant.

Proof. Multiplying the equation by ∂tu and integrating it in space yields

(6.3)
1
2

d
dt (‖∂tu(t, .)‖2

L2(R−) + ‖u(t, .)‖2
H1(R−)) + ∂tu(t, 0)2

= (g(t, .), ∂tu(t, .)) + h(t)∂tu(t, 0).

Using Cauchy-Schwartz’s Lemma, the inequality ab ≤ a2/2 + b2/2, and Gronwall’s
Lemma yields

(6.4)
‖∂tu(t, .)‖2

L2(R−) + ‖u(t, .)‖2
H1(R−)

≤ eT (‖u1‖2
L2(R−) + ‖u0‖2

H1(R−) + ‖g‖2
L2(]0,T [×R−) + ‖h‖2

L2(]0,T [)).

(6.4) implies the uniqueness in H2(]0, T [×R
−) when g is in L2(]0, T [×R

−) and h
belongs to L2(]0, T [).

We differentiate the equation in time. w = ∂tu is the solution of

(6.5)

⎧⎪⎨⎪⎩
(∂2

t − ∂2
x)w + w = ∂tg in ]0, T [×R

−,

(∂x + ∂t)w = h′ at x = 0,

w = u1, ∂tw = ∂2
t u(0, .) at t = 0 in R

−,

thus (6.4) implies

(6.6)
‖∂2

t u‖2
L∞(]0,T [,L2(R−)) + ‖∂tu‖2

L∞(]0,T [,H1(R−))

≤ eT (‖∂2
t u(0, .)‖2

L2(R−) + ‖u1‖2
H1(R−) + ‖∂tg‖2

L2(]0,T [×R−) + ‖h′‖2
L2(]0,T [)).

We shall find a bound on ‖∂2
t u(0, .)‖2

L2(R−). Taking v = ∂2
t u(0, .) and t = 0 in weak

formulation (6.1) yields

‖∂2
t u(0, .)‖2

L2(R−) + (∂xu0, ∂x∂2
t u(0, .)) + (u0, ∂

2
t u(0, .)) + u1(0)∂2

t u(0, 0)
= h(0)∂2

t u(0, 0) + (g(0, .), ∂2
t u(0, .)),

which implies after integration by parts that

‖∂2
t u(0, .)‖2

L2(R−)

≤ (‖∂2
xu0‖L2(R−) + ‖u0‖L2(R−) + ‖g(0, .)‖L2(R−))‖∂2

t u(0, .)‖L2(R−)

+(−∂xu0(0) − u1(0) + h(0))∂2
t u(0, 0).

By hypothesis, ∂xu0(0) = u1(0) = h(0) = 0. Thus

‖∂2
t u(0, .)‖L2(R−) ≤ ‖∂2

xu0‖L2(R−) + ‖u0‖L2(R−) + ‖g(0, .)‖L2(R−),
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which together with (6.6) yields

(6.7)
‖∂2

t u‖2
L∞(]0,T [,L2(R−)) + ‖∂tu‖2

L∞(]0,T [,H1(R−))

≤ eT (3‖u0‖2
H2(R−) + ‖u1‖2

H1(R−)

+3‖g(0, .)‖2
L2(R−) + ‖∂tg‖2

L2(]0,T [×R−) + ‖h′‖2
L2(]0,T [)).

If u0 is in H2(R−) and u1 in H1(R−) with support in R
−, and if g belongs

to H1(]0, T [, L2(R−)) and h is in H1(]0, T [) such that h(0) = 0, then (6.4) and
(6.7) give the existence of a solution u such that ∂αu is in L∞((]0, T [, L2(R−))) for
|α| ≤ 2 using a Galerkin method.

As ∂2
xu = ∂2

t u + u − g, we get

(6.8)
‖∂2

xu‖2
L∞(]0,T [,L2(R−)) ≤ 2‖∂2

t u‖2
L∞(]0,T [,L2(R−)) + 2‖g‖2

L∞(]0,T [,L2(R−))

≤ 2‖∂2
t u‖2

L∞(]0,T [,L2(R−)) + 4‖g(0, .)‖2
L2(R−) + 4T‖∂tg‖2

L2(]0,T [,L2(R−)).

Finally, (6.4), (6.7) and (6.8) imply (6.2) with C = 10e. �
6.2. The iterative scheme.

• First, we define ul+1 from ul as the solution of the linear problem with
right-hand sides g = f(Jul) and h = ∂−1f1(Jul), where J is defined by
(5.2).

• We prove that for sufficiently small T > 0, the sequence (∂αul) is bounded
in L∞(]0, T [, L2(R−)) for |α| ≤ 2.

• Finally, we show that (∂αul) is a Cauchy sequence in L∞(]0, T [, L2(R−))
for |α| ≤ 2, and that the limit u satisfies the nonlinear problem.

In order to define (ul), we need the following lemma:

Lemma 1. Let v1 and v2 be such that ∂αvj is in L∞(]0, T [, L2(R−)) for |α| ≤ 2
and j = 1, 2. Let gj = f(Jvj), f j

1 = f1(Jvj) and let hj = ∂−1
t f j

1 for j = 1, 2.
Then, ∂αgj is in L∞(]0, T [, L2(R−)) for |α| ≤ 1 and hj and h′

j are in L∞(]0, T [).
Moreover, there exists an increasing function θ such that

(6.9)

max|α|≤1 ‖∂α(g1 − g2)‖L∞(]0,T [,L2(R−))

+‖h1 − h2‖L∞(]0,T [) + ‖h′
1 − h′

2‖L∞(]0,T [)

≤
√

1 + T 2θ(max|α|≤2 ‖∂αv1‖L∞(]0,T [,L2(R−)) + ‖∂αv2‖L∞(]0,T [,L2(R−)))
max|α|≤1 ‖∂α(v1 − v2)‖L∞(]0,T [,L2(R−)).

Proof. As f(0, 0, 0) = 0 and f1(0, 0, 0) = 0, (6.9) implies that ∂αg1 belongs to
L∞(]0, T [, L2(R−)) for |α| ≤ 1 and that h1 and h′

1 are in L∞(]0, T [) by taking
v2 = 0. Similarly (6.9) implies that ∂αg2 is in L∞(]0, T [, L2(R−)) for |α| ≤ 1 and
that h1 and h′

1 are in L∞(]0, T [) by taking v1 = 0.
Thus, it remains to prove (6.9). Finally, we estimate ‖∂α(g1−g2)‖L∞(]0,T [,L2(R−)),

|α| ≤ 1, ‖h1 − h2‖L∞(]0,T [) and ‖h′
1 − h′

2‖L∞(]0,T [) using the Mean Value Theorem
for f and its derivatives and for the Sobolev injection of H1(R−) in L∞(R−). �
Corollary 2. Let v be such that ∂αv is in L∞(]0, T [, L2(R−)) for |α| ≤ 2, v(0, .) =
u0 and ∂tv(0, .) = u1, where u0 ∈ H2(R−) and u1 ∈ H1(R−) have compact support
in R

−. Let u be the unique solution of Proposition 5 with g = f(Jv) + v and
h = ∂−1

t f1, where f1 = f1(Jv). Then, u satisfies the following estimate:

max|α|≤2 ‖∂αu‖2
L∞(]0,T [,L2(R−))

≤ CeT (T (1 + T 2)(rθ)2(max|α|≤2 ‖∂αv‖L∞(]0,T [,L2(R−)))
+θ0(‖u0‖H2(R−) + ‖u1‖H1(R−))),



582 JÉRÉMIE SZEFTEL

where C is a universal constant and θ and θ0 are increasing functions depending
on f .

Proof. Taking v1 = v and v2 = 0 in Lemma 1 yields

(6.10)
max|α|≤1 ‖∂αg‖L∞(]0,T [,L2(R−)) + ‖h‖L∞(]0,T [) + ‖h′‖L∞(]0,T [)

≤
√

1 + T 2(rθ)(max|α|≤2 ‖∂αv‖L∞(]0,T [,L2(R−))).

Moreover, g(0, .) = f(0, ., u0, u1, ∂xu0) + u0. As H1(R−) is embedded in L∞(R−),
the properties of f and the mean value theorem give the existence of an increasing
function θ0 such that

(6.11) ‖u0‖2
H2(R−) + ‖u1‖2

H1(R−) + ‖g(0, .)‖2
L2(R−) ≤ θ0(‖u0‖H2(R−) + ‖u1‖H1(R−)).

(6.10), (6.11) and (6.2) imply the result. �

Let C1 = 2Ceθ0(‖u0‖H2(R−) + ‖u1‖H1(R−)). Let T1 = (4CC1θ(C1)2e)−1 and
T2 = (12Ceθ(2C1)2)−1. Let T > 0 be such that T ≤ min(T1, T2, 1). We define by
induction the sequence (un) such that ∂αun is in L∞(]0, T [, L2(R−)) for |α| ≤ 2. We
first take u0(t, x) = 0. Suppose that un is such that ∂αun is in L∞(]0, T [, L2(R−))
for |α| ≤ 2. Let gn = f(., ., Jun) + un and hn = ∂−1

t fn
1 , where fn

1 = f1(., Jun).
Then gn is in H1(]0, T [×R

−), hn belongs to H1(]0, T [) by Lemma 1, and hn(0) = 0.
Thus, using Proposition 5, we define un+1 as the unique solution of (6.1) with g = gn

and h = hn.

Lemma 2. (∂αun) is bounded and is a Cauchy sequence in L∞(]0, T [, L2(R−)) for
|α| ≤ 2.

Proof. We prove by induction that there exists a constant C1 such that for all
n ≥ 0, un satisfies

(6.12) max
|α|≤2

‖∂αun‖2
L∞(]0,T [,L2(Ω)) ≤ C1.

It is obviously true for n = 0 since u0 = 0. Suppose it is true for n ≥ 0. Then,
Corollary 2 implies

max|α|≤2 ‖∂αun+1‖2
L∞(]0,T [,L2(R−))

≤ CeT (T (1 + T 2)C2
1θ2(C1) + θ0(‖u0‖H2(R−) + ‖u1‖H1(R−))).

As T ≤ 1 and by definition of C1,

max
|α|≤2

‖∂αun+1‖2
L∞(]0,T [,L2(R−)) ≤ 2CeTC2

1θ2(C1) +
C1

2
,

which implies (6.12) for n+1 as T ≤ T1. Therefore, the sequence (∂αun) is bounded
in L∞(]0, T [, L2(R−)) for |α| ≤ 2.

Let us show that (∂αun) is a Cauchy sequence in L∞(]0, T [, L2(R−)) for |α| ≤ 2.
Let n ≥ 1, gn = f(., ., Jun) + un − f(., ., Jun−1)− un−1 and hn = ∂−1

t (fn
1 − fn−1

1 ).
Then un+1 − un is the solution of (6.1) with g = gn, h = hn and vanishing initial
data. Moreover, gn(0, .) = 0. (6.2) yields
(6.13)

max
|α|≤2

‖∂α(un+1 − un)‖2
L∞(]0,T [,L2(R−)) ≤ CeT (‖gn‖2

H1(]0,T [×R−) + ‖hn‖2
H1(]0,T [)).
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Estimates (6.9) and (6.12) imply

‖gn‖2
H1(]0,T [×R−) + ‖hn‖2

H1(]0,T [)

≤ 3T (max|α|≤1 ‖∂αgn‖2
L∞(]0,T [,L2(R−)) + ‖hn‖2

L∞(]0,T [) + ‖h′
n‖2

L∞(]0,T [))
≤ 6Tθ(2C1)2 max|α|≤2 ‖∂α(un − un−1)‖2

L∞(]0,T [,L2(R−)),

which together with (6.13) and T ≤ T2 yields
(6.14)

max
|α|≤2

‖∂α(un+1 − un)‖2
L∞(]0,T [,L2(R−)) ≤

1
2

max
|α|≤2

‖∂α(un − un−1)‖2
L∞(]0,T [,L2(R−)).

Therefore, there exists a constant C3 such that

(6.15) max
|α|≤2

‖∂α(un+1 − un)‖2
L∞(]0,T [,L2(R−)) ≤

C3

2n
.

Thus, (∂αun) is a Cauchy sequence in L∞(]0, T [, L2(R−)) for |α| ≤ 2. �

Proof of Theorem 1. Let u be the limit of the Cauchy sequence (un). ∂αu is in
L∞(]0, T [, L2(R−)) for |α| ≤ 2. (6.9) and (6.12) yield
(6.16)

max|α|≤1‖∂α(gn − g)‖L∞(]0,T [,L2(R−)) +‖hn − h‖L∞(]0,T [) +‖h′
n − h′‖L∞(]0,T [)

≤
√

2θ(2C1) max|α|≤2 ‖∂α(un − u)‖L∞(]0,T [,L2(R−)),

where gn = f(., ., Jun), g = f(., ., Ju), hn = ∂−1
t fn

1 and h = ∂−1
t f1 where f1 =

f1(., Ju). (6.16) implies the convergence of the nonlinear terms, and we use the
weak convergence in L∞(]0, T [, H1(R−)) for the linear terms.

Suppose there are two solutions u1 and u2 with the same initial boundary condi-
tions satisfying the hypothesis of Theorem 1. Then, u = u1−u2 satisfies (6.1) with
u0 = 0, u1 = 0, g = f(., ., Ju1) + u1 − f(., ., Ju2)−u2 and h = ∂−1

t (f1
1 − f2

1 ), where
f j
1 = f1(., Juj) for j = 1, 2. Moreover, g(0, .) = 0. Energy estimate (6.2) yields

max
|α|≤2

‖∂αu‖2
L∞(]0,T [,L2(R−)) ≤ CeT (‖g‖2

H1(]0,T [×R−) + ‖h‖2
H1(]0,T [)).

Using (6.9) as we did to get (6.14), we obtain a constant C4 such that

(6.17) max
|α|≤2

‖∂αu‖2
L∞(]0,T [,L2(R−)) ≤ C4T max

|α|≤2
‖∂αu‖2

L∞(]0,T [,L2(R−)),

which implies u = 0 if T < 1
C4

. Therefore, we get the local uniqueness which yields
the global uniqueness. �

7. Numerical results

7.1. The frame. We take the interval ]0, 2[ as computational domain. We choose
the stepsizes small in order to see the errors due to the various boundary conditions
and not to the discretization: δt = 0.01 and h = 0.001. We choose u0 in H4(R)
and u1 in H3(R) with compact support in ]0, 2[:

(7.1)

⎧⎪⎪⎨⎪⎪⎩
u0(x) = x3(2 − x)3 on ]0, 2[,
u0(x) = 0 on ] −∞, 0] ∪ [2, +∞[,
u1(x) = 3x2(2 − x)2(x − 1) on ]0, 2[,
u1(x) = 0 on ] −∞, 0] ∪ [2, +∞[.

The solution of the nonlinear problem in R (2.1) propagates at speed 1 (see for
instance [18]). In order to compute this solution with initial data (7.1) and for t
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between 0 and 10, we compute the equation in ] − 10, 12[ with Dirichlet boundary
conditions.

Remark. In order to implement the semilinear wave equation equation with the
absorbing boundary conditions, the support of the initial data must be included in
the computational domain. In order to implement the method using the Dirichlet
boundary conditions, the support of the solution must be included in the com-
putational domain on the whole time interval. Therefore, the method using the
absorbing boundary conditions approaches problem (2.1) with a low numerical cost
compared to the method using Dirichlet boundary conditions.

We want to compute the solution of⎧⎪⎨⎪⎩
(∂2

t − ∂2
x)u = f(u, ∂tu, ∂xu) in ]0, T [×]0, 2[,

∂l
t∂νu + ∂l+1

t u + f1(Ju) = 0, at x = 0 and x = 2,

u = u0, ∂tu = u1 at t = 0,

where l = 0 or l = 1, ∂ν = ∂x at x = 2 and ∂ν = −∂x at x = 0. We restrict ourselves
to f1, corresponding to one of the boundary conditions of section 2. We use a finite
difference scheme with N = 1/h, xj = jh for 0 ≤ j ≤ N , and tn = nδt. Inside the
computational domain, un

j is an approximation of u(tn, xj), and we approximate
the equation by

(7.2)
un+1

j − 2un
j + un−1

j

(δt)2
−

un+1
j+1 − 2un+1

j + un+1
j−1 + un−1

j+1 − 2un−1
j + un−1

j−1

2h2

= f(un
j , vn

j ,
un

j+1−un
j−1

2h ),

where 1 ≤ j ≤ N − 1, and vn
j is defined by

(7.3)
v1

j =
u1

j − u0
j

δt
,

vn
j =

3un
j − 4un−1

j + un−2
j

2δt
for n ≥ 2.

In cases (2.3), (2.4) and (2.6), the boundary condition has the form ∂νu + ∂tu +
f1(u, ∂tu, ∂xu) = 0 and is approximated by

(7.4)
un+1

0 + un−1
0 − un+1

2 − un−1
2

4h
+

un+1
1 − un−1

1

2δt
+ f1(un

1 , vn
1 ,

un
2 − un

0

2h
) = 0

and

(7.5)

un+1
N + un−1

N − un+1
N−2 − un−1

N−2

4h
+

un+1
N−1 − un−1

N−1

2δt

+f1(un
N−1, v

n
N−1,

un
N − un

N−2

2h
) = 0.

In cases (2.5) and (2.7), the boundary condition has the form ∂t∂νu + ∂2
t u +

f1(u, ∂tu, ∂xu) = 0 and is approximated by
(7.6)

un+1
0 − un−1

0 − un+1
1 + un−1

1

2hδt
+ 1/2(

un+1
0 − 2un

0 + un−1
0

(δt)2
+

un+1
1 − 2un

1 + un−1
1

(δt)2
)

+f1(
un

1 + un
0

2
,
vn
1 + vn

0

2
,
un

1 − un
0

h
) = 0
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and by
(7.7)

un+1
N −un−1

N −un+1
N−1+un−1

N−1

2hδt
+

1
2
(
un+1

N −2un
N +un−1

N

(δt)2
+

un+1
N−1−2un

N−1+un−1
N−1

(δt)2
)

+f1(
un

N−1 + un
N

2
,
vn

N−1 + vn
N

2
,
un

N − un
N−1

h
) = 0.

Schemes (7.2) (7.4) (7.5), and (7.2) (7.6) (7.7) are semi-implicit (i.e. the implicit
part is linear), and the error of consistency is second-order in space and time.

7.2. Comments on the results. We call relative error in the L2 norm at time t
the expression

‖u(t, .) − uex(t, .)‖L2

‖u0‖L2 + ‖u1‖L2
,

where uex is the solution of (2.1), u is the solution computed with one of the
various absorbing boundary conditions, and where we take the L2 norm on the
interval ]0.02, 1.98[ which is included in the computational domain.

7.2.1. The linear case. We first give some results obtained in the linear case with
the strategy of section 3. We give the relative error in the L2 norm for times between
0 and 10 in two cases. We compute the solution of equation ∂2

t u − ∂2
xu = −∂tu

(see Figure 1), and we show the results obtained for the condition of order 0, the
first-order condition and the second-order condition given by (3.4) and (3.7). We
compute the solution of equation ∂2

t u − ∂2
xu = −∂xu (see Figure 2), and we show

the results obtained for the condition of order 0, the first-order condition and the
second-order condition. We note an improvement for small times by increasing the
order, which is consistent with the fact that the boundary conditions are obtained
using high frequency expansions. In the case of Figure 1, the first-order condition is

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
b1
b1+b0
b1+b0+b−1

Figure 1. Relative error in the L2 norm as a function of time.
∂2

t u − ∂2
xu = −∂tu.
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0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
b1
b1+b0
b1+b0+b−1

Figure 2. Relative error in the L2 norm as a function of time.
∂2

t u − ∂2
xu = −∂xu.

more efficient than the condition of order 0 for all computed times, but the second-
order condition is more efficient than the first-order condition only for t ≤ 5.2. In
the case of Figure 2, the first-order condition is more efficient than the condition
of order 0 except around t = 2.5, and the second-order condition is more efficient
than the first-order condition except around t = 5.75.

7.2.2. The nonlinear case with f(u, ∂tu, ∂xu) = −u2∂tu. In the nonlinear case,
we obtain the same kind of behavior. In Figure 3, we give the relative error in
the L2 norm for times between 0 and 10. We give the results obtained with the
paradifferential strategy for the condition of order 0, the first-order condition and
the second-order condition. We note an improvement by increasing the order, and

0 1 2 3 4 5 6 7 8 9 10
0

0.01

0.02

0.03
b1
b1+b0
b1+b0+b−1

Figure 3. Relative error in the L2 norm as a function of time. f = −u2∂tu.
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Figure 4. Relative error in the L2 norm as a function of time. f = −u2∂tu.

the results given by the second-order condition are very satisfactory: the error
remains under 0.8% on the whole time interval [0, 10].

In Figure 4, we give the relative error in L2 norm for times between 0 and 10. We
give the results obtained for the first-order conditions of Table 2. The first-order
condition obtained with the paradifferential calculus is much more efficient than
the first-order condition obtained with the pseudodifferential calculus.

In Figure 5, we give the relative error in the L2 norm for times between 0 and 10.
We give the results obtained for the second-order conditions of Table 2. The second-
order condition obtained with the paradifferential calculus is much more efficient
than the second-order condition obtained with the pseudodifferential calculus.
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Figure 5. Relative error in the L2 norm as a function of time. f = −u2∂tu.
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Figure 6. Relative error in the L2 norm as a function of time. f = −u3.

7.2.3. The nonlinear case with f(u, ∂tu, ∂xu) = −u3. In Figure 6, we give the rela-
tive error in the L2 norm for times between 0 and 10. We give the results obtained
for the zero-order condition and the second-order condition of Table 1. We note an
improvement by increasing the order for small times (t ≤ 8.5) as in the linear case.

7.2.4. The nonlinear case with f(u, ∂tu, ∂xu) = u2∂xu. In Figure 7, we give the
relative error in the L2 norm for times between 0 and 10. We give the results ob-
tained with the paradifferential strategy for the condition of order 0, the first-order
condition and the second-order condition. We note an improvement by increasing
the order, and the results given by the second-order condition are very satisfactory:
the error remains under 0.85% on the whole time interval [0, 10].
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Figure 7. Relative error in the L2 norm as a function of time. f = u2∂xu.
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Figure 8. Relative error in the L2 norm as a function of time. f = u2∂xu.

In Figure 8, we give the relative error in L2 norm for times between 0 and 10. We
give the results obtained for the first-order conditions of Table 3. The first-order
condition obtained with the paradifferential calculus is much more efficient than
the first-order condition obtained with the pseudodifferential calculus.

In Figure 9, we give the relative error in the L2 norm for times between 0
and 10. We give the results obtained for the second-order conditions of Table 3.
The second-order condition obtained with the paradifferential calculus is a little
less efficient than the second-order condition obtained with the pseudodifferential
calculus. However, both conditions are very satisfactory.
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Figure 9. Relative error in the L2 norm as a function of time. f = u2∂xu.
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Figure 10. Long-time behavior. f = −u2∂tu.

7.2.5. Long-time behavior. Now that we have proved the efficiency of the method on
short-time intervals, we would like to investigate its long-time behavior. In Figure
10, we give the relative error in the L2 norm for times between 0 and 100. We choose
f(u, ∂tu, ∂xu) = −u2∂tu, and we give the results obtained with the paradifferential
strategy for the condition of order 0, the first-order condition and the second-order
condition. While the second-order condition gives 15% error at time t = 100, the
zero and first-order conditions remain around 2% on the whole time interval. In
Figure 11, we give the relative error in the L2 norm for times between 0 and 100.
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Figure 11. Long-time behavior. f = −u3.
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Figure 12. Long-time behavior. f = u2∂xu.

We choose f(u, ∂tu, ∂xu) = −u3, and we give the results obtained for the zero-order
condition and the second-order condition of Table 1. While the zero-order condition
gives 45% error at time t = 24, the second-order condition remains under 19% on
the whole time interval. In Figure 12, we choose f(u, ∂tu, ∂xu) = u2∂xu and we
give the results obtained with the paradifferential strategy for the condition of order
0, the first-order condition and the second-order condition. We give the relative
error in the L2 norm for times between 0 and 60, as our computations indicate that
the solution of (2.1) blows up at t = 67. While the second-order condition gives
12% error at time t = 100, the zero- and first-order conditions remain respectively
under 6% and 3% on the whole time interval. Although it seems hard to draw any
general conclusion for the long-time behavior of our method, we note that in each
case under study at least one of our absorbing boundary conditions performs well
on long-time intervals.

Remark. When

f(u, ∂tu, ∂xu) = −u2∂tu

or

f(u, ∂tu, ∂xu) = −u3,

the standard energy estimate for (2.1) implies a bound independant of time on
u(t, .) in H1(R) and ∂tu(t, .) in L2(R), which in turn yields global existence. When

f(u, ∂tu, ∂xu) = u2∂xu,

the standard energy estimate for (2.1) does not imply such a bound due to the
nonlinear contribution which has no sign, and it is therefore not surprising that a
blow-up takes place in this case.
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Table 4. Maximum of the relative error in L2 norm for times
between 0 and 10.

ε 0.125 0.25 0.5 1 2 4

abc of order 0 0.74% 2.9% 10.3% 15.4% 49% 47%

second order abc of Table 1 0.02% 0.06% 0.67% 6.6% 5% 37%

7.2.6. Dependence on the size of the initial data. Since the problem and the bound-
ary conditions are nonlinear, we examine the dependence of the relative errors on the
amplitude of the initial data. We consider a solution u such that u(0, x) = εu0(x)
and ∂tu(0, x) = 0, where ε > 0 and u0 is given by section 7.1. In Table 4, we give
the maximum of the relative error in the L2 norm for times between 0 and 10 in
function of ε. We choose f(u, ∂tu, ∂xu) = −u3, and we give the results obtained for
the zero-order condition and the second-order condition of Table 1. We notice an
improvement by decreasing ε, and the second-order condition is much more efficient
than the condition of order 0.

7.2.7. Dependence on the size of the computational domain. Finally, we consider
the influence of the size of the computational domain. For δ ≥ 0, we take [−δ, 2+δ]
as computational domain, and we define the distance as 100.δ/2 = 50.δ. We give
the relative error in the L2 norm for times between 0 and 10. In Figures 13,
14, 15, and 16, we take, respectively, a distance of 5%, 25%, 50%, and 100%.
The results we obtained are similar to the three examples of nonlinearity. We
choose f(u, ∂tu, ∂xu) = −u2∂tu, and we give the results we obtained with the
paradifferential strategy for the condition of order 0, the first-order condition and
the second-order condition. We note that increasing the distance gives the same
result as taking a distance equal to zero and decreasing the computed time interval.
This emphasizes the relevance of our strategy which is valid at least for small times.
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Figure 13. Distance to the
boundary of 5%.
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Figure 14. Distance to the
boundary of 25%.
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Figure 15. Distance to the
boundary of 50%.
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Figure 16. Distance to the
boundary of 100%.

Conclusion

We have constructed a hierarchy of absorbing boundary conditions for the semi-
linear wave equation. As in the linear case, we obtain an improvement of the
precision of these boundary conditions by increasing the order except possibly for
large times. Our strategy uses the paradifferential calculus and gives better re-
sults than the strategy using the pseudodifferential calculus. Thus, this method is
efficient to approximate the semilinear wave equation on R with a low numerical
cost.
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