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OPTIMAL FILTER AND MOLLIFIER
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This paper is dedicated to Eitan Tadmor for his direction

ABSTRACT. We discuss the reconstruction of piecewise smooth data from its
(pseudo-) spectral information. Spectral projections enjoy superior resolution
provided the function is globally smooth, while the presence of jump disconti-
nuities is responsible for spurious O(1) Gibbs’ oscillations in the neighborhood
of edges and an overall deterioration of the convergence rate to the unaccept-
able first order. Classical filters and mollifiers are constructed to have compact
support in the Fourier (frequency) and physical (time) spaces respectively, and
are dilated by the projection order or the width of the smooth region to main-
tain this compact support in the appropriate region. Here we construct a
noncompactly supported filter and mollifier with optimal joint time-frequency
localization for a given number of vanishing moments, resulting in a new fun-
damental dilation relationship that adaptively links the time and frequency
domains. Not giving preference to either space allows for a more balanced
error decomposition, which when minimized yields an optimal filter and mol-
lifier that retain the robustness of classical filters, yet obtain true exponential
accuracy.

1. INTRODUCTION

The Fourier projection of a 27 periodic function

s

(1.1) Snf(x) = Z e, fr = L f(x)e*ody,

2 J_,

k<N

enjoys the well-known spectral convergence rate, that is, the convergence rate is as
rapid as the global smoothness of f(-) permits. Specifically, if f(-) has s bounded
derivatives, then Sy f(x) — f(x)] < Const ||f|lcs - N'7%, and if f(-) is analytic,
|Sn f(z) — f(x)] < Const -e~"N. In the dual (frequency) space the global smooth-
ness and spectral convergence are reflected in rapidly decaying Fourier coefficients
|fr] < 27k*||f||c-. On the other hand, spectral projections of piecewise smooth
functions suffer from the well-known Gibbs’ phenomena, where the uniform con-
vergence of Sy f(x) is lost in the neighborhood of discontinuities. Moreover, the
convergence rate away from the discontinuities deteriorates to first order.
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Two interchangeable processes for recovering the rapid convergence associated
with globally smooth functions are filtering, o(+), in the dual space and mollification,
¥(+), in the physical space

(12) Snfo(@) =Y o(k,N)fre™ = ¢ Snf(x)= [ ¥(y)Syf(z—y)dy.
|[kI<N -
For a filter defined in the Fourier (dual) space its associated mollifier is given by
R "
Y(z) = %k; o(k, N)e*=,

whereas for a mollifier defined in the physical space its associated filter’s samples
are the mollifier’s Fourier coefficients, o(k, N) := 9. Although filters and mollifiers
have been have been studied extensively (see [14] and references therein), a number
of fundamental questions remain:

e What are the constraints to achievable accuracy for a filtered or mollified
Fourier projection?

e How close to reaching this achievable limit are the host of already developed
filters and mollifiers?

e How has the historical construction of filters and mollifiers affected their
properties?

e What is a filter and mollifier which achieves the optimal pointwise conver-
gence rate?

In §2] a new error decomposition is introduced which is equally valid for fil-
ters and mollifiers. With this decomposition the fundamental competing errors
are rendered transparent, and a unified analysis of filters and mollifiers is made
available. The classical constructions of compactly supported filters and molli-
fiers are shown not to balance the fundamental competing errors, and as a result
fail to approach the achievable accuracy. Specifically, it has been shown in [23]
and [24] that even with optimally varying spatial orders of accuracy, compactly
supported infinitely differentiable filters and mollifiers can at most obtain root ex-
ponential accuracy. That is, |f(z) — ¢ * Sy f(x)| < Const s exp(—c(Nd(z))'/*) for
«a > 1, where d(z) is the distance from the point being recovered to the nearest
discontinuity. In §3] and §4] we abandon compact support, and by balancing the
overall competing errors construct a filter and mollifier (Theorems B3] and 1] re-
spectively) which obtain the optimal achievable rate of true exponential accuracy,
|f(z) — ¢ * Sy f(x)| < Constsexp(—cNd(z)). This optimal accuracy is obtained
via a joint time-frequency localization of the filter and mollifier, and results in a
new adaptive scaling relationship /N/d(x).

Filtering remains the most prevalent approach for the resolution of Gibbs’ phe-
nomenon due to its extraordinary robustness and the computational efficiency of
FFTs. Applications are ubiquitous, including fields as varied as image processing
and spectral viscosity methods in the solution of time dependent problems. How-
ever, filtering as stated in (2] corresponds to a symmetricﬂ localization about the

I Here we consider symmetric mollifiers and real-valued filters where considering a nonsymmet-
ric region of smoothness yields error bounds tighter only by a constant factor. We note in passing
the one-sided filters introduced in [4] where complex-valued filters are utilized in order to recover
high order accuracy up to the discontinuities. Rather than such extrapolatory filters we focus on
resolving the achievable accuracy of symmetric reconstructions.
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point being approximated. Unfortunately, this symmetric nature necessitates di-
minished accuracy when approaching a discontinuity. Other techniques have been
developed to overcome Gibbs’ phenomenon, recovering high order accuracy up to
the discontinuities; e.g., [3, 5,6, [12] 14, [T9] and the references therein. The improved
accuracy of these methods however comes at an increased computational cost of
at least O(N?). A practical procedure to overcome the limitations of filtering and
yet retain the computational efficiency O(N log N) is to use filters away from the
discontinuities and a reprojection method such as Gegenbauer postprocessing near
the discontinuities, [8]. The efficiency of this hybrid approach is in a large part de-
termined by the size of the smooth region well approximated by the filtered Fourier
projection. The exponential accuracy of the optimal filter and mollifier further
decrease the computational cost of the hybrid method. In addition to the optimal
filter and mollifier being useful tools in their own right, the analysis put forth in §2]
resolves the fundamental questions concerning filtering posed earlier.

2. FUNDAMENTAL COMPETING ERRORS FOR FILTERS AND MOLLIFIERS

The fundamental constraints to the achievable accuracy of a filtered Fourier sum
are due to the limited information in the function’s spectral projection and the
mollifier-induced blurring of unrelated information across discontinuities. To take
into account the discontinuity location in a straightforward manner we undertake
the error analysis in the physical space. Toward separating the fundamental error
contributions Gottlieb and Tadmor introduced the decompositio

(21)  E(N,z) = f(z)—¢=*Syf(z)
= (f(@) == f(2) + (= Sny) * (f(z) — S f(2))
(2.2) = R(N,z)+ Lp(N,z),

which we refer to as the regularization and dual space localization errors, respec-
tively. The dual space localization error contains the effects of the limited infor-
mation in the function’s spectral projection, and is controlled by the dual space
localization of the mollifier to the space of the given data, [N, N].

To separate the error caused by the blurring of information across discontinuities,
we further decompose the regularization error. In particular, we segment the action
of the mollifier in the largest symmetric region of smoothness, [z — d(z), z + d(z)],
where d(x) is the distance from the point being recovered to the nearest disconti-
nuityl] i.e.,

d(x) := dist(z, sing supp f).
This decomposetﬁ the regularization error into the accuracy and physical space
localization errors, respectively,

R(N,z) = / (@) - fla —y)lb(y)dy + / (@) — f(z - y)[b(y)dy
ly|<d(x)

d(z)<|y|<m

=: A(N,z) + Lp(N, ).

2This is achieved by adding and subtracting ¢ * f(z) from 9 * Sy f(x) and f(z), respectively,
and noting the orthogonality of Sy and f — Sy f, [15].

3Discontinuities can be computed from a function’s (pseudo-)spectral information in the effi-
cient O(N log N) computational cost, [10} 11].

4The constant f(z) is first multiplied by the integral of the unit mass mollifier, followed by
segmenting the largest symmetric region of smoothness in the integral.
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The physical space localization error is determined by the decay of the mollifier for
d(z) < |y| < m, and the accuracy error A(N, ) is controlled by the number of local
vanishing moments,

d(z)
/d( )y]w(y)dyw(sjﬂv j:()v]-a"'vpf]-,

possessed by the mollifier as can readily be seen by Taylor expanding f(x —y) about
x, [14]. Combining these components, the total error for a general filter or mollifier
can be viewed in terms of the localization and the accuracy errors,

(2.3) E(N,z):= Lp(N,z)+ Lp(N,z)+ A(N,x).

The remainder of the analysis is given in terms of this decomposition which sep-
arates the competing fundamental error components: 1) the limited information
in the given data, 2) the blurring of information across discontinuities, and 3) the
accuracy of the new projection in terms of a local polynomial approximation. The
competing nature of the localization errors is a result of the Fourier transform’s
property that a dilation of € in one space corresponds to a contraction of 1/6 in
the dual space. The accuracy error plays a more subtle role. As the number of
vanishing moments is increased, the mollifier must possess an increasing number of
oscillations, which in turn causes a broadening in the dual space. We now review
the construction and properties of classical and adaptive filters in terms of the error
decomposition (23)).

Filters have traditionally been constructed with compact support, o(£) = 0 for
€] > 1, ie., 0(&) € Cy[—1,1]. Dilation by the projection order, N, then causes the
filter to act only on the space of the given data, and as a result such filters have
no dual space localization error. Moreover, a filter is said to be of order p if it is
sufficiently smooth, o € CP, and satisfies the filter accuracy condition,

(2.4) dD(0) ~ 80, j=0,1,....,p—1.

The filter’s smoothness is reflected in the localization of its associated mollifier
([L3). Being well localized, the filter’s accuracy condition implies that the mollifier
possesses p — 1 near vanishing local moments where the quality of the vanishing
moments is determined by the mollifiers localization, [24]. From these properties it
has been shown that the accuracy and physical space localization errors are bounded
by [|o®) || oo || fP|| oo (Nd(z)) P, [14, 25]. Examples of filters constructed to satisfy
these conditions include: the 2nd order raised cosine, the 8th order sharpened raised
cosine [14], the infinite order filter of Majda et al. [21], the spectral filter of Vandeven
[25], and the adaptive filter of Tadmor and Tanner [24]. The adaptive order filter
[24] balances the physical space localization and accuracy error components for
general infinitely differentiable compactly supported filters. This was attained by
analyzing the filter’s smoothness in terms of the Gevrey regular spactﬁ and linking
the filter order to the degree of the function’s spectral projection, N, and d(z).

5A function p(-) is in Gevrey regularity a if [|p(®)| Lo < Kp(sh)¥n, * for some Kp,n, inde-
pendent of s. Analytic functions satisfy a = 1, and compactly supported functions can at most
satisfy o > 1.
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Balancing the remaining two error contributions, L, = A, results in the root-
exponential convergence rate,

|f(x) — Snf7(x)| < Consty exp(—c(Nd(x))l/a)

for a > 1.

Mollifiers, however, are traditionally defined to be compactly supported in the
physical space, and, to avoid transferring information across discontinuities, are
dilated by d(z), [15]. As a result, there is no physical space localization error. To
control the remaining dual space localization and accuracy errors, p order molli-
fiers are constructed with p — 1 vanishing moments, ([23), and a similar order of
smoothness, ¥ € CP. The mollifier’s physical space smoothness ensures dual space
localization, and the vanishing moments control the accuracy error by being exact
for polynomials of up to degree p — 1. The spectral mollifier of Gottieb and Tad-
mor [I5] was extended to the adaptive mollifier in [23], where the two remaining
competing dual space and accuracy errors were balanced. Similar to the adaptive
filter of [24], this was accomplished by considering Gevrey regularity and linking
the mollifier order to N and d(z). The same root-exponential convergence rate,
| (@) = * Sy f(x)| < Consty exp(—c(Nd(z))/*) for a > 1, was likewise obtained.

Although compact support in either of the physical or dual spaces is desirable
in some instances (as discussed in Remark [£2)), to achieve minimal error neither
space has priority. By satisfying compact support, infinitely differentiable filters
and mollifiers limit their accuracy to at most the root-exponential rates stated
earlier. Additionally, even though the dilation factors N and d(z) for compactly
supported filters and mollifiers, respectively, naturally appear to be performing
the same action in the two different spaces, the Fourier transform implies that
their dilation factors would be the inverse of one another. To overcome these
limitations we abandon the traditional construction of compactly supported filters
and mollifiers, and instead let the fundamental error decomposition (2.3]) guide their
construction. In particular, a filter and mollifier should possess the optimal joint
time-frequency localization to [¢ — d(x), x + d(z)] x [-N, N] for a given number of
near-vanishing moments. The minimal error is then achieved by equally balancing
the three competing localization and accuracy errors, (23]

There exist a number of noncompactly supported filters, but their analysis has
primarily been done by comparison with compactly supported filters. For example,
the commonly used exponential filter, o(¢) = exp(—c&?™), satisfies the accuracy
condition (24 for p = 2m + 1, and the parameter c is selected so that o(£1) is at
machine tolerance. Its accuracy is then justified by stating that when implemented
numerically the computer treats it as being compactly supported. Other exam-
ples of noncompactly supported filters are the adaptive Erfc and Erfc-log filters
introduced by Boyd, [2]. These filters pioneered the concept of adaptive filters, yet
lack a rigorous error analysis. Instead, their convergence is justified through nu-
merical examples and by being asymptotic approximations of the Vandeven filter,
[25], which satisfies the traditional properties of a compactly supported filter. The
new error decomposition allows a framework for properly analyzing these and other
noncompactly supported filters. The previously mentioned filters, however, are not
known to possess optimal joint time-frequency localization in any sense. Moreover,
their construction is not amenable to analysis in the physical space. Specifically,
the Fourier transform of the exponential filter is given in terms of hypergeometric
functions, and is not known for the Erfc and Erfc-log filters of Boyd.
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In lieu of carrying out the analysis for a general smooth (analytic) filter or
an (exponentially) well localized mollifier, we focus on a specific filter-mollifier
pair that possesses optimal joint time-frequency localization for a given number
of near-vanishing moments. The Hermite Distributed Approximating Functionals,
HDAFSs, introduced in [I8] satisfy these properties with the optimality of joint
time-frequency localization measured by the classical uncertainty principl

(2.5) Ar||wh(z)| L2 - [EFR)E) L2 = [RlZ--
Definition 2.1 (HDAF, [18]). The p order HDAF is given by

P _
—a?)(292) — 3 (=4 x
(2.6) Ppy(T) =€ e )’y 1 n=0 n! Han (7\/5) ,

where Hy, is the Hermite polynomial] of order 2n. The Fourier transform of (23
is given by

- p 2.2\n
(2.7) (Fop)(e) =2y ET
n=0 ’

Property 2.2 (HDAF localization, [I8]). Let d¢;, 5 == [¢p~ — dp—1,4] be the differ-

ence between consecutive order HDAFs, and expand the time-frequency uncertainty
in terms of the increase in frequency (dual) space uncertainty

ey (@) (ns(qupl,w)(oniz (o) ()2

vone [ ~ eZ(m1,7><s><fa¢p,7><§>d§) .

The p order HDAF possesses joint minimal uncertainty in the sense that ¢, . (z)
possesses the minimal increase in the variance, [|€(Fd¢,~)(€)|/2., while also in-
creasing the number of vanishing moments and holding constant

de)%’)’(x)”%Q = ||5C¢p—17’y(x)”2L2-
Characteristic plots of HDAFs are presented in Figures 5.1l and

We now undertake a detailed error analysis of a filter, §3] and mollifier, §4
constructed from the HDAFs, by selecting the optimal values for the localization,
v, and accuracy, p, parameters. By balancing the joint time-frequency localization
for the region

[ — d(x), 2+ d(@)] x [~N, ],

a new fundamental scaling factor is determined, /N/d(z). As in [23] and [24] the
adaptive optimal number of near-vanishing moments, p(N, d(x)), is determined for
this scaling relation, balancing the overall error. Having balanced the fundamental

6For consistency with the Fourier series expansion used here, (1), we use the Fourier transform
normalization (Fh)(§) := i S22 @& h(x)dz; note that equality in (ZF) is satisfied if and only if
h(z) = exp(—cxz?) for ¢ > 0.

"Hermite polynomials are orthogonal under the Gaussian weight

/ e_ZQHm(z)Hn(x)dm = V72" 0nm.
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error contributions, the resulting optimal filter and mollifier introduced in §3land §l
achieve substantially improved convergence rates over classical filters and mollifiers
as stated in Theorems [3.3] and 1] and exhibited in the numerical examples, g5l

3. OPTIMAL ADAPTIVE ORDER FILTER

In this section we construct the optimal adaptive order filter from the family
of HDAFSs, Definition 2 by determining the localization, v, and accuracy, p,
parameters for

- p 2.2\n
(3.1) o, (&) =e E7/? Z (52371') )
n=0 '

We reiterate that this filter satisfies optimal joint time-frequency localization for
the given order, U—(Yn) (0) = 60 for n = 0,1,...,2p. To bound the error after
filtering a function’s spectral projection with (BIJ), we must determine bounds
on the physical and dual space localization errors, as well as the accuracy error,
@3). After constructing these bounds we will determine the optimal localization
and moment parameters, v and p respectively, by balancing the competing error
component’s decay rates. We begin with the dual space localization error which is

bounded by

ILp(N,z)| = [[(¥—Sny)* (f(z) — Snf(z))]|L=
< |f = Snfller - 1Y — Sl
- k
< Consty - k:%:ﬂav (N)
< Constf~/1 Uv(fidf p
(3.2) < Consty -y ?p? <'y2_:> 6_72/2,

where Consty is a possibly different constant depending on f. Note that the
quantity (y%e/2p)P is maximized at p = +2/2, canceling the exponential decay,
exp(—v2/2), and as such, for exponential dual space localization to [—N, N] the
filter order must satisfy p < 72/2.

We now turn to the physical space localization error which is controlled by the
decay of the filter’s associated mollifier. As the filter is dilated by the factor N
in the dual space, its associated mollifier is dilated by 1/N in the physical space.
Although we do not have an explicit representation of the mollifier formed from the
filter’s samples, ([[3]), the mollifier is directly related to the filter’s inverse Fourier
transform. More precisely, the mollifier is constructed from the uniform sampling
of the filter, and accordingly the Poisson summation formula states that the dual
space sampling corresponds to physical space periodization of the filter’s Fourier

transform, (2.0]),

(3.3) Y(x) = Z Op~(N(z + 27m)).

m=—0o0
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Before investigating the localization bound for the mollifier, we determine a bound
on the filter’s Fourier transform, (2.6). That is,

P _
2 2 —4) n x
o 2/ 1| I
|ppr(z)] < e gl ,?:0 ol 2n )
2 2 Vzn.
< Const-e® /&)1
< Const-e ~ /fngzo Sl
(3.4) < Const ~7_1p3/4e_x2/472,

where we utilized: 1) the bound on Hermite polynomials, | H,, (z)| < 1.1v/nl2m/2¢%"/2,
and 2) Sterling’s inequality, 1 < n!(e/n)"(27n)~Y? < 1 + 1/4n, [16]. From rela-
tionship ([B3) and the decay of ¢, (x) we note that for |z| < 7, the mollifier and
the filter’s Fourier transform are exponentially close,

(3.5)

3/4
[Y(x) — ¢p(Nax)| = Z ¢p(N(z 4+ 2mm))| < Const -WW@_(”N/QW)Z, |z| <,
m#0

and as a result they decay at the same exponential rate,

()] < Const (L + (3)*)|épn (V)|

Returning to the physical space localization error we obtain the bound,

Lp(N, )| =

<91~ / o(w)ldy

d(x

/d o @ = 1wy

s

(3.6) < Consty(1+ (7/N)?) /d  6na (Nl dy

2 ’Yp3/4 (Nd(z)/27)?
< Const¢ (1 N - I
< Const, (14 (3/N)?) gagrse
With the localization errors quantified we now turn to bounding the accuracy
error by determining the number and quality of the mollifier’'s near vanishing mo-
ments. Due to the length of this calculation we segment it in the following subsec-
tion.

3.1. Accuracy error. Traditionally the accuracy error,
AWy = [ (5@ S - )y,
ly|<d(z)

is bounded by Taylor expanding g.(y) := [f(z) — f(z — y)] about y = 0 and
taking the largest symmetric region in which g, (y) is analytic, |y| < d(x) where as
stated earlier d(x) is the distance from x to the nearest discontinuity of f(-). The
canonical Taylor expansion bound is then controlled by the vanishing moments
and the truncation of the Taylor expansion, d(z)?||g:||ce/q!. Here we focus on
piecewise analytic@ functions in which case the Cauchy integral formula quantifies

8Note that the analysis presented for the localization errors is the same for piecewise C*
functions; however, the accuracy error is decreased, resulting in an overall accuracy O(N %) for
piecewise C'®° functions.
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the regularity as
|
| llcefo—d(o).a-vaan < Const-—.,
"y
where f(z — z) extends analytically into the complex plane perpendicularly by the
distance ny. Incorporating the regularity bound in the classical ¢ — 1 term trun-
cated Taylor expansion yields a truncation error proportional to (d(x)/ns)? which
is only decreasing for d(x) < ny. For this reason, utilizing the maximum region of
smoothness rather than selecting a small subinterval makes the Taylor expansion
bound ineffective. Alternatively, we consider the near orthogonality of the mollifier
and low order Chebyshev polynomials. Before investigating this approach in detail
we first quantify the number and quality of the near vanishing moments for the
mollifier associated with the filter ([B1I).

Similar to the case of the physical space localization, we approach the local
moments through the properties of the filter’s Fourier transform, ¢, ~(-), which
possesses 2p + 1 exactly vanishing moments when taken over the entire real line.
Here, however, we are interested in local symmetric moments, defined as

d()

M () = / y"o(y)dy,  d(z) <.
—d(z)

As the mollifier is even it possesses exactly vanishing odd moments. To control the

even moments for n < p we subtract the exact moment of ¢, , and segment the

local region of smoothness, |y| < d(z),

d(z) ) o )
M agey = / o, / 42 8y (Ny)dy
— xT — 00

d(z)

= / V" (y) — dp(Ny)ldy — / Y bpy (Ny)dy =: My + M.
—d(x) ly|>d(z)

The first component is small due to the similarity of the mollifier and the filter’s

Fourier transform (B

d(x) 'Yp3/4 R
My £ max Iw(y)—%,w(Ny)I'?/ y*"dy < Const-— d(z)?me= (TN/207)
0

y&[—m,m] 2

and the second is controlled by the physical space localization (B.4))

Mol < [ P (Nuldy < Comst Tt [ ey
ly|>d(x) d(z)
3/4 2 2n n 1 Nd( ) 2k
P —(Nd(z)/27)% [ 2T = z
<  Const N2d(x)1/26 n! N kz:;)k! %

3/4 Nd(z) 2
P T )2 (Nd(2)/27)? AT
< Const N2 ()12 d(z)*e 2)/27)* n < 2 .
In the above bound for Mj, the sum is initially increasing, reaching its maximum at
k= (Nd(x)/27)?. As a result, for n < (Nd(x)/27)? the sum reaches its maximum
at k = n, canceling the term n!(2y/N)?". Combining the bounds for M; and M,
the number and quality of the moments is given by

3/4 Nd(z)\?
pamn 2n_—(Nd(z)/27)> z
BT) Mo < Const LT dayre (Ve20”, n<< - ) |
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With near vanishing moments quantified in ([31), we return to bounding the ac-
curacy error, A(N,z) := [ _ [f(x)— f(z —y)]¥(y)dy. Rather than the traditional

ly|<r
Taylor expansion approach discussed above, we use a Chebyshev expansion of g, (y)

over y € (—d(z),d(x)) which gives a near min-max approximation for a given or-
der polynomial. Before investigating this alternative Chebyshev polynomial-based
error decomposition, we state the definition and properties for the Chebyshev poly-
nomials which are relevant here.

Definition 3.1 (Chebyshev polynomials, [20]). The kth order Chebyshev polyno-

mial is given by

& (k) (k) k k—1
Ti(z) == Z e k2 ¢ = (fl)l2k*2l*1—k — < / ) )
1=0

and the Chebyshev expansion of a function, A(-), by

2 (! Tu(x)h(z)

M
ST h(z):=> hlTy(z), hE = LA
M ( ) kgo k k( ) ) m

Property 3.2 (Chebyshev polynomials, bounds). The coefficients of a Chebyshev
expansion of an analytic function decay exponentially, and as a result, Chebyshev
projections converge at an exponential rate

(3.8)  |hf| < Consty, -8, * = lm‘a<u>§ |h(z) — ST;h(z)| < Consty, 3, M,
EARS

where 85, > 1 is a constant depending on the analytic extension of h(:) to the

complex plane. Additionally, the classical three-term recursion relationship gives a
bound on the growth of the coefficients composing a Chebyshev polynomial

D g _ e ‘cf")‘ < (1+v2)F v

We now turn to bounding the accuracy error, A(N, x), decomposed into the two
terms

AN, 2) = /Iygd(x) U(Y)g2(y)dy
N /| |<d( )Wy) (ga;(y) - SpT(gx)(y)) dy

4 / $()ST (92) (w)dy = Ay + As,
ly|<d(zx)

where the first component is controlled by the exponential convergence of the
Chebyshev projection, B.8)), of g.(y) := f(x) — f(z — y) which is analytic for
y € (z—d(x),z+d(x)),

Au| < Consty - max |g.(y) — 57 (9.)(v)] / [(y)|dy < Consty -Nd(z)57".
lyl<d(z) ly|<d(z)
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The second component, As, is small for modest p due to the near-vanishing mo-

ments of the mollifier which correspond to near orthogonality with low order Cheby-
shev polynomialsﬁ

/y|<d(x) T (ﬁ) W (y)dy

2)20-K) ‘05%)’

IA
T[]
2

| Mage 1y aa)|

k
(1+v2)? Z )" | Maj ()|

3/4
< Const -

2
PPy 2k _—(Nd(z)/27)? Nd(x)

resulting in the bound

| = / P()ST (g2)(y)dy
ly|<d(x)

;(gw)f /|y§d(z) T (%) Y(y)dy
/y|<d(x) ot (dL) w( )dy

lp/2]
15/ 1 \/_
Y (Nd(x)/2 +
Const W ( )/27) ( < > > .

Constf Z ﬁ;%
Combining the bounds for A; and A5 yields the total accuracy error bound,

IN

IA

(3.9) |A(N,z)| < Const ¢ -Nd(:c)/’i’;p
1)15/ 2 1+ \/§ P
P Y —(d(z)/27)
+ t 1+ .
Cons f N2d( )1/26 < ( ;

3.2. Composite error. Combining the bounds for the localization and accuracy
error components (Lp, Lp, and A in (32), B0), and B3] respectively), we arrive
at the overall error bound

(3.10) | f(z) — Snf7(x)| < Const; [Nd(x)ff;” +Cre 2 cze—(NdW%)Q]

N CLC S
o= (= 0) e (+(57) )

9We only consider the even Chebyshev polynomials as the mollifier is even, giving exact or-
thogonality to all odd functions.

with functions

(3.11)
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The optimal behavior of the localization and accuracy parameters, v and p re-
spectively, are selected so that the competing error components possess the same
decay rate, with the dominant error components given by (7, exp(—*/2), and
exp(—(Nd(x)/2v)?). Although the optimal values of v and p depend on the par-
ticular function being approximated through 3, the decay rates can be balanced
by equating the exponents, p = v2/2 = (Nd(x)/2v)?, resulting in

(3.12) v = aNd(z), p = kNd(z).

With these relationships we return to the second and third components of the
overall error, as expressed in equation ([B.I0)), fully including the growth rate of C
and Cy. For the parameters selected as described in (BI2)), the second component
is bounded by

—Nd(z)

2 Kya/2
Cre 2 = Na(a) <L ‘ ) :
« (ae)®

and the third error element simplifies to

ﬂ —KkNd(z) .
Const -d(x) /4 N4 | 1+ (H—i/ﬁ) o2 Nd(@)

—Nd(z)

el/2a
Const 'd(l‘)15/4N9/4 <(1_|_\/§)R> s

Oy~ (Nd(@)/27)?

IN

IN

where the second line is due to By > 1 for f(-) piecewise analytic. Exponential
decay in Nd(x) of the second and third component requires (ae/x)"/2e*/? < 1 and
exp(1/2a)(1 ++/2)7% > 1, respectively.

The above bounds are summarized in the following theorem:

Theorem 3.3. Given the N truncated Fourier coefficients, of a piecewise analytic
function, {fi}x<n, the function can be recovered within the exponential bound

(3.13) flx) — Py Z Gopt (K, N, ) fue®®| < Consty -No/4r=Nd(@),
[k|<N
where T := min (ﬂlfa 2e/2 (i)"v , (;:/%) and with the adaptive filter
[Nd(z) ] ) 0
—ak?d(x) 1 [ak?d(x
(3.14) Topt (b, N, z) := ¢ 28 . <2N()> .

n=0

Although the optimal values for the free constants, o and k, depend on the
function’s regularity constant, 8, convergence is ensured, i.e., 7 > 1 when ax <
1/21In (1 + v/2) =~ 0.56. We conclude this section on the optimal filter for truncated
Fourier series with remarks concerning practical numerical computations and the
optimal filter’s dilation relationship.
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Remark 3.4. Notwithstanding that the optima values for the free constants, a
and [, are function-dependent, practical function-independent values that can be
realized through a mix of numerical experiments and a rough balancing of the pri-
mary terms. In particular, numerical experiments encourage a relatively small value
for k, making the dominant contributions from the localization constant given by
e®/? and e!/2* which are balanced for o = 1. Numerical experiments furthermore
indicate that selecting k = 1/15 gives good results for a variety of functions with
significantly different regularity constants. In this case, 7 reduces to

(3.15) 7 = min (1.55,5}/15) with a=1, &=1/15.

We reiterate that the above parameter selection is not optimal, but note that it
does guarantee exponential convergence for f(x) piecewise analytic. A larger value
for the accuracy constant, x, is encouraged for functions which are more oscillatory,
resulting in smaller values of 3y.

Remark 3.5. In contrast to classical filters which are dilated by N to maintain
compact support in [—N, N], the optimal filter is dilated by \/N/d(z) to achieve
optimal joint time-frequency localization to the domain [x—d(z), z+d(z)]x[-N, N].
This adaptive time-frequency localization is a consequence of the localization pa-
rameter v ~ /Nd(x). In §4 we construct the optimal mollifier defined in the
physical space, arriving at the dilation rate \/d(z)/N. Again, this is in contrast to
traditional compactly supported mollifiers which are dilated by d(z) so as to avoid
transferring information across the discontinuity. For filtering and mollification to
be performing the same action in dual spaces, the Fourier transform implies that
their dilation parameters should be the inverse of one another. This is indeed the
case for the optimal filter and mollifier, and is not satisfied by classical compactly
supported constructions, which as stated before are traditionally dilated by N and
d(z), respectively. In addition to recovering true exponential accuracy, this dilation
property is one of the core advances of the optimal filter and mollifier.

3.3. Filtering of pseudo-spectral data. The discrete analog to a function’s
spectral projection, Sy f, is its pseudo-spectral information, that is its equidis-
tant samples, f(y,), where y, := (v —N) for v = 0,1,...,2N —1. The function’s
trigonometric interpolant is formed from these samples,

2N-1

(3.16) Inf(z) = Z freth®, fr = % ;) f(yl,)e_"ky”7

|k|<N

where the pseudo-spectral coefficients, fk, are an approximation of the true Fourier
coefficient, fk; replacing the integral in (II)) with its trapezoidal sum. Although
for piecewise smooth functions the trapezoidal quadrature is only first order, | fk —
fk| ~ O(N~1), the function f(-) can be approximated from its pseudo-spectral data
within the same bound as presented in Theorem 3.3

10Here we concern ourselves with near-function-independent estimates of the parameters o
and k, but note that the convergence rate for a given function may be increased if By were
approximated, [9].



780 JARED TANNER

An error decomposition similar to ([2.3)) is satisfied for the filtered trigonometric
interpolant,

EP*(N,x) := f(z) — v+ Inf(x)
(3.17) = (f(x) =¥ * f(x)) + (¥ — Sn) * (f(x) — In f(2))
=: R(N,z)+ L% (N,z) = LIS (N,z) + Lp(N,z) + A(N, z),

where the physical space localization and accuracy errors are unchanged from the
spectral projection error expansion. The essential component of the dual space
localization error is the decay of ||¥ — Sy W[ L, which is unchanged. As such, the
modified error LY satisfies the same bound as in the case of the spectral projection,
B2), with || f—Sn f| L1 replaced by || f —In f|| L1, which are of the same order. With
the same bounds satisfied for the filtered trigonometric interpolant, the optimal
filter is selected as before in Theorem B3] resulting in the following theorem:

Theorem 3.6. Given the 2N equidistant samples of a piecewise analytic function,
{f(F@—=N)) INTL by filtering the trigonometric interpolant, [BI0), the function
can be recovered within the exponential bound

flz) — o E Oopt (K, N, x)fkeikw < Const ¢ ~N9/4T*Nd(””),
T
[k|<N

where T and the adaptive filter are given in Theorem [3.3.

Although the optimal filter is equally applicable for pseudo-spectral data, as
stated in the above theorem, computational efficiency can be gained by operating
on the function’s uniform samples in the physical space. In addition, operating
directly on the samples circumvents going to the Fourier domain, and in doing so
can avoid transferring information across the discontinuities.

4. OPTIMAL ADAPTIVE ORDER MOLLIFIER

As stated in equation ([2)), filtering can be applied as pointwise multiplication
in the Fourier dual space, or by convolution with the mollifier in the physical space.
In §8lwe constructed and analyzed the optimal filter when the data is given as either
the truncated Fourier coefficients or the function’s uniform samples, Theorems 3.3
and 3.6 respectively. We now construct and analyze a mollifier defined in the
physical space, using the optimal order filter’s inverse Fourier transform, ¢, (N-),
which similarly to the optimal filter satisfies optimal (in the sense of Property 2.2))
joint time-frequency localization. We focus here on the mollifier applied to the
pseudo-spectral data, where using a mollifier defined entirely in the physical space
allows for a purely physical space implementation. We now detail the error analysis
for the mollifier, ¢, (NN-), proving the same convergence rate as in Theorem

Unlike the filter’s associated mollifier, ¥(-), the mollifier defined directly in the
physical space, ¢y, (N-), is not periodic, and as such the implementation requires
the periodic extension of the samples

Jx(yy +27m0) == f(y,) for n=-1,0,1.

Moreover we define the symmetric region containing the 2/N samples centered about
zas I, = (zx—m x+n].
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The error after discrete mollification with ¢, ,(N-) is defined, and can be ex-
pande as follows:

ol (N,2) = f(@) = 5 D fx(5)0p(N(z = 3)

yl/ 611‘

= f@) = % X F)Snvle =)

Yo €l
+ 5 D Few)Sne(a —y.) — vl —u)
Y€l
+ 5 D S = 9) = 6y (N(z =)
Y€l
(4.1) =& +&E+Es.

The first component is simply the error when filtering the trigonometric interpolant,

(‘:1 = f(fL') - % Z fw(yl/)Squ)(x - yl/)

Yo €Ly

= f(@) =¥+ Inf(z),
which is composed of the localization and accuracy error components as in equation

B1D).
The second component of Ey,, satisfies the same bound as the dual space local-
ization error, Lp(N,p, z),

||

TS Few)(Sxbte — ) — (e — )

yUeIT

< 27THf||Loo[_ﬂ_,fr]||/¢_SNw”LOC
k [ee]
< Consty Z o~ gConstf/ o(&)d¢
|k|>N 1
2 2 P
< Consty <p> <’Y€> e 2,
v 2p

and the third component is controlled by the different between the mollifiers, 1)(-)
and ¢, 4(N-), which are exponentially close as quantified in equation (B.5)

&l = | X FWI @ =) — dpy (N = 1)

Yo €ly
27| fll oo j—m,m) - 190(2) = Gpy (N2)|| oo [,

3/4
< Consty %e’(”wwﬂ

IN

HThe error expansion is achieved by adding and subtracting
s
N ZI F=()ISNY(z — y0) — Y(z — yu)]
Yv €l

so as to decompose the error into terms bounded previously in §31
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Combining the above bounds we achieve the same overall bound as for the filtered
spectral projection,

[Emot(N; )| < [f(2) =+ Inf(2)]

2 2 4 3/4
b ve —~2/2 P —(7N/2v)?
Const £ Rl /2 E —(wN/2y)
+ onsf[<7> (2p> e + —=¢€

< Consty [rNﬁ;p L e 4 Cze*(TN/%)z} ,

where C; and Cy are defined in equation (BI1). Being the same bound as was
achieved for filtering the spectral projection, ([B.I0), the localization and accuracy
parameters are selected in the same fashion as for the optimal adaptive order fil-
ter, v := /aNd(z) and p := kNd(z). The above results are summarized in the
following theorem:

Theorem 4.1. Given the 2N equidistant samples of a piecewise analytic function,
{f(Fw— N))}igo_l, the function can be recovered within the exponential bound

f(ﬁ) - % Z fﬂ'(yu)(bopt(N(f - yu)) < COHStf 'N9/4T_Nd(x)7
yVEITE
where T := min (ﬂ",ﬁ, 2e0/2 (&)H , %), and the mollifier is given by

| ( N2 ) “‘NZ‘“” o N
——exp | —— —Hy |y ——— | .
JoNd(x) P \2ad@)) & Tal 2ad(z)
Again, convergence is ensured if the parameter constants satisfy

ak < 1/2In (1 + v2) = 0.56,

and although their optimal values are function-dependent we propose a = 1 and
k = 1/15 as reasonable function-independent values, in which case 7 is given as
before in equation (BI5]). Also we reiterate Remark that unlike the adaptive
filter and mollifier of [24] and [23], modulo exponentially small differences, the
optimal filter and mollifier are performing the same action in the dual and physical
spaces. This is reflected in the mollifier dilation factor y/d(x)/N which is the inverse
of the filter’s dilation rate, as the Fourier transform would imply.

(4.2)  Popt(N,z) :=

Remark 4.2. As has been shown, by abandoning compact support we are able to de-
velop optimal filters and mollifiers which balance the order of the fundamental error
contributions, and in doing so recover (pointwise) true exponential accuracy. How-
ever, in the discrete case maintaining compact support can be beneficial, because,
unlike spectral data, the pseudo-spectral data (the function’s uniform samples)
have not intermixed information from different regions of smoothness. In addition,
applying the mollifier directly to the uniform samples avoids computation of the
pseudo-spectral coefficients. Consequently, if the mollifier is compactly supported
to the region of smoothness, information will not be transfered across the disconti-
nuity. Rather than construct a compactly supported mollifier directly (as was done
in [23]), it is advantageous to use the optimal mollifier and truncate it to the region
of smoothness. This is achieved by restricting the optimal mollifier to act on the
samples in the sub-interval I, q(,) := (z — d(x),z + d(z)). This truncation of the
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analytic optimal mollifier avoids transferring information across the discontinuity,
yet the true exponential accuracy can be retained. The additional error incurred
by truncating the mollifier is of the same size as the physical space localization
error, and as such does not affect the order of the overall bound in Theorem .11
Moreover, normalizing this truncated optimal mollifier to unit mass results in first
order accuracy in the immediate neighborhood of the discontinuity, [23].

We note in passing that a similar analysis can be developed for the mollifier
applied to a function’s spectral projection directly in the physical space. However,
such an analysis is omitted for conciseness and as this option is less efficient than
applying the optimal filter in the Fourier space. Specifically, applying the mollifier
in the physical space requires evaluation of the convolution which is computationally
less efficient than pointwise multiplication of the filter directly in the Fourier space.

5. NUMERICAL EXAMPLES

We begin with contrasting the optimal adaptive filter, oop(-), and mollifier,
®opt(+), presented in Theorems and 1] with the more traditional compactly
supported adaptive filter and mollifier constructed and analyzed in [24] and [23],

[{E5) g <,

3 18¢% +3q+ 14
5.1 — 3 18°+3q+14
T e 0 €l > 1 TR 9 1 6g+2
2 sin((P(w)Jrl) (ZE;)) ( 1022 )
(52) ql)adapt(x) = d(x) sin(m;'(zw)) exp z2—d(z)2 ) |(E| < d(x),
0 2] > d(a),

with adaptive orders, g(x) := max (2, %\/Nd(:c)), and p(z) := Nd(z)/m/e. In
[24] and [23] it was shown that the above compactly supported filter and mollifier
satisfy theorems similar to Theorems [3.3] and [£.1], but with the root-exponential
convergence rate exp(—nys+/Nd(z)) for some ny > 0, depending on the particular

0.8 0.8
0.6 0.6
04 0.4
0.2 0.2

0 . N N N N N N . 0 . : N N N N L N N
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -08 -06 -04 -02 0 02 04 06 08 1

FIGURE 5.1. The compactly supported adaptive filter (5II) shown
left, and optimal filter ([B.14]) seen right, for N = 128, and d(x) =
3(=3) 71 with n = 0,1, 2, solid, dotted, and dashed, respectively.
The resulting adaptive filter orders are, ¢ = 2, 3,5 and the optimal
filter of order 2p with p =0, 2, 8.
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03 02 01 0 01 02 03 0 05 1 L 2 25 3

(c) (d)

FIGURE 5.2. The optimal filter oopi(-)’s associated mollifier for
N =128 and d(z) = 3(» 37 in (a-c) for n = 0, 1,2, respectively,
and the log of the same mollifiers (d) with increasing asymptotic
decay for increasing d(z).

function being filtered. The optimal filter and mollifier achieve superior, true ex-
ponential accuracy by not imposing compact support in the dual or physical space
respectively; rather, they satisfy optimal joint time-frequency localization to

[x — d(x),x + d(x)] x [-N, N].

Figure 5.1l illustrates the adaptive filter of [24] and the optimal filter for a fixed
value spectral projection order, N, and various values of d(z). Throughout this
section the optimal filter and mollifier use the functions-independent parameter
values stated in equation (BI3)).

Figure shows the mollifiers associated with the optimal adaptive order fil-
ter, oops, shown in Figure [B.I|(right). As the filter order increases, the number of
near-vanishing moments increases, exhibited through increased oscillations and im-
proved asymptotic physical space localization, but at the cost of decreased initial
localization. By selecting the optimal filter parameters as ([8.12), the optimal filter
and mollifier balance these competing behaviors, resulting in the minimal error as
decomposed in ([2.3)).
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The following numerical examples are performed for the function

_[ @ -1—em)/(en~1), ze(0,n/2),
(5.3) fla) = { —sin(2z/3 — 7/3), z € [/2,2m),

0.8
0.6
0.4
0.2

-0.2
-04
-0.6
-0.8

which was proposed in [23] as a challenging test problem with a large gradient to
the left of the discontinuity at = 7/2. Moreover, lacking periodicity f(-) feels
three discontinuities per period,

d(xz) = min(|z|, |z — 7/2|, |z — 2x]), =z € ]0,27],

and has substantially different regularity constants for the two functions composing
it which diminishes the potential for parameter tuning.

In Figure 53] the exact Fourier coefficients, { fk} k<N, are given and then filtered
to approximate f(z). Although the adaptive filter achieves root-exponential con-
vergence, Figure [i:3[(c), it is at a substantially slower rate than is realized by the
optimal order filter, Figure [5.3[(d), which possesses true exponential convergence as
stated in Theorem [B:3] Specifically, the asymptotic exponential convergence rate
constant 7 is seen to be approximately 1.37. Moreover, for the optimal filter the
convergence in the immediate neighborhood of the discontinuities is also improved
as illustrated in the removal of small oscillations seen in Figure [3(a) but not
5.3(b).

Figure [0 contrasts the adaptive mollifier of [23] with the optimal mollifier,
([#2), where the function f(z) is approximated from its 2N equidistant samples
over [0, 27), through discrete physical space convolution as stated in Theorem FT]
The optimal adaptive order mollifier yields a nearly indistinguishable asymptotic
convergence rate as the optimal filter, Figures [(.3|d) and B4(d). In addition, the
optimal mollifier substantially out-performs the adaptive mollifier, (5.2]), as con-
trasted in Figures [5.4(c), (d). For the above computations the optimal mollifier is
applied only to the samples in the symmetric interval, I, qp) = (v —d(x), z +d(x)),
and both mollifiers are normalized to possess exact unit mass. By further limit-
ing their support to contain at least two samples, d(z) := max(d(x),7/N), this
normalization results in at least first-order approximations, significantly reducing
the blurring in the immediate O(1/N) neighborhood of the discontinuities, as con-
trasted in Figure 5.3[a), (b) and[B.4(a), (b). A full discussion of this normalization
is given in [23]. For the optimal filter to retain high order accuracy up to the
discontinuity, a one-sided filter as described in [4] could be constructed from the
optimal filter; for conciseness we do not pursue this avenue here.

Having established the significant improvements of the optimal filter and mollifier
over the adaptive filter and mollifier, we now contrast these methods with the
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FIGURE 5.3. The filtered 128 mode spectral projection using the
adaptive filter (B.I]) and optimal filter (314]), (a) and (b) respec-
tively. The error in the reconstructions for N = 32,64, 128 for the
adaptive filter (c) and optimal filter (d).

pioneering adaptive Erfc-Log filter of Boyd [2],

(5.4) Oerfe(§) == %erfc {2\/ﬁq§| ~1/2) \/_ In(1—4[|§] - 1/2]2) } ’

Aflg] —1/2]?

with the adaptive order m(z) := 1 + Nd(z)/2r. The improved true exponential
convergence rate of the optimal filter and mollifier is realized by abandoning the
traditional construction with compact support, and developing analytic filters and
mollifiers. Although the convergence properties of this Erfc-Log filter are much
less understood, it is similarly analytic, and the numerical examples here exhibit
its numerical effectiveness. The form of the Erfc-Log filter was developed as an
asymptotic approximation of the Vandeven filter [25]. The adaptive order m(x)
was derived independently from Euler lag average acceleration (a piecewise constant
approximation of filtering) applied to the sawtooth function, [I], and was put forth
as the optimal adaptive order for general filters. Although correctly capturing the
desired properties of an adaptive order, the transition from Euler lag averaging to
general filters fails to capture the subtleties of the filter’s smoothness. In particular,
for infinitely differentiable compactly supported filters the optimal order is given as



OPTIMAL FILTER AND MOLLIFIER FOR PIECEWISE SMOOTH DATA 787

0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
1 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
(a)
100 . . . . . . 100
102} Fv\ \‘ 102 L
, \' ‘J‘ )
104 TM l 104
106] 106}
108} 1 108t
10-10] 1 10710 L
1072 1 10ty
10-14 | 110t
10-16 L L L Wﬂw L L 10-16
0 1 2 3 4 5 6

()

FIGURE 5.4. The reconstruction of (5.3)) from its 256 uniform sam-
ples using the adaptive mollifier (5:2)) and optimal mollifier (Z2)
is shown in (a) and (b), respectively. Additionally, the error in
the pseudo-spectral reconstructions with N = 32,64,128 for the
adaptive mollifier (c) and optimal mollifier (d) is illustrated.

a fractional’d power of Nd(z), [24]. Nevertheless, from the analysis developed in
[24] and §8lit can be conjectured that for analytic filters the order proportionality ~
Nd(z) is indeed correct. The error decomposition developed here in (23]) may allow
for a rigorous analysis of the Erfc-Log filter and proof of exponential convergence.

Figure directly contrasts the adaptive, Erfe-Log, and optimal filter (left) as
well as the adaptive and optimal mollifier (right). True exponential accuracy is
illustrated for the optimal and Erfc-Log filter, with the optimal filter achieving
somewhat better results. The Erfc-Log filter consistently outperforms the adaptive
filter, however it is worth noting that no proof of convergence is currently available
for the Erfc-Log filter. A similar exponential convergence rate can be expected
of the traditional exponential filter oexp(€) 1= exp(—c&?P) with properly chosen

12Compactly supported infinitely differentiable functions can be analyzed in terms of their
Gevrey regularity, which is categorized by the growth rate of a function’s derivatives, || f(*)||~ <
Const ~(s!)"‘/77? for « > 1. The resulting optimal adaptive filter order for Gevrey regular filters
is g(z) ~ (Nd(z))'/®. For Gevrey regular functions replacing the root adaptive filter order with
that arrived at through the Euler lag averaging, ~ Nd(z), results in a dramatically decreased
convergence rate.
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FIGURE 5.5. Left: The error for the filtered N = 128 mode spec-
tral projection of (B3] using the adaptive (dots), Erfc-Log (dot
dash), and optimal (dash) filters. Right: The error after approxi-
mating (5.3) from its 256 uniform samples using the adaptive (dots)
and optimal (dash) mollifier. As there is no physical space, mol-
lifier, analog to the Erfc-Log filter, for completeness the Erfc-Log
filtered trigonometric interpolant (dot dash) is shown.

parameters, ¢, and p ~ Nd(z). However, as neither the complementary error
function nor the exponential filter are known to in any way satisfy optimal joint
time-frequency localization, there is little reason to believe they will be as accurate
as the optimal filter.

The primary advantage of filtering over other methods for the resolution of Gibbs’
phenomenon is their computational efficiency. Specifically, for nonadaptive filters
O(N) points can be approximated within a O(N log N) computation cost by uti-
lizing the ubiquitous FFT algorithm. Although a faithful implementation of the
optimal filter or mollifier requires O(NN?) computational cost to approximate O(N)
points, the O(Nlog N) efficiency can be recovered by using a tiered approach.
Rather than utilizing a different filter for each point, the tiered approach desig-
nates a finite number of intervals in each of which a selection of the optimal filter
is used. Unfortunately, as symmetric filters and mollifiers necessarily sacrifice ac-
curacy when the discontinuities are approached, they cannot recover high order
accuracy up to the discontinuities. Here we do not contrast the optimal filter and
mollifier with the interval methods designed to recover high resolution up to the dis-
continuities (e.g., [3, Bl [ 12, 14, 19]), but note that in [I2] numerical experiments
are performed on (B3] allowing for a direct comparison. As stated earlier, the
hybrid method [§] is a particularly computationally efficient synthesis of these in-
terval methods and filtering. The hybrid method uses the tiered approach describe
above, with one of the interval methods used for the intervals within a O(1/N)
neighborhood of the discontinuity.

SUMMARY

In this work we determine the fundamental error contributions for a general filter
or mollifier. From this perspective we discard the classical restriction of compact
support, and use the theory of time-frequency analysis to construct a filter and
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mollifier with optimal joint time-frequency localization to the region dictated by
the function’s smoothness, and the projection order, [x — d(x), z + d(z)] x [N, N].
This analysis results in the new fundamental dilation relationship \/N/d(x) and
its inverse in the dual and physical spaces, respectively. Furthermore, similar to
[23, 24] the number of near-vanishing moments is selected to balance the accuracy
and localization errors, again determined to be a function of both localization pa-
rameters N and d(z). The significant improvements in the convergence rate, are
reflected in Theorems B3] and Bl and are illustrated in Figures and B4 In
addition to the improved accuracy, the optimal filter and mollifier retain robust-
ness to inaccuracies in the calculation of d(x), as using an incorrect value does not
destroy the accuracy for the entire smooth region. Rather, a sub-optimal expo-
nential accuracy is realized due to the imbalance of the localization and accuracy
errors. In conclusion, the optimal filter and mollifier presented here are a robust,
exponentially accurate, and computationally efficient method for the manipulation
of piecewise smooth functions, given its spectral information.
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