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OPTIMAL C2 TWO-DIMENSIONAL
INTERPOLATORY TERNARY SUBDIVISION SCHEMES

WITH TWO-RING STENCILS

BIN HAN AND RONG-QING JIA

Abstract. For any interpolatory ternary subdivision scheme with two-ring
stencils for a regular triangular or quadrilateral mesh, we show that the criti-
cal Hölder smoothness exponent of its basis function cannot exceed log3 11(≈
2.18266), where the critical Hölder smoothness exponent of a function f :
R2 �→ R is defined to be

ν∞(f) := sup{ν : f ∈ Lip ν}.
On the other hand, for both regular triangular and quadrilateral meshes, we

present several examples of interpolatory ternary subdivision schemes with
two-ring stencils such that the critical Hölder smoothness exponents of their
basis functions do achieve the optimal smoothness upper bound log3 11. Con-
sequently, we obtain optimal smoothest C2 interpolatory ternary subdivision
schemes with two-ring stencils for the regular triangular and quadrilateral
meshes. Our computation and analysis of optimal multidimensional subdivi-
sion schemes are based on the projection method and the �p-norm joint spectral
radius.

1. Introduction and motivation

Subdivision schemes have proved to be a useful way of generating surfaces in
CAGD ([1, 6]). In general, one first constructs a stationary subdivision scheme
with certain desired properties on a regular mesh. Then for a given initial mesh of
arbitrary topology, one applies such a subdivision rule for regular vertices and han-
dles extraordinary vertices of a mesh by modified special subdivision rules (see the
course note Subdivision for modeling and animation by P. Schröder et al., 1998).
Since the number of extraordinary vertices in all subdivision levels remains the
same, construction of stationary subdivision schemes on a regular mesh with cer-
tain desired properties, such as good smoothness and small subdivision stencils, is
important in CAGD.

In order to have good visual quality of the generated subdivision surfaces, one
is generally interested in subdivision schemes whose basis functions are at least
C2 so that the curvature of the generated subdivision surfaces is continuous. On
the other hand, in order to reduce the number of special subdivision rules for
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Hölder smoothness, projection method, joint spectral radius.
Research supported in part by the Natural Sciences and Engineering Research Council of

Canada (NSERC Canada) under Grant RGPIN 228051 and Grant OGP 121336.

c©2006 American Mathematical Society

1287



1288 BIN HAN AND RONG-QING JIA

extraordinary vertices, from the point of view of implementation and computation,
one prefers in CAGD that the associated subdivision stencils have no more than
two-ring neighboring vertices, which is almost equivalent to saying that its mask
should have a very short support. But it is well known that high smoothness
of a basis function in a subdivision scheme and the shortness of the support size
of its mask are two mutually conflicting requirements; that is, it is well known
that in order to have a smoother subdivision scheme, it is necessary to enlarge
the support of its mask. For example, it was proved in [9, Corollary 4.3] that
for any dimension s, there is no C2 s-dimensional interpolatory dyadic subdivision
scheme whose mask can be supported on [−3, 3]s (that is, it has two-ring stencils);
therefore, the well-known butterfly scheme proposed by Dyn, Levin and Gregory [7]
and several other examples of interpolatory dyadic subdivision schemes in [17, 26],
which are two-dimensional interpolatory dyadic subdivision schemes with two-ring
stencils, cannot be C2 schemes. On the other hand, as we shall see in Section 3, for
any dimension s, there is no C2 s-dimensional interpolatory m-adic (m ∈ Z with
|m| > 1) subdivision scheme whose mask can be supported on [−|m|, |m|]s.

In order to obtain subdivision schemes with various desired properties beyond
the traditional dyadic schemes, subdivision schemes with other possible refinements
of a mesh have recently been studied in the literature. For example, interpolatory
quincunx subdivision schemes have been studied in [17], and the construction in
[17] has been generalized to interpolatory

√
3 subdivision schemes in Jiang, Oswald

and Riemenschneider [23]. See [17, 23, 27] and many references therein for more
detail.

In order to achieve continuity of the curvature in a subdivision surface, very
recently there has been a growing interest in investigating interpolatory ternary
subdivision schemes, due to some of their interesting properties. One-dimensional
C2 interpolatory ternary subdivision schemes with two-ring stencils have been ob-
tained in [19]. Some examples of two-dimensional interpolatory ternary subdivision
schemes have been proposed in [4, 15]. For some desired properties of ternary sub-
division schemes, the reader is referred to the work [4, 19, 24] for more detail. It is
the purpose of this paper to investigate the smoothest optimal interpolatory ternary
subdivision schemes with two-ring stencils in one and two dimensions.

The following is the structure of this paper. In Section 2, we shall recall the
notion of subdivision triplets in [15] and subdivision stencils. Then we shall dis-
cuss and review some results on convergence and smoothness of multidimensional
subdivision schemes by using �p-norm joint spectral radius. We shall explicitly dis-
cuss the connection between the cascade algorithms in the function setting and the
subdivision schemes in the discrete sequence setting. Some results on estimating
the critical Hölder smoothness exponent of a basis function in a subdivision scheme
will be given.

In Section 3, we shall discuss one-dimensional smoothest interpolatory ternary
subdivision schemes with two-ring stencils. Then we shall investigate optimal mul-
tidimensional interpolatory ternary subdivision schemes via the projection method.
We show that for any interpolatory ternary subdivision schemes with two-ring sten-
cils in any dimension, the critical Hölder smoothness exponent of its basis function
cannot exceed log3 11. Moreover, we prove that there is a unique one-dimensional
interpolatory ternary subdivision scheme with two-ring stencils such that its ba-
sis function has the optimal critical Hölder smoothness exponent log3 11. Since
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subdivision schemes with one-ring stencils are of particular interest in CAGD, one
may wonder whether there is a smooth interpolatory m-adic subdivision scheme
with one-ring stencils. In Section 3, we show that there is no C2 s-dimensional
interpolatory m-adic subdivision scheme whose mask is supported on [−|m|, |m|]s.

In Section 4, we shall present some examples of optimal C2 two-dimensional
interpolatory ternary subdivision schemes with two-ring stencils for the regular
triangular and quadrilateral meshes. Our computation and analysis of all the ex-
amples in Section 4 are based on the projection method in [11] and the �p-norm
joint spectral radius.

In order to apply the subdivision schemes constructed in this paper to free-form
subdivision surfaces in CAGD, we have to design the special subdivision rules for
extraordinary vertices, which we shall discuss elsewhere.

2. Some properties of subdivision triplets

In this section, we shall recall some properties of a general subdivision scheme
in any dimension.

We say that G is a symmetry group on Zs if each element E ∈ G is an integer
matrix with | detE| = 1 and G forms a group under matrix multiplication. A
subdivision scheme is completely determined by a triplet (a, M, G), where G is a
symmetry group on Zs distinguishing the type of a mesh, M is a dilation matrix
determining the refinement of the mesh and a is a mask yielding all the subdivision
stencils. The quadrilateral mesh and the triangular mesh are invariant under the
symmetry groups D4 and D6, respectively, which are defined to be

D4 :=
{
±

[
1 0
0 1

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]
,±

[
0 1
−1 0

]}
and

D6 :=
{
±

[
1 0
0 1

]
,±

[
0 −1
1 −1

]
,±

[
−1 1
−1 0

]
,±

[
0 1
−1 0

]
,±

[
1 −1
0 −1

]
,±

[
−1 0
−1 1

]}
.

A finitely supported sequence a : Zs �→ R is called a mask. A quincunx (also called√
2) subdivision scheme is given by a triplet (a, M√

2, D4), a
√

3 subdivision scheme
is given by (a, M√

3, D6), and a ternary subdivision scheme is either (a, 3I2, D4) or
(a, 3I2, D6), where a is a mask and

M√
2 :=

[
1 1
1 −1

]
, M√

3 :=
[
1 −2
2 −1

]
, I2 :=

[
1 0
0 1

]
.

Unlike the lattice Zs which is a set of discrete points without connectivity, it is dif-
ficult to have a global coordinate system on a general mesh. In order to overcome
such a difficulty, symmetry is required in a subdivision scheme. That is, a sub-
division scheme should be given by a subdivision triplet (a, M, G) (see [15]) which
satisfies

(1) The mask a is G-symmetric: a(Eβ) = a(β) for all β ∈ Zs and E ∈ G.
(2) The symmetry group G is compatible with the dilation matrix M ([13]):

MEM−1 ∈ G for all E ∈ G.
In this paper, for simplicity of presentation, we only consider the dilation matrices
M = mIs, where m ∈ Z with |m| > 1; that is, we only consider m-adic subdivi-
sion schemes. The basis function φ of a subdivision triplet (a, mIs, G) is a unique
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solution to the refinement equation

(2.1) φ =
∑
β∈Zs

a(β)φ(m · −β) with φ̂(0) = 1,

where the Fourier transform is defined to be f̂(ξ) :=
∫

Rs f(x)e−ix·ξ dx, ξ ∈ Rs.
Since (a, mIs, G) is a subdivision triplet, it is easy to see that φ(E·) = φ for all
E ∈ G. In fact, φ is given by φ̂(ξ) =

∏∞
j=1[â(m−jξ)/|m|], where â is the Fourier

series of the sequence a and is defined to be

(2.2) â(ξ) :=
∑
β∈Zs

a(β)e−iβ·ξ, ξ ∈ Rs.

By �0(Zs) we denote the space of all finitely supported sequences on Zs. For a
subdivision triplet (a, mIs, G), the subdivision operator Sa,mIs

: �0(Zs) �→ �0(Zs) is
defined to be

(2.3) [Sa,mIs
u](α) :=

∑
β∈Zs

a(α − mβ)u(β), α ∈ Zs, u ∈ �0(Zs).

Since (a, mIs, G) is a subdivision triplet, it is easy to check that if u ∈ �0(Zs) is
G-symmetric, then Sa,mIs

u is also G-symmetric. The subdivision operator Sa,mIs

plays an important role in CAGD. Let Πk denote the space of all polynomials of
total degree at most k. In general, one requires that a subdivision scheme can
reproduce some polynomial space Πk for some integer k. In other words, the mask
a satisfies the sum rules of order k + 1 ([3, 21]) with respect to the lattice mZs,
that is,

(2.4)
∑

β∈mZs

a(α + β)p(α + β) =
∑

β∈mZs

a(β)p(β) ∀ α ∈ Zs, p ∈ Πk.

We say that (a, mIs, G) is an interpolatory subdivision triplet if (a, mIs, G) is a
subdivision triplet and a is an interpolatory mask with respect to the lattice mZs,
that is,

(2.5) a(0) = 1 and a(mβ) = 0 ∀ β ∈ Zs\{0}.

If (a, mIs, G) is an interpolatory subdivision triplet, then [Sa,mIs
u](mβ) = u(β) for

all β ∈ Zs and u ∈ �0(Zs). The subdivision stencils are derived from a subdivision
triplet (a, mIs, G). Let (f0(β))β∈Zs be an initial given data. Attaching the number
[Sa,mIs

f0](γ) to the point m−1γ, for the next level refined data f1 on m−1Zs, we
have

f1(m−1γ) = [Sa,mIs
f0](γ) =

∑
β∈Zs

a(γ − mβ)f0(β) =
∑
β∈Zs

a(−m(β − m−1γ))f0(β).

In order to compute the value of f1 at the point m−1γ, the stencil is given by
(a(γ−mβ))β∈Zs ; that is, (a∗(β−m−1γ))β∈Zs , where a∗(β) := a(−mβ), β ∈ m−1Zs.

In the rest of this section, we shall discuss convergence and smoothness properties
of subdivision triplets, in particular, of interpolatory subdivision triplets. In order
to do so, let us first introduce some notation. We denote by �p(Zs) the linear space
of all sequences u on Zs such that ‖u‖p

�p(Zs) :=
∑

β∈Zs |u(β)|p < ∞.
For any α ∈ Zs, let δα denote the sequence on Zs such that δα(α) = 1 and

δα(β) = 0 for all β ∈ Zs\{α}. In particular, we denote δ := δ0. The convolution of
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two sequences is defined to be

[u ∗ v](α) :=
∑
β∈Zs

u(β)v(α − β), u, v ∈ �0(Zs).

Clearly, û ∗ v = ûv̂. For a finitely supported sequence a on Zs, we define the
following quantity:

(2.6) ρ(a, mIs, p, u) := lim
n→∞

‖u ∗ [Sn
a,mIs

δ]‖1/n
�p(Zs), 1 � p � ∞, u ∈ �0(Zs).

For α ∈ Zs and t ∈ Rs, we define

(2.7) ∇αv := v − v(· − α), ∇tf := f − f(· − t), v ∈ �0(Zs), f ∈ Lp(Rs).

Denote N0 := N ∪ {0}. For µ = (µ1, . . . , µs) ∈ Ns
0, |µ| = µ1 + · · · + µs and

∇µ := ∇µ1
e1

· · ·∇µs
es

, where ej is the jth coordinate unit vector in Rs. Note that
∇µv = [∇µδ] ∗ v and

∇µf = [∇µδ] ∗ f :=
∑
β∈Zs

[∇µδ](β)f(· − β).

The partial derivative of a differentiable function f with respect to the jth coordi-
nate is denoted by ∂jf . For µ = (µ1, . . . , µs), we denote ∂µ := ∂µ1

1 · · · ∂µs
s .

In the frequency domain, a mask a satisfies the sum rules of order k + 1 with
respect to the lattice mZs if and only if

∂µâ(2πγ/m) = 0 ∀ |µ| � k and γ ∈ [0, |m| − 1]s ∩ Zs\{0}.
If a mask a satisfies the sum rules of order k but not k + 1, then we define (see

[13, 14])

(2.8) νp(a, mIs) := s/p − log|m| max{ρ(a, mIs, p,∇µδ) : |µ| = k}, 1 � p � ∞.

For a positive integer k, the B-spline function hk of order k is defined to be
χ[0,1] ∗ · · · ∗ χ[0,1] with k-copies of the characteristic function χ[0,1] of the interval
[0, 1]. For any µ = (µ1, . . . , µs) ∈ Ns

0, the multivariate spline function hµ of order
µ is defined to be hµ(x1, . . . , xs) :=

∏s
j=1 hµj

(xj), x1, . . . , xs ∈ R.
It is well known that for any ν = (ν1, . . . , νs) ∈ Ns

0 such that νj � µj for all
j = 1, . . . , s, one has ∂νhµ = ∇νhµ−ν .

The following result is essentially known in the literature in various forms, and
we shall provide a self-contained proof here. For simplicity, from now on we assume
m > 1.

Theorem 2.1. Let (a, mIs, G) be a subdivision triplet and let φ denote its basis
function. Then for any nonnegative integer k, the following statements are equiva-
lent:

(1) ν∞(a, mIs) > k.
(2) For every compactly supported function f ∈ Ck(Rs) such that

(2.9) f̂(0) = 1 and ∂µf̂(2πβ) = 0 ∀ |µ| � k, β ∈ Zs\{0},
the cascade sequence Qn

a,mIs
f is a Cauchy sequence in Ck(Rs) (as a mat-

ter of fact, one has limn→∞ ‖Qn
a,mIs

f − φ‖Ck(Rs) = 0), where the cascade
operator Qa,mIs

: C(Rs) �→ C(Rs) is defined to be

(2.10) Qa,mIs
f :=

∑
β∈Zs

a(β)f(m · −β), f ∈ C(Rs).
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(3) The basis function φ ∈ Ck(Rs) and

(2.11) lim
n→∞

‖mkn∇µ[Sn
a,mIs

δ](·) − [∂µφ](m−n·)‖�∞(Zs) = 0 ∀ |µ| = k.

(4) For every sequence u ∈ �∞(Zs), there exists a function g ∈ Ck(Rs) such
that

(2.12) lim
n→∞

‖mn|µ|[∇µSn
a,mIs

u](·) − [∂µg](m−n·)‖�∞(Zs) = 0 ∀ |µ| � k.

Proof. The equivalence between (1) and (2) has been established in [2, 14] and
many references therein. In the following, we show that (2) ⇒ (3) ⇒ (1) and
(3) ⇔ (4).

Take f = h(k+2,...,k+2) to be the spline function of order (k +2, . . . , k +2). Then
f ∈ Ck(Rs), and (2.9) holds. By assumption in item (2), we must have φ ∈ Ck(Rs).

Let µ = (µ1, . . . , µs) ∈ Ns
0 such that |µ| = k. Since

∂µf = ∂µh(k+2,...,k+2) = ∇µh(k+2−µ1,...,k+2−µs),

by induction on n, we have

fn,µ := ∂µ[Qn
a,mIs

f ]

=
∑
β∈Zs

mkn[∇µSn
a,mIs

δ](β)h(k+2−µ1,...,k+2−µs)(mn · −β).(2.13)

Denote h := h(2,...,2)(· − (1, . . . , 1)), which is the multivariate tensor product hat
function such that h(β) = δ(β) for all β ∈ Zs. Define

gn,µ :=
∑
β∈Zs

mkn[∇µSn
a,mIs

δ](β)h(mn · −β).

It follows directly from the above identity that

gn,µ(m−nα) = mkn[∇µSn
a,mIs

δ](α) ∀ α ∈ Zs, n ∈ N,

since h(β) = δ(β) for all β ∈ Zs. Consequently, for every α ∈ Zs, we have

mkn[∇µSn
a,mIs

δ](α) − ∂µφ(m−nα) = [gn,µ(m−nα) − fn,µ(m−nα)]

+ [fn,µ(m−nα) − ∂µφ(m−nα)].

Therefore, we have

‖mkn[∇µSn
a,mIs

δ](·) − [∂µφ](m−n·)‖�∞(Zs)

� ‖gn,µ − fn,µ‖L∞(Rs) + ‖fn,µ − ∂µφ‖L∞(Rs) ∀ n ∈ N.

By assumption in item (2), we have limn→∞ ‖fn,µ − ∂µφ‖L∞(Rs) = 0. In order to
show (2) ⇒ (3), it now suffices to show that limn→∞ ‖gn,µ − fn,µ‖L∞(Rs) = 0.

Let η := h − h(k+2−µ1,...,k+2−µs). It is simple to verify that η̂(2πβ) = 0 for all
β ∈ Zs; that is,

∑
β∈Zs η(· + β) = 0. By [14, Theorem 3.6], there exist compactly

supported functions ηj ∈ L∞(Rs), j = 1, . . . , s, such that η =
∑s

j=1 ∇ej
ηj . By the

definition of fn,µ and gn,µ, we have

gn,µ − fn,µ = mkn
s∑

j=1

∑
β∈Zs

[∇ej
∇µSn

a,mIs
δ](β)ηj(mn · −β).
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Since all ηj , j = 1, . . . , s, are compactly supported functions in L∞(Rs), there exists
a positive constant C, depending only on ηj , j = 1, . . . , s, such that

‖gn,µ − fn,µ‖L∞(Rs) � Cmkn
s∑

j=1

‖∇ej
∇µSn

a,mIs
δ‖�∞(Zs) ∀ n ∈ N.

Note that ∇ej
∇µ = ∇µ+ej and ∇µ+ej Sn

a,mIs
δ = [∇µ+ej δ]∗Sn

a,mIs
δ. Since (1) ⇔ (2),

by ν∞(a, mIs) > k and |µ + ej | = k + 1, it follows from [14, Theorem 4.3] that

lim
n→∞

mkn‖∇µ+ej Sn
a,mIs

δ‖�∞(Zs) = 0.

Therefore, we must have limn→∞ ‖gn,µ − fn,µ‖L∞(Rs) = 0, which completes the
proof of (2) ⇒ (3).

Now we demonstrate that (3) ⇒ (1). Let µ = (µ1, . . . , µs) ∈ Ns
0 such that

|µ| = k. Then (2.11) holds and φ ∈ Ck(Rs). Note that

mkn[∇ej
∇µSn

a,mIs
δ](α) =

{
mkn[∇µSn

a,mIs
δ](α) − ∂µφ(m−nα)

}
−

{
mkn[∇µSn

a,mIs
δ](α − ej) − ∂µφ(m−n(α − ej))

}
+

{
∂µφ(m−nα) − ∂µφ(m−nα − m−nej)

}
.

Therefore, we have

mkn‖∇µ+ej Sn
a,mIs

δ‖�∞(Zs) � 2‖mkn∇µSn
a,mIs

δ − [∂µφ](m−n·)‖�∞(Zs)

+ ‖∂µφ − ∂µφ(· − m−nej)‖L∞(Rs).

Since φ ∈ Ck(Rs) and |µ| = k, ∂µφ ∈ C(Rs), and so,

lim
n→∞

‖∂µφ − ∂µφ(· − m−nej)‖L∞(Rs) = 0.

By (2.11), it follows from the above inequality that

lim
n→∞

mkn‖∇µ+ej Sn
a,mIs

δ‖�∞(Zs) = 0 ∀ |µ| = k, j = 1, . . . , s.

That is, limn→∞ mkn‖∇µSn
a,mIs

δ‖�∞(Zs) = 0 for all |µ| = k + 1. Now by [14,
Theorem 4.3], we conclude that ν∞(a, mIs) > k. So, (3) ⇒ (1).

Obviously, (4) ⇒ (3) by taking u = δ and g = φ. Suppose that (3) holds. Then
(2.11) holds for all |µ| � k since (1) implies that ν(a, mIs) > j for all j = 0, . . . , k.
Let u ∈ �∞(Zs) and g = u ∗ φ =

∑
β∈Zs u(β)φ(· − β). By a simple calculation, we

observe that

[∇µSn
a,mIs

u](α) =
∑
β∈Zs

u(β)[∇µSn
a,mIs

δ](α − mnβ).

Therefore, we deduce that

mkn[∇µSn
a,mIs

u](α) − ∂µg(m−nα)

=
∑
β∈Zs

u(β)[mkn∇µSn
a,mIs

δ(α − mnβ) − ∂µφ(m−n(α − mnβ))].

Since both the mask a and the basis function φ are compactly supported, now
(2.12) follows easily from the above identity. �
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For 0 < ν � 1 and a function f ∈ Lp(Rs), we say that f belongs to the Lipschitz
space Lip(ν, Lp(Rs)) if there exists a positive constant C such that

‖f − f(· − t)‖Lp(Rs) � C‖t‖ν

for all t ∈ Rs. The Lp smoothness of a function f ∈ Lp(Rs) is measured by its Lp

critical smoothness exponent νp(f) which is defined by

νp(f) := sup{n + ν : ∂µf ∈ Lip(ν, Lp(Rs)) ∀ |µ| = n}.
For the basis function φ of any subdivision triplet (a, mIs, G), one always has
νp(φ) � νp(a, mIs). For more detail on Lp smoothness of refinable functions, see
[2, 3, 9, 14, 22, 25] and many references therein. A function f is an interpolatory
function if f is a continuous function such that f(β) = δ(β) for all β ∈ Zs.

The following result is known in the literature (e.g., see [13, 14, 16]).

Theorem 2.2. Let (a, mIs, G) be an interpolatory subdivision triplet and φ denote
its basis function. Then φ is an interpolatory function if and only if ν∞(a, mIs) > 0.
Moreover, if ν∞(a, mIs) > 0, then νp(φ) = νp(a, mIs) for all 1 � p � ∞.

The quantity ρ(a, mIs, p, u) in (2.6) can be rewritten using the �p-norm joint
spectral radius. Let T be a finite collection of linear operators acting on a finite-
dimensional normed vector space V . For a positive integer n, we define for 1 � p <
∞,

‖T n‖p
p :=

∑
T1,...,Tn∈T

‖T1 · · ·Tn‖p

and
‖T n‖∞ := max{‖T1 · · ·Tn‖ : T1, . . . , Tn ∈ T },

where ‖ · ‖ denotes some operator norm. For 1 � p � ∞, the �p-norm joint spectral
radius of T is defined to be (see [8, 16, 20, 22, 28] and references therein)

(2.14) ρp(T ) := lim
n→∞

‖T n‖1/n
p = inf

n�1
‖T n‖1/n

p .

Let Γ := [0, |m| − 1]s ∩ Zs. To relate the quantity ρ(a, mIs, p, u) to the �p-norm
joint spectral radius, we introduce the linear operators Ta,γ , γ ∈ Γ on �0(Zs) by

(2.15) Ta,γv(α) :=
∑
β∈Zs

a(mα − β + γ)v(β), v ∈ �0(Zs), α ∈ Zs.

It was proved in [16, Lemma 2.3] that if a is finitely supported, then for any finitely
supported sequence u on Zs, there exists a finite-dimensional subspace V (u) of
�0(Zs) such that V (u) contains u and V (u) is the smallest subspace of �0(Zs)
which is invariant under the operators Ta,γ , γ ∈ Γ. We call such V (u) the minimal
{Ta,γ : γ ∈ Γ}-invariant subspace generated by u.

Let T := {Ta,γ |V (u) : γ ∈ Γ}, where V (u) is the minimal {Ta,γ : γ ∈ Γ}-
invariant subspace generated by u. Then it is known ([16]) that

(2.16) ρ(a, mIs, p, u) = lim
n→∞

‖u ∗ [Sn
a,mIs

δ]‖1/n
�p(Zs) = ρp(T ) = inf

n�1
‖T n‖1/n

p .

For a sequence c ∈ �0(Zs) and a nonnegative integer m, we define a new sequence
c(m−1·) on Zs by ̂c(m−1·)(ξ) := ĉ(mξ).

The following result is useful in calculating the quantity ρ(a, mIs, p, u) in (2.6)
and appeared in [1, 8] for the special case c = ∇µδ and m = 2.
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Theorem 2.3. Let a be a finitely supported mask on Zs. If

(2.17) â(ξ) =
ĉ(mξ)
ĉ(ξ)

b̂(ξ) for finitely supported sequences b and c on Zs,

such that ĉ(mξ)/ĉ(ξ) is a 2π-periodic trigonometric polynomial, then for any 1 �
p � ∞ and u ∈ �0(Zs),

ρ(a, mIs, p, u ∗ c) := lim
n→∞

‖u ∗ c ∗ [Sn
a,mIs

δ]‖1/n
�p(Zs)

= lim
n→∞

‖u ∗ [Sn
b,mIs

δ]‖1/n
�p(Zs) =: ρ(b, mIs, p, u).

(2.18)

Proof. By induction and (2.17), we have ̂c ∗ Sn
a,mIs

δ(ξ) = ĉ(mnξ)Ŝn
b,mIs

δ(ξ). That
is, we have

(2.19) u ∗ c ∗ [Sn
a,mIs

δ] = c(m−n·) ∗ (u ∗ [Sn
b,mIs

δ]).

Consequently, by Young’s inequality and ‖c(m−n·)‖�1(Zs) = ‖c‖�1(Zs), we have

‖u ∗ c ∗ [Sn
a,mIs

δ]‖�p(Zs) = ‖u ∗ c(m−n·) ∗ [Sn
b,mIs

δ]‖�p(Zs)

� ‖c‖�1(Zs)‖u ∗ [Sn
b,mIs

δ]‖�p(Zs) ∀ n ∈ N.

Therefore, we have

ρ(a, mIs, p, u ∗ c) := lim
n→∞

‖u ∗ c ∗ [Sn
a,mIs

δ]‖1/n
�p(Zs)

� lim
n→∞

‖u ∗ [Sn
b,mIs

δ]‖1/n
�p(Zs) =: ρ(b, mIs, p, u).

(2.20)

Since b and u are finitely supported sequences on Zs, there exists a positive integer
N such that the support of the sequence u ∗ [Sn

b,MmIs
δ] is contained in the set

[−mn+N , mn+N ]s for all n ∈ N.
Define

d̂(ξ) := ĉ(mn+N+1ξ)/ĉ(mnξ) =
N∏

j=0

[ĉ(mn+j+1ξ)/ĉ(mn+jξ)].

Since ĉ(mξ)/ĉ(ξ) is a 2π-periodic trigonometric polynomial, so is d̂, and therefore,
d is a finitely supported sequence.

By (2.19), we have

û(ξ)ĉ(ξ)Ŝn
a,mIs

δ(ξ)d̂(ξ) = û(ξ)ĉ(mnξ)Ŝn
b,mIs

δ(ξ)d̂(ξ) = ĉ(mn+Nξ)û(ξ)Ŝn
b,mIs

δ(ξ).

That is,
c(m−n−N−1·) ∗ [u ∗ Sn

b,mIs
δ] = [u ∗ c ∗ Sn

a,mIs
δ] ∗ d.

Since the sequence u ∗ Sn
b,mIs

δ vanishes outside the set [−mn+N , mn+N ]s, we con-
clude from the above identity that

‖c‖�p(Zs)‖u ∗ Sn
b,mIs

δ‖�p(Zs) = ‖c(m−n−N−1·) ∗ [u ∗ Sn
b,mIs

δ]‖�p(Zs)

� ‖d‖�1(Zs)‖u ∗ c ∗ Sn
a,mIs

δ‖�p(Zs).

The above inequality yields that

ρ(b, mIs, p, u) := lim
n→∞

‖u ∗ [Sn
b,mIs

δ]‖1/n
�p(Zs)

� lim
n→∞

‖u ∗ c ∗ [Sn
a,mIs

δ]‖1/n
�p(Zs) =: ρ(a, mIs, p, u ∗ c).

(2.21)

Now putting (2.20) and (2.21) together, we conclude that (2.18) is true. �
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The following result provides a convenient way for estimating the quantity
ρ(b, mIs,∞, δ).

Theorem 2.4 (see also [8]). Let b be a finitely supported sequence on Zs. Then

ρ(b, mIs,∞, δ) := lim
n→∞

‖Sn
b,mIs

δ‖1/n
�∞(Zs)

= inf
n∈N

(
max
α∈Zs

∑
β∈Zs

|Sn
b,mIs

δ(α + mnβ)|
)1/n

.
(2.22)

Proof. Denote bn := Sn
b,mIs

δ and ρn := maxα∈Zs

∑
β∈Zs |bn(α + mnβ)|. By induc-

tion, we have bj+k = bj ∗ [bk(m−k·)] and

bj+k(α + mj+kβ) =
∑

γ∈Γ
mk

∑
η∈Zs

bj(α − mj(mkη + γ))bk(γ + mk(β + η)),

where Γk := [0, |m|k − 1]s ∩ Zs. Hence,∑
β∈Zs

|bj+k(α + mj+kβ)| �
∑

γ∈Γk

∑
η∈Zs

|bj(α − mj(mkη + γ))|
∑
β∈Zs

|bk(γ + mk(β + η))|

� ρjρk.

So, we conclude that ρj+k � ρjρk for all j, k ∈ N, which implies limn→∞ ρ
1/n
n =

infn∈N ρ
1/n
n .

Since the sequence b is finitely supported, there must exist a positive constant
C depending only on the support of b such that the number of elements in the set
{β ∈ Zs : bn(α + mnβ) �= 0} is no more than C. Therefore, we see that

‖bn‖�∞(Zs) � ρn = max
α∈Zs

∑
β∈Zs

|bn(α + mnβ)| � C‖bn‖�∞(Zs) ∀ n ∈ N.

So, (2.22) must hold. �

3. Optimal one-dimensional interpolatory ternary subdivision

schemes and the projection method

In this section, we shall investigate optimal one-dimensional interpolatory ternary
subdivision triplets with two-ring stencils. Then we shall discuss the projection
method and the optimal multidimensional interpolatory ternary subdivision
schemes with one-ring or two-ring stencils.

For one-dimensional interpolatory ternary subdivision schemes with two-ring
stencils, we have the following result.

Theorem 3.1. Let (a, 3, {−1, 1}) be a one-dimensional interpolatory ternary subdi-
vision triplet such that the real-valued mask a is supported on [−5, 5] (that is, all its
subdivision stencils have two-ring neighboring vertices). Then ν∞(a, 3) � log3 11.
Moreover, ν∞(a, 3) = log3 11 if and only if a is the unique mask abest given by

(3.1) âbest(ξ) =
1
99

(e−iξ + 1 + eiξ)3[9 + 10 cos(ξ) − 8 cos(2ξ)],

or equivalently, the mask abest is supported on [−5, 5] and given by[
− 4

99
, − 7

99
, 0,

34
99

,
76
99

, 1,
76
99

,
34
99

, 0, − 7
99

, − 4
99

]
.
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Proof. Suppose that ν∞(a, 3) > log3 11 ≈ 2.18266. Then the mask a must satisfy
the sum rules of order 3 with respect to the lattice 3Z (see [14, Theorem 4.3]).
Solving the system of linear equations given by (2.4) with k = 2 for a {−1, 1}-
symmetric interpolatory mask a with support [−5, 5], we see that the interpolatory
mask a must take the following form:

(3.2) â(ξ) = (e−iξ + 1 + eiξ)3b̂(ξ)

with

(3.3) b̂(ξ) := t e−2iξ − (4t+1/9)e−iξ +(6t+1/3)− (4t+1/9)eiξ + te2iξ, t ∈ R.

Let Tb,γ(γ = −1, 0, 1) be the linear operators defined in (2.15) with m = 3. It is easy
to see that the linear space �([−1, 1]) is Tb,γ-invariant for γ = −1, 0, 1. Their matrix
representations Hγ , under the standard basis {δ−1, δ0, δ1} of �([−1, 1]), are Hγ =
(b(3k − j + γ))−1�j,k�1 for γ = −1, 0, 1. So, ρ(b, 3,∞, δ) = ρ∞({H−1, H0, H1}),
where

H−1 =

⎡⎣0 6t + 1/3 0
0 −4t − 1/9 t
0 t −4t − 1/9

⎤⎦ , H0 =

⎡⎣t −4t − 1/9 0
0 6t + 1/3 0
0 −4t − 1/9 t

⎤⎦ ,

H1 =

⎡⎣−4t − 1/9 t 0
t −4t − 1/9 0
0 6t + 1/3 0

⎤⎦ .

(3.4)

It is easy to see that 6t + 1/3 and −5t− 1/9 are eigenvalues of H0 and H1, respec-
tively. Consequently,

ρ(b, 3,∞, δ) = ρ∞({H−1, H0, H1}) � max{ρ(H0), ρ(H1)}
� max{|6t + 1/3|, |5t + 1/9|} � 1/11,

where the equal sign in the last inequality holds if and only if t = −4/99. By
Theorem 2.3, we have ρ(a, 3,∞,∇3

e1
δ) = ρ(b, 3,∞, δ). Therefore, we conclude that

ν∞(a, 3) = − log3 ρ(a, 3,∞,∇3
e1

δ) = − log3 ρ(b, 3,∞, δ) � log3 11.

On the other hand, by Theorem 2.4, we have

ρ(b, 3,∞, δ) � max
α∈Z

∑
β∈Z

|b(α + 3β)| � max{|6t + 1/3|, |4t + 1/9| + |t|}.

Therefore, we have

(3.5) max{|6t + 1/3|, |5t + 1/9|} � ρ(b, 3,∞, δ) ≤ max{|6t + 1/3|, |4t + 1/9|+ |t|}.
When t = −4/99, the above inequalities yield that ρ(b, 3,∞, δ) = 1/11. Therefore,
we conclude that ν∞(abest, 3) = − log3 ρ(b, 3,∞, δ) = log3 11. �

More precisely, we have the following result.

Corollary 3.2. Let (a, 3, {−1, 1}) be an interpolatory subdivision triplet such that
the real-valued mask a is supported on [−5, 5] and satisfies the sum rules of order
3. Then the mask a must be given by (3.2) and (3.3). Moreover, we have

ν∞(a, 3) =

{
− log3(−5t − 1/9), if t � −4/99,
− log3(6t + 1/3), if t > −4/99.

In particular, the subdivision triplet is C2 if and only if −2/45 < t < −1/27.
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Proof. By the proof of Theorem 3.1, we see that (3.5) holds. By a simple calcula-
tion, we observe that

max{|6t + 1/3|, |5t + 1/9|} = max{|6t + 1/3|, |4t + 1/9| + |t|}

=

{
−5t − 1/9, if t � −4/99,

6t + 1/3, if t > −4/99.

So, the claim follows directly from (3.5) and ν∞(a, 3) = − log3 ρ(b, 3,∞, δ). �

For a sequence a on Zs, we define a new sequence Pa via the projection operator
P : �0(Zs) �→ �0(Z) (see [11, 12]) as follows:

(3.6) [Pa](j) :=
∑

β∈Zs−1

a(j, β), j ∈ Z.

Now we have the following result on optimal multidimensional interpolatory
ternary subdivision triplets with two-ring stencils.

Theorem 3.3. Let (a, 3Is, {Is,−Is}) be an interpolatory subdivision triplet such
that the real-valued mask a is supported on [−5, 5]s. Then ν∞(a, 3) � log3 11.
Moreover, if ν∞(a, 3Is) = log3 11, then the projected mask 31−sPa must be the
unique mask abest defined in (3.1).

Proof. Suppose that ν∞(a, 3Is) > log3 11. Then a must satisfy the sum rules of
order at least 3. Let Pa be the one-dimensional sequence defined in (3.6). Then
by [11, Lemma 2.1] or [12, Theorem 3.2], Pa must satisfy the sum rules of order
at least 3. Moreover, since a(−β) = a(β) for all β ∈ Zs, it is easy to see that
[Pa](−j) = [Pa](j) for all j ∈ Z. Therefore, (31−sPa, 3, {1,−1}) is a subdivision
triplet.

Since a is an interpolatory mask such that a is supported on [−5, 5]s and satisfies
the sum rules of order 3, by [11, Theorem 3.2] we see that 31−sPa must be an
interpolatory mask; that is, (31−sPa, 3, {1,−1}) is an interpolatory subdivision
triplet and Pa is supported on [−5, 5]. Now by [11, Theorem 2.5] and Theorem 3.1,
we must have ν∞(a, 3Is) ≤ ν∞(31−sPa, 3) � log3 11. When ν∞(a, 3Is) = log3 11,
we must have ν∞(31−sPa, 3) = log3 11. Therefore, by the uniqueness of the mask
abest in (3.1), we conclude that 31−sPa = abest. �

Since subdivision schemes with one-ring stencils are of particular interest in
CAGD, we have the following result on interpolatory subdivision schemes with
one-ring stencils.

Theorem 3.4. Let m be an integer satisfying |m| > 1 and let (a, mIs, {Is}) be an
interpolatory subdivision triplet.

(i) If a is supported on [1 − |m|, |m| − 1]s, then ν∞(a, mIs) � 1.
(ii) If a is supported on [−|m|, |m|]s (that is, the subdivision scheme has one-

ring stencils), then a can satisfy the sum rules of order at most 2 with
respect to the lattice mZs, and therefore ν∞(a, mIs) � 2.

Proof. Suppose that a is supported on [1−|m|, |m|−1]s and ν∞(a, mIs) > 1. Then
a must satisfy the sum rules of order at least 2. Consequently, by [12, Theorem 3.2],
the projected mask |m|1−sPa must satisfy the sum rules of order at least 2. Since
a is supported on [1−|m|, |m|− 1]s, then |m|1−sPa is a univariate mask supported
on [1−|m|, |m|−1] and satisfying the sum rules of order 2; therefore, we must have
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|m|1−sP̂ a(ξ) = |1+e−iξ + · · ·+e−i(|m|−1)ξ|2/|m|. This gives us ν∞(|m|1−sPa, m) =
1. Now by [11, Theorem 2.5], we conclude that ν∞(a, mIs) � ν∞(|m|1−sPa, m) = 1.
So, (i) holds.

It is easy to see that a univariate interpolatory mask a with support [−|m|, |m|]
must be supported on [1 − |m|, |m| − 1]. Therefore, a can satisfy the sum rules
of order at most 2 with respect to the lattice mZ. Now by a similar argument as
in [17, Theorem 2.2] or [12, Theorem 3.2], we see that any interpolatory mask a
with support [−|m|, |m|]s can satisfy the sum rules of order at most 2 with respect
to the lattice mZs. Consequently, we have ν∞(a, mIs) � 2. So, there is no C2

interpolatory m-adic subdivision scheme with one-ring stencils. �

In fact, it has been proved in [10, Theorem 2.7] that there is no C1 interpolatory
dyadic subdivision scheme for any subdivision triplet (a, 2I2, D4) such that a is sup-
ported inside [−2, 2]2. By a similar complicated argument as in [10, Theorem 2.7],
we conjecture that there is no C1 interpolatory m-adic subdivision scheme such
that its interpolatory mask is supported inside the set [−|m|, |m|]s.

4. Optimal C2
two-dimensional interpolatory ternary subdivision

schemes with two-ring stencils

In this section, we shall present some examples of interpolatory subdivision
triplets (a, 3I2, D4) and (a, 3I2, D6) such that their masks a are supported on
[−5, 5]2 and ν∞(a, 3I2) = log3 11. Therefore, they are the smoothest interpola-
tory ternary subdivision schemes with two-ring stencils, according to Theorem 3.3.

Let us first consider subdivision triplets (a, 3I2, D6) for the regular triangular
mesh. In order to facilitate our analysis, we require that the mask a should take
the following form:

(4.1) â(ξ1, ξ2) = (e−iξ1 +1+eiξ1)(e−iξ2 +1+eiξ2)(e−i(ξ1+ξ2)+1+ei(ξ1+ξ2))b̂(ξ1, ξ2),

where the sequence b is supported on [−3, 3]2 and is D6-symmetric. Consider a
system of linear equations, which are induced by the following requirements:

(i) The mask a is interpolatory with respect to the lattice 3Z2.
(ii) The mask a satisfies the sum rules of order 3 with respect to the lattice

3Z2.
(iii) The projected mask 3−1Pa must be the unique mask abest in (3.1).

Solving the system of linear equations, we see that the sequence b, which is sup-
ported on [−3, 3]2 and is D6-symmetric, must take the following form:
(4.2)

1
99

⎡⎢⎢⎣
0 0 0 t2 −2 − t2 −2 − t2 t2
0 0 −2 − t2 t1 5 − 2t1 + 2t2 t1 −2 − t2
0 −2 − t2 5 − 2t1 + 2t2 2 + 2t1 − t2 2 + 2t1 − t2 5 − 2t1 + 2t2 −2 − t2
t2 t1 2 + 2t1 − t2 15 − 6t1 2 + 2t1 − t2 t1 t2

−2 − t2 5 − 2t1 + 2t2 2 + 2t1 − t2 2 + 2t1 − t2 5 − 2t1 + 2t2 −2 − t2 0
−2 − t2 t1 5 − 2t1 + 2t2 t1 −2 − t2 0 0

t2 −2 − t2 −2 − t2 t2 0 0 0

⎤⎥⎥⎦ .

Now we have the following result on subdivision triplets (a, 3I2, D6) with two-
ring stencils.

Theorem 4.1. Let (a, 3I2, D6) be an interpolatory subdivision triplet, where the
mask a is given by (4.1) and the sequence b is given in (4.2). Then

ν∞(a, 3I2) = − log3 max{1/11, ρ(b, 3I2,∞, δ)}.
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In particular, ν∞(a, 3I2) = log3 11 if and only if ρ(b, 3I2,∞, δ) � 1/11. For ex-
ample, if t1 = 1 and t2 = 0, then ρ(b, 3I2,∞, δ) � 1/11 and ν∞(a, 3I2) = log3 11.
Therefore, the subdivision triplet is the smoothest two-dimensional interpolatory
ternary subdivision scheme with two-ring stencils for the regular triangular mesh.

Proof. Since a satisfies the sum rules of order 3, in order to calculate ν∞(a, 3I2),
we have to calculate

(4.3)
ρ(a, 3I2,∞,∇µδ) := lim

n→∞
‖∇µδ ∗ [Sn

a,3I2
δ]‖�∞(Z2),

µ = (3, 0), (2, 1), (1, 2), (0, 3).

Since the mask a is D6-symmetric, the sequence Sn
a,3I2

δ is also D6-symmetric, and
it is easy to see that

ρ(a, 3I2,∞,∇3
e2

δ) = ρ(a, 3I2,∞,∇3
e1

δ)

and
ρ(a, 3I2,∞,∇e1∇2

e2
δ) = ρ(a, 3I2,∞,∇2

e1
∇e2δ).

So it suffices to calculate ρ(a, 3I2,∞,∇3
e1

δ) and ρ(a, 3I2,∞,∇2
e1
∇e2δ). Note that

(4.4) ∇e1δ = δ− δe1 = [δ−e2 − δe1 ]+ [δ− δ−e2 ] = [∇e1+e2δ](·+ e2)− [∇e2δ](·+ e2).

For any β ∈ Zs, it is easy to see that u(· − β) ∗ [Sn
a,Mδ] = (u ∗ [Sn

a,Mδ])(· − β).
Therefore,

ρ(a, M, p, u(· − β)) = ρ(a, M, p, u) ∀ β ∈ Zs.

Consequently, by the definition of ρ(a, 3I2,∞,∇µδ) in (4.3), it follows directly from
(4.4) that

ρ(a, 3I2,∞,∇3
e1

δ)

� max{ρ(a, 3I2,∞,∇2
e1
∇e1+e2δ), ρ(a, 3I2,∞,∇2

e1
∇e2δ)}.

(4.5)

Let E :=
[

1 −1
0 −1

]
∈ D6. It is easy to check that

[∇2
e1
∇e2δ](E·) = ∇2

E−1e1
∇E−1e2δ = ∇2

e1
∇−e1−e2δ.

Since [Sn
a,3I2

δ](E·) = Sn
a,3I2

δ by E ∈ D6, we must have

[(∇2
e1
∇e2δ) ∗ (Sn

a,3I2
δ)](E·) = (∇2

e1
∇−e1−e2δ) ∗ (Sn

a,3I2
δ).

Therefore, it follows that

ρ(a, 3I2,∞,∇2
e1
∇e2δ) = ρ(a, 3I2,∞,∇2

e1
∇−e1−e2δ) = ρ(a, 3I2,∞,∇2

e1
∇e1+e2δ).

Since ∇(2,1)δ = ∇2
e1
∇e2δ, in order to calculate ρ(a, 3I2,∞,∇µδ) in (4.3), by (4.5)

and the above identity, we see that it suffices to calculate the quantity

ρ(a, 3I2,∞,∇2
e1
∇e1+e2δ).

Note that

(∇e1∇e1+e2δ)̂(3ξ1, 3ξ2)
(∇e1∇e1+e2δ)̂(ξ1, ξ2)

=
1 − e−3iξ1

1 − e−iξ1

1 − e−3i(ξ1+ξ2)

1 − e−i(ξ1+ξ2)

= (1 + e−iξ1 + e−2iξ1)(1 + e−i(ξ1+ξ2) + e−2i(ξ1+ξ2)).

By Theorem 2.3, it follows from ∇2
e1
∇e1+e2δ = [∇e1δ] ∗ [∇e1∇e1+e2δ] that

(4.6) ρ(a, 3I2,∞,∇2
e1
∇e1+e2δ) = ρ(h1, 3I2,∞,∇e1δ) = ρ(h, 3I2,∞,∇e1δ),
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where ĥ1(ξ1, ξ2) := eiξ1ei(ξ1+ξ2)ĥ(ξ1, ξ2) and

(4.7) ĥ(ξ1, ξ2) := (e−iξ2 + 1 + eiξ2)b̂(ξ1, ξ2).

It is easy to check that h satisfies the sum rules of order 1. Define Γ := [−1, 1]2∩Z2.
Then Γ is a complete set of representatives of the distinct cosets of the quotient
group Z2/3Z2. Denote

(4.8) K := {(j, k) ∈ Z2 : |j| � 1, |k| � 2}
and define the linear space U by

(4.9) U :=
{

u ∈ �0(Z2) : u(β) = 0 ∀ β ∈ Zs\K and
∑
β∈Z2

u(β) = 0
}

.

Then it is easy to check that [(supph − Γ + K)/3] ∩ Z2 ⊆ K. Since h satisfies the
sum rules of order 1, we see that Th,γU ⊆ U for all γ ∈ Γ. Set

A := {δ(0,0) − δ(−1,0), δ(1,0) − δ(0,0)},
B := {δ(j,k+1) − δ(j,k) : j = −1, 0, 1; k = −2,−1, 0, 1}.(4.10)

Since ĥ(ξ1, ξ2) = (e−iξ2 + 1 + eiξ2)b̂(ξ1, ξ2), we see that W := spanB is invariant
under all the operators Th,γ , γ ∈ Γ. Therefore, by [22], we have

ρ∞({Th,γ |U : γ ∈ Γ})
= max{ρ∞({Th,γ |W : γ ∈ Γ}), ρ∞({Th,γ |U/W : γ ∈ Γ})}.(4.11)

Since all the elements in B take the form [∇e2δ](· − β) for some β ∈ Z2, by Theo-
rem 2.3, we have

(4.12) ρ∞({Th,γ |W : γ ∈ Γ}) = ρ∞(h, 3I2,∞,∇e2δ) = ρ(b, 3I2,∞, δ).

For any u ∈ U , we denote by [u] its equivalence class in U/W . The representation
matrices of Th,γ |U/W , denoted by Hγ , under the basis {[u] : u ∈ A} = {[δ(0,0) −
δ(−1,0)], [δ(1,0) − δ(0,0)]}, are given by

H(−1,1) = H(−1,0) = H(−1,−1) =
1
99

[
−4 5
0 9

]
,

H(0,1) = H(0,0) = H(0,−1) =
1
99

[
5 −4
−4 5

]
,

H(1,1) = H(1,0) = H(1,−1) =
1
99

[
9 0
5 −4

]
.

(4.13)

By a simple calculation, we have
ρ∞({Th,γ |U/W : γ ∈ Γ}) = ρ∞({Hγ : γ ∈ Γ})

� max{‖Hγ‖�1,∞ : γ ∈ Γ} = 1/11,
(4.14)

where ‖ · ‖�1,∞ is a matrix norm which is defined to be

‖(tij)1�i�I,1�j�J‖�1,∞ := max
1�i�I

J∑
j=1

|tij |.

Since ∇e1δ ∈ U , by (4.11) and (4.12), we conclude that

max{ρ(a, 3I2,∞,∇µδ) : |µ| = 3} ≤ ρ(h, 3I2,∞,∇e1δ) � ρ∞({Th,γ |U : γ ∈ Γ})
� max{1/11, ρ(b, 3I2,∞, δ)}.
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On the other hand, by (4.4), we have ∇e1+e2δ = ∇e2δ + [∇e1δ](· − e2), and it is
not difficult to see that

ρ(b, 3I2,∞, δ) = ρ(a, 3I2,∞,∇e1∇e2∇e1+e2δ)

� max{ρ(a, 3I2,∞,∇2
e1
∇e2δ), ρ(a, 3I2,∞,∇e1∇2

e2
δ)}.

By Theorem 3.1, we conclude that

(4.15) max{ρ(a, 3I2,∞,∇µδ) : |µ| = 3} = max{1/11, ρ(b, 3I2,∞, δ)}.

In the following, we estimate ρ(b, 3I2,∞, δ). By Theorem 2.4, we have

ρ(b,3I2,∞, δ) � max
α∈Z2

∑
β∈Z2

|b(α + 3β)|

=
1
99

max{|6t1 − 15| + 6|t2|, |t1| + 2|t2 + 2| + |2 + 2t1 − t2|, 3|5 − 2t1 + 2t2|}.

When t1 = 1 and t2 = 0, it follows from the above inequality that ρ(b, 3I2,∞, δ) �
1/11. Therefore, the claim in this theorem follows directly from (4.15). �

The stencils of the subdivision triplets in Theorem 4.1 are given in Figure 1. See
Figure 2 for the graph of the basis function in the subdivision triplet in Theorem 4.1
with the choice t1 = 1 and t2 = 0. Note that the support of the basis function
is contained in [−5/2, 5/2]2, while the basis function of the butterfly scheme is
supported on [−3, 3]2. The parameters w1, . . . , w7 in Figure 1 are given by

w1 := 72 − t2, w2 := 31 − t1, w3 := 7 + t1 + t2, w4 := −3 − t1,

w5 := −4 + t1, w6 := −4 − t2, w7 := t2.
(4.16)

For quadrilateral meshes, we can use the tensor product of the one-dimensional
interpolatory subdivision triplet (abest, 3,{−1, 1}) to get an optimal two-dimensional
interpolatory ternary subdivision scheme. In the following, let us present some other
examples of subdivision triplets (a, 3I2, D4) with better time localization of their
basis functions for the quadrilateral meshes.

40 40

40

-2

-2

-2

-3

-3

-2 -2

-2 -2

w1 w2

w3w4 w6

w3

w5 w7

w4 w6

Figure 1. The stencils of the subdivision triplets in Theorem 4.1,
where the parameters w1, . . . , w7 are given in (4.16). All the num-
bers in the above stencils should be divided by 99.
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Figure 2. The graph of the basis function φ for the subdivision
triplet in Theorem 4.1 with t1 = 1 and t2 = 0. We have ν∞(φ) =
log3 11 and therefore, φ ∈ C2(R2). Moreover, the support of the
interpolatory function φ is contained in the set [−5/2, 5/2]2.

In order to facilitate our analysis, we require that the mask a should take the
following form:

(4.17) â(ξ1, ξ2) = (e−iξ1 + 1 + eiξ1)2(e−iξ2 + 1 + eiξ2)2b̂(ξ1, ξ2),

where the sequence b is supported on [−3, 3]2 and is D4-symmetric. By solving
a system of linear equations, which are induced by the same three conditions (i),
(ii), (iii) on a as for the symmetry group D6, we see that the sequence b, which is
supported on [−3, 3]2 and is D4-symmetric, must take the following form:

(4.18)
1

297

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

t5 t4 t3 t10 t3 t4 t5
t4 t2 t1 t9 t1 t2 t4
t3 t1 t8 t7 t8 t1 t3
t10 t9 t7 t6 t7 t9 t10
t3 t1 t8 t7 t8 t1 t3
t4 t2 t1 t9 t1 t2 t4
t5 t4 t3 t10 t3 t4 t5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where t1, t2, t3, t4, t5 are free parameters and t6, t7, t8, t9, t10 are given by
t6 := 5 − 8t1 − 12t2 − 16t3 − 40t4 − 32t5,

t7 := 10 + 6t1 + 8t2 + 10t3 + 24t4 + 18t5,

t8 := −4t1 − 4t2 − 6t3 − 12t4 − 9t5,

t9 := 1 − 2t1 − 2t2 − 2t4,

t10 := −4 − 2t3 − 2t4 − 2t5.

(4.19)

Now we have the following result on subdivision triplets (a, 3I2, D4) with two-ring
stencils.

Theorem 4.2. Let (a, 3I2, D4) be an interpolatory subdivision triplet, where the
mask a is given by (4.17) and the sequence b is given in (4.18). Then

ν∞(a, 3I2) = − log3 max{1/11, ρ(b, 3I2,∞, δ)}.
In particular, ν∞(a, 3I2) = log3 11 if and only if ρ(b, 3I2,∞, δ) � 1/11. More-
over, if −3/4 < t1 < 2 and t2 = t3 = t4 = t5 = 0, then ρ(b, 3I2,∞, δ) � 1/11
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and ν∞(a, 3I2) = log3 11. Therefore, the subdivision triplet is the smoothest two-
dimensional interpolatory ternary subdivision scheme with two-ring stencils for the
regular quadrilateral mesh.

Proof. By symmetry on the mask a, it suffices to compute the two quantities
ρ(a, 3I2,∞,∇3

e1
δ) and ρ(a, 3I2,∞,∇2

e1
∇e2δ). Note that

∇̂2
e1

δ(3ξ1, 3ξ2)

∇̂2
e1

δ(ξ1, ξ2)
=

(1 − e−3iξ1)2

(1 − e−iξ1)2
= (1 + e−iξ1 + e−2iξ1)2.

By Theorem 2.3, we see that

ρ(a, 3I2,∞,∇3
e1

δ) = ρ(h, 3I2,∞,∇e1δ)

and
ρ(a, 3I2,∞,∇2

e1
∇e2δ) = ρ(h, 3I2,∞,∇e2δ),

where

(4.20) ĥ(ξ1, ξ2) := (e−iξ2 + 1 + eiξ2)2b̂(ξ1, ξ2).

It is easy to verify that h satisfies the sum rules of order 1. Denote Γ := [−1, 1]2∩Z2.
Let K and U be defined in (4.8) and (4.9), respectively. Since h satisfies the sum
rules of order 1, we have Th,γU ⊆ U for all γ ∈ Γ. Set

A := {δ(0,0) − δ(−1,0), δ(1,0) − δ(0,0)},
B := {δ(−1,1) − δ(−1,0), δ(0,1) − δ(0,0), δ(1,1) − δ(1,0)},
C := {δ(j,k+2) − 2δ(j,k+1) + δ(j,k) : j = −1, 0, 1; k = −2,−1, 0}.

(4.21)

Define W := span(B ∪ C) and V := spanC. Since ĥ(ξ1, ξ2) = (e−iξ2 + 1 +
eiξ2)2b̂(ξ1, ξ2), we see that Th,γW ⊆ W and Th,γV ⊆ V for all γ ∈ Γ.

For any u ∈ U , we denote by [u] its equivalence class in U/W . The representation
matrices of Th,γ |U/W , denoted by Hγ , under the basis {[u] : u ∈ A}, are given in
(4.13). Therefore, by what has been proved, (4.14) holds.

For any u ∈ W , we denote by [u] its equivalence class in W/V . The represen-
tation matrices of Th,γ |W/V , denoted by H2,γ , under the basis {[u] : u ∈ B}, are
given by

H2,(−1,1) = H2,(−1,0) = H2,(−1,−1) =
1

297

⎡⎣−4 19 −4
0 10 1
0 1 10

⎤⎦ ,

H2,(0,1) = H2,(0,0) = H2,(0,−1) =
1

297

⎡⎣ 1 10 0
−4 19 −4
0 10 1

⎤⎦ ,

H2,(1,1) = H2,(1,0) = H2,(1,−1) =
1

297

⎡⎣10 1 0
1 10 0
−4 19 −4

⎤⎦ .

Therefore, we have

ρ∞({Th,γ |W/V : γ ∈ Γ}) = ρ∞({H2,γ : γ ∈ Γ})
� max{‖H2,γ‖�1,∞ : γ ∈ Γ} = 1/11.

(4.22)
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Note that every element in C takes the form ∇2
e2

δ(· − β) for some β ∈ Z2. By
Theorem 2.3, we have

(4.23) ρ∞({Th,γ |C : γ ∈ Γ}) = ρ(h, 3I2,∞,∇2
e2

δ) = ρ(b, 3I2,∞, δ).

Now by Theorem 2.4, we have

ρ(b,3I2,∞, δ) � max
α∈Z2

∑
β∈Z2

|b(α + 3β)|

� 1
297

max{|t6| + 4|t10| + 4|t5|, |t7| + |t9| + 2|t3| + 2|t4|, |t8| + 2|t1| + |t2|},

where tj , j = 6, . . . , 10 are defined in (4.19). When t2 = t3 = t4 = t5 = 0, the above
inequality becomes

ρ(b, 3I2,∞, δ) � 1
297

max{16 + |5 − 8t1|, |1 − 2t1| + |10 + 6t1|, 6|t1|}.

It follows easily from the above inequality that if −3/4 < t1 < 2 and t2 = t3 =
t4 = t5 = 0, then ρ(b, 3I2,∞, δ) � 1/11. Since the elements in A take the form
∇e1δ(· − β) and the elements in B take the form ∇e2δ(· − β), by (4.14) and (4.23),
we see that

max{ρ(a, 3I2,∞,∇3
e1

δ),ρ(a, 3I2,∞,∇2
e1
∇e2δ)}

= max{ρ(h, 3I2,∞,∇e1δ), ρ(h, 3I2,∞,∇e2δ)}
= ρ∞({Th,γ |U : γ ∈ Γ})
= max{1/11, ρ(b, 3I2,∞, δ)},

which completes the proof. �

The stencils of the subdivision triplets in Theorem 4.2 are given in Figure 3. See
Figure 4 for the graph of the basis function in the subdivision triplet in Theorem 4.2
with t1 = t2 = t3 = t4 = t5 = 0, and the corresponding stencils for the case t1 =
t2 = t3 = t4 = t5 = 0 are given in Figure 5. The parameters w0, . . . , w9, u0, . . . , u7

in Figure 3 are given by

w0 := 172 + 4t2 + 12t4 + 9t5, w1 := 78 − 2t2 − 3t4,

w2 := −14 − 2t2 − 7t4 − 6t5, w3 := 35 + t2,

w4 := t2 + 4t4 + 4t5, w5 := −7 + t2 + 2t4, w6 := t4 + 2t5,

w7 := −8 − 2t4 − 3t5, w8 := −4 − t4, w9 = t5,

u0 := 228 + 4t1 + 8t2 + 6t3 + 24t4 + 18t5,

u1 := 102 − 2t1 − 4t2 − 6t4,

u2 := −2t1 − 4t2 − 3t3 − 12t4 − 9t5,

u3 := −21 − 2t1 − 4t2 − 4t3 − 14t4 − 12t5,

u4 := t1 + 2t2 + 2t3 + 7t4 + 6t5,

u5 := t1 + 2t2 + 3t4,

u6 := −12 − 2t3 − 4t4 − 6t5, u7 := t3 + 2t4 + 3t5.

(4.24)
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u3

u5

u4

u4

u5 u7

u6

u7

Figure 3. The stencils of the subdivision triplets in Theorem 4.2,
where all the parameters are given in (4.24). All the numbers in
the above stencils should be divided by 297.
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Figure 4. The graph of the basis function φ for the subdivision
triplet in Theorem 4.2 with t1 = t2 = t3 = t4 = t5 = 0. We have
ν∞(φ) = log3 11 and therefore, φ ∈ C2(R2). The corresponding
stencils are given in Figure 5.

When t1 = t2 = t3 = t4 = t5 = 0, the parameters in (4.24) become

w0 = 78, w1 = −78, w2 = −14, w3 = 35,

w5 = −7, w7 = −8, w8 = −4,

w4 = w6 = w9 = 0,

u0 = 228, u1 = 102, u3 = −21, u6 = −12,

u2 = u4 = u5 = u7 = 0.

(4.25)

Finally, we mention that by using the same technique as in Theorem 4.2, we
have ν∞(g2, 2I2) = 2, where g2 is the D4-symmetric interpolatory mask given in
[17] with support [−3, 3]2.
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172 78

78

–14

–14

35–7

–7

–8

–8

–4

–4

-21 228 102 -12

Figure 5. The stencils of the subdivision triplets in Theorem 4.2
with the choice t1 = t2 = t3 = t4 = t5 = 0. All the numbers in the
above stencils should be divided by 297. The stencil on the left-
hand side reduces to be the one-dimensional stencil for the mask
abest given in (3.1).

References

[1] A. S. Cavaretta, W. Dahmen, and C.A. Micchelli, Stationary Subdivision. Mem. Amer. Math.
Soc. 453 (1991), American Math. Soc., Providence. MR1079033 (92h:65017)

[2] D. R. Chen, R. Q. Jia and S. D. Riemenschneider, Convergence of vector subdivision
schemes in Sobolev spaces. Appl. Comput. Harmon. Anal. 12 (2002), 128–149. MR1874918
(2002k:65220)

[3] I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global
regularity of solutions. SIAM J. Math. Anal. 22 (1991), 1388–1410. MR1112515 (92d:39001)

[4] N. A. Dodgson, M. A. Sabin, L. Barthe, M. F. Hassan, Towards a ternary interpolatory
subdivision scheme for the triangular mesh. preprint.

[5] S. Dubuc, Interpolation through an iterative scheme. J. Math. Anal. Appl. 114 (1986) 185–
204. MR0829123 (88b:41003)

[6] N. Dyn and D. Levin, Subdivision schemes in geometric modeling. Acta Numerica 11 (2002),
73–144. MR2008967 (2004g:65017)

[7] N. Dyn, D. Levin and J. A. Gregory, A butterfly subdivision scheme for surface interpolation
with tension control. ACM Transactions on Graphics 9 (1990), 160–169.

[8] T. N. T. Goodman, C. A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision

operators, in Recent advances in wavelet analysis, L. L. Schumaker and G. Webb, eds.,
Academic Press, New York, 1994, 335–360. MR1244611 (94m:47076)

[9] B. Han, Analysis and construction of optimal multidimensional biorthogonal wavelets with
compact support. SIAM J. Math. Anal. 31 (2000), 274–304. MR1740939 (2000m:42032)

[10] B. Han, Construction of multivariate biorthogonal wavelets by CBC algorithm. Wavelet anal-
ysis and multiresolution methods (T. X. He, ed.) Lecture Notes in Pure and Appl. Math. 212,
Dekker, New York, (2000), 105–143. MR1777991 (2001f:42061)

[11] B. Han, Projectable multidimensional refinable functions and biorthogonal wavelets. Appl.
Comput. Harmon. Anal. 13 (2002), 89–102. MR1930178 (2003f:42054)

[12] B. Han, Symmetry property and construction of wavelets with a general dilation matrix.
Linear Algebra Appl. 353 (2002), 207–225. MR1919638 (2003g:42059)

[13] B. Han, Computing the smoothness exponent of a symmetric multidimensional refinable
function. SIAM J. Matrix Anal. Appl. 24 (2003), no. 3, 693–714. MR1972675 (2004b:42078)

[14] B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx.
Theory 124 (2003), 44–88. MR2010780 (2004h:42034)

http://www.ams.org/mathscinet-getitem?mr=1079033
http://www.ams.org/mathscinet-getitem?mr=1079033
http://www.ams.org/mathscinet-getitem?mr=1874918
http://www.ams.org/mathscinet-getitem?mr=1874918
http://www.ams.org/mathscinet-getitem?mr=1112515
http://www.ams.org/mathscinet-getitem?mr=1112515
http://www.ams.org/mathscinet-getitem?mr=0829123
http://www.ams.org/mathscinet-getitem?mr=0829123
http://www.ams.org/mathscinet-getitem?mr=2008967
http://www.ams.org/mathscinet-getitem?mr=2008967
http://www.ams.org/mathscinet-getitem?mr=1244611
http://www.ams.org/mathscinet-getitem?mr=1244611
http://www.ams.org/mathscinet-getitem?mr=1740939
http://www.ams.org/mathscinet-getitem?mr=1740939
http://www.ams.org/mathscinet-getitem?mr=1777991
http://www.ams.org/mathscinet-getitem?mr=1777991
http://www.ams.org/mathscinet-getitem?mr=1930178
http://www.ams.org/mathscinet-getitem?mr=1930178
http://www.ams.org/mathscinet-getitem?mr=1919638
http://www.ams.org/mathscinet-getitem?mr=1919638
http://www.ams.org/mathscinet-getitem?mr=1972675
http://www.ams.org/mathscinet-getitem?mr=1972675
http://www.ams.org/mathscinet-getitem?mr=2010780
http://www.ams.org/mathscinet-getitem?mr=2010780


1308 BIN HAN AND RONG-QING JIA

[15] B. Han, Classification and construction of two-dimensional subdivision schemes. Proceed-
ings on Curves and Surfaces Fitting: Saint-Malo 2002 (A. Cohen, J.-L. Merrien, and L. L.
Schumaker, eds.), (2003), 187–197. MR2042446

[16] B. Han and R. Q. Jia, Multivariate refinement equations and convergence of subdivision
schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199. MR1618691 (99f:41018)

[17] B. Han and R. Q. Jia, Optimal interpolatory subdivision schemes in multidimensional spaces.
SIAM J. Numer. Anal. 36 (1998), 105-124. MR1654587 (99m:65019)

[18] B. Han and R. Q. Jia, Quincunx fundamental refinable functions and quincunx biorthogonal
wavelets. Math. Comp. 71 (2002), 165–196. MR1862994 (2002j:42045)

[19] M. F. Hassan, I. P. Ivrissimitzis, N. A. Dodgson, and M. A. Sabin, An interpolatory 4-point
C2 ternary stationary subdivision scheme. Comput. Aided Geom. Design 19 (2002), 1–18.
MR1879678 (2002k:65019)

[20] R. Q. Jia, Subdivision schemes in Lp spaces. Adv. Comput. Math. 3 (1995), 309–341.
MR1339166 (96d:65028)

[21] R. Q. Jia, Approximation properties of multidimensional wavelets. Math. Comp. 67 (1998),
647–665. MR1451324 (98g:41020)

[22] R. Q. Jia, S. D. Riemenschneider, and D.X. Zhou, Smoothness of multiple refinable func-
tions and multiple wavelets. SIAM J. Matrix Anal. Appl. 21 (1999), 1–28. MR1709723
(2000k:42050)

[23] Q. T. Jiang, P. Oswald and S. D. Riemenschneider,
√

3-subdivision schemes: maximal sum
rule orders. Constr. Approx. 19 (2003), 437–463. MR1979060 (2004d:41033)

[24] C. Loop, Smooth ternary subdivision of triangle meshes. Proceedings on Curves and Surfaces
Fitting: Saint-Malo 2002 (A. Cohen, J.-L. Merrien, and L. L. Schumaker, eds.), (2003), 295–
302. MR2042456

[25] C. A. Micchelli and T. Sauer, Regularity of multiwavelets. Adv. Comput. Math. 7 (1997),
455–545. MR1470295 (99d:42067)

[26] S. D. Riemenschneider and Z. W. Shen, Multidimensional interpolatory subdivision schemes.
SIAM J. Numer. Anal. 34 (1997), 2357–2381. MR1480385 (99j:65011)

[27] L. Velho and D. Zorin, 4-8 subdivision. CAGD 18 (2001), 397–427. MR1841458
[28] D. X. Zhou, The p-norm joint spectral radius for even integers. Methods Appl. Anal. 5 (1998),

39-54. MR1631335 (99e:42054)

Department of Mathematical and Statistical Sciences, University of Alberta, Ed-

monton, Alberta, Canada T6G 2G1

E-mail address: bhan@math.ualberta.ca

URL: http://www.ualberta.ca/∼bhan

Department of Mathematical and Statistical Sciences, University of Alberta, Ed-

monton, Alberta, Canada T6G 2G1

E-mail address: rjia@ualberta.ca

http://www.ams.org/mathscinet-getitem?mr=2042446
http://www.ams.org/mathscinet-getitem?mr=1618691
http://www.ams.org/mathscinet-getitem?mr=1618691
http://www.ams.org/mathscinet-getitem?mr=1654587
http://www.ams.org/mathscinet-getitem?mr=1654587
http://www.ams.org/mathscinet-getitem?mr=1862994
http://www.ams.org/mathscinet-getitem?mr=1862994
http://www.ams.org/mathscinet-getitem?mr=1879678
http://www.ams.org/mathscinet-getitem?mr=1879678
http://www.ams.org/mathscinet-getitem?mr=1339166
http://www.ams.org/mathscinet-getitem?mr=1339166
http://www.ams.org/mathscinet-getitem?mr=1451324
http://www.ams.org/mathscinet-getitem?mr=1451324
http://www.ams.org/mathscinet-getitem?mr=1709723
http://www.ams.org/mathscinet-getitem?mr=1709723
http://www.ams.org/mathscinet-getitem?mr=1979060
http://www.ams.org/mathscinet-getitem?mr=1979060
http://www.ams.org/mathscinet-getitem?mr=2042456
http://www.ams.org/mathscinet-getitem?mr=1470295
http://www.ams.org/mathscinet-getitem?mr=1470295
http://www.ams.org/mathscinet-getitem?mr=1480385
http://www.ams.org/mathscinet-getitem?mr=1480385
http://www.ams.org/mathscinet-getitem?mr=1841458
http://www.ams.org/mathscinet-getitem?mr=1631335
http://www.ams.org/mathscinet-getitem?mr=1631335

	1. Introduction and motivation
	2. Some properties of subdivision triplets
	3. Optimal one-dimensional interpolatory ternary subdivision schemes and the projection method
	4. Optimal C2 two-dimensional interpolatory ternary subdivision schemes with two-ring stencils
	References

