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CONVERGENT ITERATIVE SCHEMES
FOR TIME PARALLELIZATION

IZASKUN GARRIDO, BARRY LEE, GUNNAR E. FLADMARK, AND MAGNE S. ESPEDAL

ABSTRACT. Parallel methods are usually not applied to the time domain be-
cause of the inherit sequentialness of time evolution. But for many evolution-
ary problems, computer simulation can benefit substantially from time par-
allelization methods. In this paper, we present several such algorithms that
actually exploit the sequential nature of time evolution through a predictor-
corrector procedure. This sequentialness ensures convergence of a parallel
predictor-corrector scheme within a fixed number of iterations. The perfor-
mance of these novel algorithms, which are derived from the classical alternat-
ing Schwarz method, are illustrated through several numerical examples using
the reservoir simulator Athena.

1. INTRODUCTION

Hydrocarbon flow in porous media is often approximated with a mathematical
model involving three coupled nonlinear evolution equations for the primary vari-
ables of temperature, pressure, and molar masses, and tabulated values based on
bubble and dew point curves for the secondary variables. Since this model is gen-
erally too difficult to solve analytically, a simplified model is solved numerically by
decoupling the equations and discretizing them using finite volume in space and
backward Euler in time. The resulting nonlinear system of equations is then solved
using the iterative Newton-GMRES algorithm [3], [4].

This is the overall structure of Athena, our current simulator for flow in porous
media. The goal of Athena is to simulate a wide variety of flow scenarios within
reasonable accuracy, in reasonable computational time. However, to simulate real-
istic problems, the standard numerical algorithms are unacceptably slow. Thus, it
is necessary to develop faster, parallel algorithms.

The standard numerical approach is to sequentially solve each primary variable
using a fixed time-step determined by the smallest evolutionary time-scale for the
primary variables, even though the time-scales for these variables may be an order
of magnitude different. In particular, the time-scale for temperature and pressure
is often an order of magnitude larger than that for the molar masses. Hence, the
temperature and pressure can be computed with larger time-steps. To mitigate
this time-step restriction, a common procedure is to compute the temperature and
pressure with time-step AT, while substepping G times for the molar masses with
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smaller time-step %. However, this substepping does not lead to acceptable com-
putation efficiency in a serial computing environment.

The goal of this paper is to develop parallelization techniques for the substep
procedure, in order to speed up the computation. An ideal algorithm is one that
would completely bypass the sequential nature of time evolution in a parallelized
substep march. But this would go against physics, and so, may lead to poor accu-
racy. Hence, we propose a novel method, similar to the Parareal technique studied
in [1l 8, 2], that allows parallelization in the substep procedure and is also causal.
Causality is obtained by using a coarser time-step in a predictor-corrector manner.
Both the Parareal technique and this proposed method have a two-level structure,
with the predictor step defined on the coarse time level and the corrector step de-
fined on the fine level. The novelty in our approach is to decrease the time domain
as the predictor-corrector progresses.

This paper is organized as follows. For background and self-containment, Sec-
tion 2 describes the equations of hydrocarbon flow in porous media. Given these
equations, in Section 3, we review some of the existing parallel algorithms to handle
evolution equations, and give a general description of a predictor-corrector (PC)
algorithm for parallelizing time. This general description is given in terms of an
iterative method for solving a lower block bidiagonal matrix. The details of this
PC algorithm are given in Section 4. In this section, the PC method is viewed as a
two-level scheme, where the coarse grid and fine grid procedures are respectively the
predictor and corrector steps. Section 4 further derives defect terms that modify
the predictor equations, introduces modifications to the PC algorithm that ensure
convergence within a fixed number of iterations, and analyzes the computational
efficiency of this two-level algorithm. Section 5 develops a multilevel extension
that alleviates some of the load-balance issues of the two-level method. The in-
tricacies of this extension are given, as well as a description of the computational
costs for a cycle of this multilevel method. Numerical examples are presented in
Section 6 to illustrate the performance of these algorithms. Finally, Section 7 gives
the conclusions of this work.

We note that this paper concentrates on the derivation and properties of the
numerical algorithm, avoiding unnecessary details of our compositional simulator
Athena. For further details on Athena, we refer the interested reader to [5], [,
[10], and [11].

2. EQUATIONS OF HYDROCARBON FLOW

We are interested in a multicomponent multiphase fluid flow in a porous media
region V with surface boundary S. The primary variables of interest are temperature
(T'), water pressure (p,,), and molar masses (N,), for each component (v) of the
multicomponent multiphase fluid. The phases considered are oil (0), gas (g), and
water (w). The mathematical model for hydrocarbon flow in porous media involves
conservation laws for the molar masses and internal energy, and a water pressure
equation. Conservation of molar mass for a flow through a porous media region V'
is given by the integral relation

(2.1) é/mdewL/ V-my:—/q,,dv,
ot Jy v v

where ¢, is the source/sink for molar mass density component m, (molar mass N,
is the volume integral of m, ). Conservation of energy is enforced through the heat
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flow equation

(2.2) 2/(pu)dV—/(kVT)~d§:—/hpﬁ~d§+/ qdV
ot Jy s s %

where T is the temperature, k is the bulk heat conductivity, p is the density, and
u is the internal energy. And, an equation for the water pressure is derived by
imposing that the pore volume V,, be equal to the sum volume of all three fluid

phases at all times, i.e.,
R=V,— > V'

l=g,0,w

is zero at all times. This residual volume is a function of the water pressure p*, the
overburden pressure W, and each molar mass component INV,,. Hence, a first-order
Taylor expansion of R(t + At) about t, together with the chain rule applied to
OR(p*, W, N,)/0t, leads to the water pressure equation

OR Op* = ORON, R OROW
dpw Ot “= ON, Ot At OW ot

(2.3)

Equations [2I)—(23) are three coupled nonlinear differential systems. The pres-
sure and molar masses are clearly coupled in (23). The temperature is coupled
to the pressure and molar masses through its Jacobian. This Jacobian is also de-
pendent on the rock temperature, which in reservoir simulation has a much lower
variation rate than the pressure and molar masses.

Now, to numerically solve this differential system, these equations are decoupled
and discretized using finite volume in space and backward Euler in time. Thus,
at each time-step interval, [T™, T" "], three discrete Jacobian systems of the form
AMAZ = ﬂ"} are solved in sequential order. These systems are solved with an
iterative Newton-Raphson method using, for example, preconditioned GMRES [3],
[]. In general, at each time-step these Jacobian matrices change after each Newton
iteration. But for the temperature equation, since its Jacobian matrix is majorized
by the rock temperature, its Jacobian will be changed only between each time-step.
Having determined the temperature at time 71"+ the pressure and molar masses
must be determined using a Newton—Raphson iteration. As for the pressure system,
its Jacobian has off-diagonal terms that depend on the molar masses. Because of
the decoupling, these off-diagonal terms will involve only time-lagged molar masses.
Thus, the nonlinearities in the discrete pressure equation are restricted to the di-
agonal terms A" = D) where the superscript s corresponds to the number
of Newton iterations. Turning to the molar mass, as noted in Section 1, the rate
of change for the temperature and pressure are comparatively small compared to
the rate of change for the molar masses. So, for each time-step interval, the molar
mass equations are substepped with step-size W Given the temperature and
pressure, the nonlinear molar mass system at time-level T is

(2.4) Al@IFImED] _ fints)ly = Flns)]

Superscript s will be omitted in the remainder of this paper.
For further details of the discretization of ZI))-(23]), we refer the interested
reader to [7].
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3. PARALLEL ALGORITHMS FOR EVOLUTIONARY EQUATIONS

In this section, we review some of the existing parallel algorithms for evolutionary
equations. As alluded to in the previous section, the most computationally intensive
procedure in hydrocarbon flow simulation is the substep march for the molar masses.
If this procedure can be computed in parallel, then the computation of the molar
masses can be substantially improved. In general, such parallelization can improve
the computational performance for any of the three variables.

The solution procedure for an evolutionary equation time-discretized with back-
ward Euler can be viewed as a forward substitution (or an approximation) for the
lower block bidiagonal matrix system

Ly Uy 1
My Lo U fa

(31) MQ £3 us = f3 s
Mn-1 Ly UN In

where £; is the matrix operator acting on the unknown at the " time-step and
M;_1 is the matrix operator acting on the unknown of the previous time-step. A
direct forward substitution is clearly sequential in time. However, to achieve some
parallelism, a common approach is to parallelize in space as time is sequentially
marched. This corresponds to forward substituting ([B]) with parallelism in the
inversion of £;. For example, when the evolutionary equation is parabolic, inversion
of L; corresponds to solving an elliptic equation, in parallel. This standard approach
definitely does not exploit full parallelism, especially when the temporal grid is much
finer than the spatial grid.

Two other parallel approaches for time-dependent problems are waveform re-
laxation and overlapping Schwarz waveform relaxation. These methods do achieve
parallelism in time. To describe these approaches, consider a one-dimensional time-
dependent problem, i.e., 1-1 dimensional in space-time. Spatially discretizing this
problem leads to a system of ode’s, one equation for each spatial grid point:

du
(3.2) o T A=,
where A is the matrix that describes the coupling produced by the spatial dis-
cretization. Denoting the diagonal of A with D, a Jacobi-type iterative scheme for

solving (B2) is
du®

(3.3) —+ Duf = f+ (D — A)uF 1,

which leads to a system of decoupled ode’s at each iteration. Each of these time-
dependent problems is then solved for the complete time interval on different CPU’s.
This is the basic waveform relaxation approach. A generalization of it is the over-
lapping Schwarz waveform scheme ([6]). Rather than subdividing the spatial do-
main with grid points, the overlapping Schwarz method decomposes the spatial
domain into several overlapping subdomains; see Figure Il On each subdomain, a
time-dependent problem must be solved. These subdomain problems are solved in
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FIGURE 1. Domain decomposition for the overlapping Schwarz

waveform method.
For our 1-1 dimensional problem, line relaxation in the time direction, as

Before introducing an alternative approach, it is insightful to examine the cyclic

reduction scheme for solving [B]). Cyclic reduction is a direct method that com-

Waveform relaxation suffers from poor convergence.
schemes have been developed by Vandewalle et al. ([I4]) to overcome this conver-

The above parallel approache

gence problem. Overall, this scheme can be viewed as applying multigrid to a fully
order parabolic equations.

discretized time-dependent problem, with time viewed as another spatial variable.
However, because the space-time grid is generally anisotropic (e.g., At < Ax),

line relaxation or semi-coarsening must be used in the multigrid procedure ([I3],
[15)).

the strength of connection is in the time direction when At < Az, is equivalent
to solving a one-dimensional evolutionary equation. The solving of this line is per-
formed using cyclic reduction, which can be done recursively in a multigrid fashion
and in parallel. Vandewalle et al. has also examined semi-coarsening and pointwise

smoothing, which lead to better parallelism.
acteristic of parabolic equations is not present, and so, the overlapping Schwarz

and multigrid methods may suffer.
system half the original size and with the same bandwidth pattern. For example,

bines the even numbered equations with the odd numbered equations to create a
when N = 8 in (B, the reduced system is

parallel, with an appropriate strategy for updating the subdomain interface values.

algorithmic/implementation issues can make these methods impractical.
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The solution components of the smaller system and original system are the same,
and this size reduction procedure can be repeated recursively until a small system
that can be easily solved is formed. Once the solution of the smallest system has
been determined, it can be used to calculate the unresolved values of the next larger
system. This back substitution procedure is recursively applied up to the original
system. Of course, a problem is the inversion of £;’s when they are submatrices, as is
the case in higher-dimensional evolutionary equations. Nevertheless, this procedure
gives insight into developing other methods.

One can view the above procedure as initially “ignoring” the odd numbered un-
knowns and modifying the original system to account for this ignoring. Suppose
that instead of ignoring and modifying, approximations to the odd numbered com-
ponents can be computed. Then with these values, the following reduced system
can be formed:

Lo Un fo— Miug
L4 o fa — Mazus
(3.4) ~ = - ,
Le g fo — Msus
ﬁg '118 fs - M?'lf?

where 1; denotes an approximation to u;. In fact, this reduction can be done in a
coarser fashion. For example, suppose only an approximation to w4 is known. Then
the reduced or decoupled system is

(3.5)
o w1 f1
My Lo ug f2
Mo L3 ug f3
Ms L4 uq B fa
Ls _ - -
us fs — Matig
M Lg .
i fe
Me L7 _
g f7
M L
T 8 g fs

Each subblock is lower bidiagonal, and so, if approximations to some of the subblock
unknowns are available, then this procedure can be applied recursively. Moreover,
because the subblocks are decoupled, each subblock system can be performed in
parallel. Naturally, since only approximate values for the lower subblocks are used,
this procedure must be repeated iteratively. This is the essence of the novel parallel
method we propose.

4. A TWO-LEVEL ALGORITHM—THE GENERAL SCHEME

So the idea of our parallel method is to compute approximations to the solution
at certain time levels. These approximations will permit the time march to decou-
ple over subintervals, which in turn, will lead to parallelization of the march over
the whole time interval. To compute these approximations, a predictor-corrector
procedure is used. But unlike a typical predictor-corrector (PC) method, where an
explicit scheme predicts the solution at a fixed time and an implicit method corrects
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FIGURE 2. The solution over the total coarse domain (in the left)
determines the BCs for each parallel-fine system.

the prediction, in our method, the solution is both predicted and corrected with
backward-Euler, at a collection of time levels, and with the corrector computed in
parallel. The difference between our predictor and corrector procedures lies in the
size of the time-steps, since the predictor uses a coarse step whereas the corrector
uses a fine step. Thus, the overall parallel procedure can be viewed somewhat as a
full approximation storage (FAS) multilevel scheme [I3]. We describe this method
corresponding to matrix equation (B4 first.

Consider the domain Q = I' U Q as shown in Figure @l where I' = T™ denotes
the boundary where the initial boundary condition is given and Q = (T, T"+1].
The diameter AT = (T"T! — T") of © can be viewed as the time-step for the
temperature and pressure equations in the hydrocarbon flow model. Recall that
the target temporal grid for the molar mass equations has mesh size At = &L,
Besides 2 and the target temporal grid, we introduce an intermediate grid obtained
by subdividing € into P subdomains §2; with mesh size AP = pAt. Hence, =
Uil Qi, Q; = (T + (i —1)AP,T" +iAP], and G = Pp. For example, in Figure 2]
we have P = 4, p = 1, and G = 4, whereas in Figure[3l P = 3, p = 4 and
G = 12. Subdomains §2; for i > 1 have interface boundaries I';, and 1 has the
actual boundary I'y = I'. Also, inside each subdomain, different discretizations
that appropriately match along the interfaces can be used, though we opt to use
the same backward Euler and finite volume discretizations in each subdomain. We
now have the multilevel grid hierarchy for the algorithm.

Consider the two-level grid setup of Figure Bl In this predictor-corrector algo-
rithm, we alternatively solve over the entire coarse domain €2 (predictor) and in the
nonoverlapping fine subdomains (corrector). Let N ["] denote the initial boundary
condition (BC) at time 7. Tracking the predictor-corrector iterate with &, in the
coarse domain, the residual boundary value problem (BVP) is

AlEAylnlE = plnlk @

(4.1) u‘[?]Jq — N r,
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where Aul"bk = ylrH1E _ yl7hk - Having solved this BVP, the initial condition

u‘[?]’k = ul[?]lk = NI together with some approximations to the interface val-
ues ul[?],’k,z' = 2,..., P, serve as initial conditions for the subdomain problems to

be solved in parallel. These interface approximations, gz["}’k, can be obtained by

linearly interpolating u™-* and the computed solution u[**t* or they can be con-
structed explicitly with a substep march over the intermediate grid if p > 1 in
the grid setup. In either case, solving equation (£.I)) is the predictor step, which
determines boundary conditions for the fine subdomain systems

Agn],kAugn],k _ fﬁn],k Qz } Z

(4.2) (). & tnl & =1,...,P.

u

ar; — i I Y
Note that subdomain €2 is also solved on the fine grid.

Now, having solved ([£2) in parallel, their solutions provide a correction to the
coarse predictor system. Several choices for this correction will be given in the next
subsection. Letting S denote this correction, the overall predictor-corrector cycle
can be viewed as a block Gauss-Seidel iteration: the predictor step sequentially
solves the entire time-domain using correction S constructed from the previous
corrector solution, and the corrector step immediately uses the predictor solution
to determine the interface boundary values.

Iterate

e on processor 0 solve

(4.3) Al Aufgh? = plrlk y Slelk AR N,
e on processor ¢, ¢ = 1,..., P, solve
(4.4) ‘AET\L(]Z’f Au%if _ fi[nLk _ AE?I]‘;kgz[n],k~

There are many strategies for determining when this alternating method has
converged. Due to the solution smoothness in time, we stop this alternating it-
eration when the solutions of (£3) and (4] at ¢ = P differ within some given
tolerance, e.g., the tolerance can be O(AT — At), the difference between the order
of the coarse and fine time discretizations.

4.1. Correction terms. To derive a correction term for the predictor equation, we
establish a relation between the predictor and corrector solutions. To accomplish
this, we assume a multilevel grid setup with p > 1, i.e., the intermediate subdomain
partitioning and the target fine grid are different. With this setup, equation (1)
can be solved with a substep march over the subdomain partitioning. Such a
march will then explicitly determine the interface boundary conditions for the fine
corrector equations, instead of linearly interpolating them from w[™"* and w[*+11k,
Hence, the BVPs

Al[?l];k Aulnlk = f|[51 K |
(45) [k pind =1 A, ]k i1=1,..., P,
Yr, = + Zj:l U,

are sequentially solved in the predictor procedure. Moreover, because p > 1, a
substep march must also be conducted in the corrector procedure. Indexing the
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substeps in subdomain €2; by i(j), these fine corrector equations are

[n],k [nl.k  _ pnlk
(4.6) i\Qiu')Aui(j) N f“ﬂtm J=1
~ T
iT5¢5) iTiq) ”Ql(l)

with interface boundary condition Uiir, ) = Yi-
To establish a relation between the predictor and corrector solutions, we add
and subtract A[g]"kflAu@’kfl from the first equation of (L) to get

1€
(4.7) Aufght ™t = Aufght Tt 4 (AR T AR E Al R plERR,
Expanding Au[n] M1 (@) is equivalent to
n),k— n|,k— nl,k—1\— n|,k n|,k
(4.8) T s R O

Since corrector system (L.0)) is solved more accurately over €2; than in the predictor
march, we substitute u[n]fl_l on the right-hand side of (&) with ulrE 1,

T T4

ulnlk—1 [n],k—1 [n].k [n.k A, [n]k _ plnlk

up, =, (g T A Al — g
or equivalently,

[n],k n],k _ [n],k [n],k—1, [n],k—1 [n],k—1

(4.9) Ajg, A =fig " + A" (U, —wr, )
Equation ([@3]) is the corrected predictor equation we solve on the coarse grid to get
the interface value u‘[r] * for the corrector equation. Note that due to the nonlin-
earity of the molar mass system, the correction term Al[g]’kfl( m’f;l - %::1) is

also nonlinear, and hence, must be updated at every Newton iteration.

Another correction scheme can be derived by adding and subtracting all earlier
[ ])J )

predictor-corrector iterates to ([])) and using the more accurate wypr, s
[n] k (7] [n],J
(4.10) A Aul f|Q et Z AlQ \F1+1 - ui\FiH) ’

This is the Parareal correction term proposed by Maday and Lions ([1I], [8], [2]).
For weakly nonlinear problems, a modification of this Parareal correction term is

k—1
[l A, [l _ gl glnlk g, nl.g
(4.11) A Al = fEF + AGE Y (i )
i=1

The implementation and computation of this latter correction term is greatly sim-
plified because only the current matrix operator has to be formed.

Yet another correction scheme follows naturally by reformulating the PC scheme
as a two-level FAS method [I3]. In each of the above correction terms, the operator

A{g"j is applied to the difference of a predictor solution and a corrector solution.
Alternatively, a correction term can be formed using the operators of the two time-
levels and only the more accurate corrector solution:

[n],k—1 [n],k—1 [n],k
(4.12) [A‘Qi — Al } b
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giving the corrected predictor equation

[n],k [nl,k _ [n].k [n].k—1 _ [n].k—1 [n].k
(4.13) Al Al — gl | AR g
Correction term ({I2) can be viewed as an approximation to the local truncation
error at time I'; 1, which is the term that must be added to the right-hand side of
the predictor equation to produce a coarse grid solution with fine grid discretization

accuracy [13].

4.2. Improved parallel PC algorithm. Employing any of the correction terms
given in (LI)-EII) and [@I3]), we have a parallel PC algorithm. The accuracy
of this method is determined by the accuracy of the corrector procedure. Each
iteration consists of first solving over the whole coarse time interval and then asyn-
chronously solving over each subdomain. However, causality implies that the solu-
tion in the initial subdomain is not affected by the solution time subdomains at a
later time. This observation permits a simple modification of the PC scheme that
ensures convergence within P iterations. The idea is to decrease the active time
interval by removing the initial subdomain after each PC iteration. In particular, in
the first PC iteration, since both the predictor and corrector solve the same initial
boundary-value problem in subdomain €1, and since the solution in this subdomain
is physically unaffected by the solution in the later subdomains, one can take the
more accurate fine-grid corrector approximation to be the solution in ;. Having
determined the solution in Q;, this subdomain can be eliminated from the active
time interval:

(414) Qactivc = Q/Ql .
For the next PC iteration, on initial subdomain Qs of the current Qactive, the

[17]51 will be taken as the initial condition

(4.15) u{;]f = um,; .

computed fine grid solution u

!

FI1GURE 3. Active domain for the improved PC algorithm.
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Although the right-hand side of the predictor equation in Q, now has a nonzero
correction term, the actual equation being solved is the fine-grid corrector equation.
Besides, the correction term in the predictor equation is used only to generate
accurate subdomain interface conditions for the corrector systems (cf. Section B
concerning the correction term [LI3]). Hence, again we take the more accurate
fine-grid corrector approximation in s, and redefine the active time interval to
Qactive = 2/ Ule Q. After repeating this process k = P — 1 times, the computed
solution at the I';’s will be

[n],P _ (n,P _  [n],P—1
(4.16) Up, =G Un) = Upp,

and the active time interval will be Qactive = Q/ Uf:ll ;. At this stage of the PC
iteration, both the predictor and corrector equations have the same initial condition
and are defined only over Qp. Once again the fine-grid corrector approximation is
taken to be the solution in Qp. Thus, after at most P iterations, this improved
algorithm converges with accuracy determined by the corrector approximations. A
graphic overview of how the active time domain evolves as the method progresses
is shown in Figure 3l

Algorithm: Improved PC Algorithm
e (1= Uil Qi, Q= U?:l Qij)-
e g=NIM st =0,
e Fork=1,...
— Solve sequentially at processor root for i =k, ..., P, where S‘[g]“k is
given in (), (EI0) or EII)
[n],k N [n],k [n],k
o Au{n} _ f‘[ﬁf ' S‘m[ ]
nl,k _ n|,k nl,k .
(4.17) ur, =, HAue ik
u[;f]’k = g, i=k=1,
u‘?]lk = uyi]ll‘eil ) i=k>1,
— At each i*"-processor with g; = u‘[?]i’k, i =k,..., P, solve sequentially
forj=1,...,p
[n];k [nl,k  _ [n],k
ilﬁimA i o 195
ko E A Lk S
(4.18) uf'?iéj) = Mgy iy J '
Yir,y, — 9 J= 1,
— Modify the active time domain
Q — Q/Q,
nl,k nl,k
If ulplit =" || < tol or k = P, stop.

Remark. The goal of our two-level PC scheme is to reach convergence in far fewer
than P iterations, otherwise the parallel fine-grid corrector procedure would have
benefited little, and this PC iteration would be forward substitution. In terms
of matrix system (BI), this improved PC iteration is an “iterative forward sub-
stitution” method for solving a block lower bidiagonal system. Our numerical
experiments demonstrate that fewer than P iterations are needed.
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4.3. Linearized PC algorithm. So far, our PC scheme has been developed using
a coarse substep march to generate the interface boundary conditions. It is very
tentative to derive these interface conditions by linearly interpolating w[™-* and
w1k This would eliminate the need to substep on the coarse temporal grid,
and thus, reduce the computational cost. Such an interpolation approach would
be suitable for linear and weakly nonlinear problems. However, for highly nonlin-
ear problems, because linear interpolation may poorly approximate the nonlinear
nature of the system, the required number of iterations for this “linearized” PC
scheme will generally be more than that for the scheme of Section 4.2, though
still within P iterations. Nevertheless, at the kth iteration of this PC scheme, the
linearly interpolated interface conditions are

_ P_Z""lu[n],k i—k u[n]’k
CP—k+1 T P—k+41 Teer’
where I is the left boundary of the active time domain, and the modified corrected
predictor equations are

gi i:k,...7P,

[’I’l],k‘ ,k _ [n]vk [n]7k71 [n]7k71 [n]akfl
(419) A|Q Au[n] = f|Q + A|Q (u|Fp+1 - UP\FP+1) ’
k—1
k n k »J ) J
(4.20) Al[%] Aultlk = fl[g] + ZAl[%] ](“\[?]Iil - U%HFJPH) ’
Jj=1
k—1
[n].k ko gnlE [n].k [n],j [n].j
(4.21) A|Q Aul" - f|Q + ‘Alﬁ Z(u\FPJH - uP|FJP+1) ’
i=1

Remark. Although the interface conditions and correction terms involve linearly

interpolated values, at each Newton iteration, the Al[g]’k’s must be updated, i.e.,

they are not linearized.

Algorithm: Linearized PC Algorithm
o Q=U7, Qi Qi =U, Qe
o g=NI" s" =0,
e Fork=1,...,
— Solve sequentially at processor root over the active domain 2, where

SF s given by @EI9), E20), or @E2I):

[n],k n),k — [n],k [n],k
A AylhE = fia " 85",
(4.22) uF]’k = g, k=1,
n],k _ [n],k—1
Up = Ui, k>1,
— At each ith-processor with g; = 5:—,1111%[?]"“ + Pi;k’ilul[;ﬂpil y
i =k,..., P, solve sequentially for j =1,...,p
[n].k [n].k [n].k
O e fi[‘(]zizi”’ [
nl,k _ nj, nl, .
(429 ufll]ﬂ’“j) = Wirg,y T Aui\ﬁi(a‘—n I L
iIT; (5 = g, j=1

— Modify the active time domain

nl,k nl,k
If HuED‘]FP+1 - u‘[F]P“ || < tol or k = P, stop.




CONVERGENT ITERATIVE SCHEMES FOR TIME PARALLELIZATION 1415

4.4. Two-level computational efficiency. A deficiency in the two-level method
of Section 4.2 is the bottleneck in ([@IT). For each PC iteration, the root processor
must complete its sequential march before the child processors can start, resulting
in processor idleness and communication traffic. The bottleneck in processor com-
munication can be mitigated by looping ([@I7) and (4I8)) differently:

Algorithm: Reduced Bottleneck Loop
Fork=1,...
Fori=k,...,P—1,
— Solve at processor root

[nlk A, [0k _ [n],k [n],k
A\Qi Au - f\Qi + S\Qi ’
(4.24) ufptt =l At ik,
[n),k [n],k—1 P
U, = Ui, i=k.
— At processor (i + 1), with g;+1 = u‘[?]i’fl, begin solving for
i=1,...,p
[n.k_ .k _ gk
i+1|Q(i+[1)](j]g e i[+1‘kﬂ<i+1)<j)’ il
nl, _ nl, nl, .
(4.25) Uikl Gty goy T Aui+1\9(i+1)<j—1> SEE
ui+i|l"(i+1)<j) = gi+t1, J=1
Solve subdomain i = P on the root processor
[n],k ko [n],k [n],k
4.26 Algy Aul™ = 5+ S,
( . ) u[n],k _ u[n k +A [n],k i>k
Tp - Tp-1 Qp_1 ’

Now once the root processor has finished a substep, it can immediately communicate
the computed interface boundary condition to the appropriate child processor, and,
while this communication is occurring, the root processor can begin its next substep.
As for processor idleness, it can be reduced by starting the next predictor cycle on
the child processors that have completed their marches before the root processor has
completed its march. This unfortunately involves complicated processor scheduling.

Suppressing this complicated scheduling, the efficiency of the parallel two-level
method can be obtained by counting specific substep solves on all processors, and
counting the number of blocking communications (i.e., communications that delay
the start-up of the last running processo). In particular, substeps that are solved
concurrently on different processors are counted only once. This is illustrated in
Figure @, which shows the counts for three different subdomain partitionings of a
fine grid with G = 16, e.g., for the top partitioning, since the first subdomain of
both levels are solved concurrently, they are numbered 1, since the second substep
of both levels and the ninth substep of the fine level are all solved concurrently, they
are numbered 2, etc. Table [[l summarizes the efficiency for several time-marching
schemes. First, a serial march requires no communication and only G substeps since
the predictor is not needed. For the two-level method with loops (EIT)—(ZI8), in
the kth PC iteration, (P — k + 1) substeps are needed for the predictor and p
substeps are needed for the corrector. Moreover, before the last processor can start

IThe root processor can communicate each interface value using point-to-point communica-
tions, or it can communicate all the interface values at once using a scatter communication. For
large sets of data, both types of communication complete their tasks in about the same time.
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‘/—\/"”7 - Ay a o \\‘\1‘ level 0
Proc 0
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Proc 1 Proc 2 Proc 3 Proc 4
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Ve WAS N AT AT AT T A7 A fevelo

Proc 0

level 1
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m, \' ‘1‘ \ A % ‘1‘,/ \’ m, “, \ \ ‘1‘
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Tn Tn+1l4 Tn+1l2 Tn+3l4 Tn+1

FIGURE 4. Two-level Method. Counting the substep solves in
the first PC iteration for three different subdomain partitionings:
G =16, (P,p) = (2,8),(4,4),(8,2). Substep solves that occur si-
multaneously on different processors are counted only once.

its march, it must wait for (P — k) communications. Hence, for [ iterations, the
efficiency of this scheme is

!
Z[(P —k+ 14 p) solves + (P — k) comms]
k=1

1 1
:l<P+p+1—¥>solves+ l(P—l%)comms.

Finally, using the above counting convention, in the kth PC iteration, the two-level
method with loop [@24))—(#28) requires (P —k+p) solves. Also, since the predictor
march continues while communication is occurring, only the last communication is
blocking. Thus, for [ iterations, the efficiency of this scheme is

(I+1)

!
Z[(P —k +p) solves + 1 comms] = {

) solves + [ comms.
k=1

<P+p—

TABLE 1. Efficiency for the kth iteration. The serial method per-
forms only 1 iteration, a forward substitution.

| Method

SubSteps

[ Comms ]

Efficiency

serial

G

none

G substeps

Loops @.I7)-EI8)

(P—k+1+p)

(P — k)

(P —k+ 1+ p) substeps & (P — k) comms

Loop E24)-E2D)

(P—k+p)

(P —Fk)

(P — k + p) substeps & 1 comm
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Note that irrespective of the subdomain partitioning, the two-level method with
loop ([@24)-(@.25) requires just 1 blocking communication. Thus, its efficiency at
the kth iteration is optimized by choosing a partition that minimizes the substep
count. That is, its efficiency is optimized by minimizing

G
f(P)=P—k+p=P—k+2.

The minimum of f occurs at P = v/G, and the minimal value is (2\/5 — k). Hence,
this two-level scheme’s optimal efficiency for [ iterations is

l (2\/@ - (l%l)) solves + [ comms.

But obviously this choice for P affects the value of [, the required number of PC
iterations to reach convergence.

5. MULTILEVEL EXTENSIONS

A remaining issue with the two-level method is processor idleness. This problem
can be further embellished when the optimal subdomain partitioning is chosen,
since then only (\/@ + 1) of the total number of processors are used. Hence, there
is an incentive for having many small subdomains. In this section, we develop a
multilevel extension of the two-level method that uses just such partitioning yet
keeps the substep count low.

To achieve better load-balance when many small subdomains are used, an initial
consideration is to allocate more processors to the predictor procedure. But this
returns us to the original problem of time parallelization—processors cannot start
until boundary conditions are available. Undoubtedly what needs to be achieved is
faster generation of interface boundary conditions. One way this is accomplished
is by recursively applying the matrix method of (B3] to its own subblocks. To
describe this recursion, it is helpful to illustrate the processor scheduling using
trees and grids. First, the processor scheduling for the two-level method is given
by the tree shown in Figure

For the two-level scheme with loop (L24)-(@28H), processor 0 immediately fans
out to a branch processor once the necessary interface boundary condition has been
computed. The processor scheduling for the recursive scheme, on the other hand,
leads to a tree that spins off pairs of branches at each processor node, as shown in
Figure[fl After only a few levels down the root node, a majority of the processors
will be active. Each pairwise branching corresponds to a newly computed interface
boundary condition at an intermediate time level in (77,7™*!). This interface
boundary condition creates a processor distribution—the subdomain to the left of
the intermediate time level is substepped on one processor, while the subdomain to

Master Proc 0

Slave Procs: 1 2 3 4 5 6 7 8 9

FIGURE 5. Processor scheduling for two-level method, fan-out
from left to right.
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FIGURE 6. Processor scheduling for the multilevel method.

the right is substepped on another processor. Figure [ elaborates this branching.
In this diagram, there are three coarsenings of the bottom target grid. For the
two-level method, the bottom grid and any one of the other three grids, depending
on the subdomain partitioning, are used. For the recursive multilevel scheme, the
collection of all the grids forms the multilevel grid hierarchy. Corresponding to
this grid hierarchy is a processor distribution. Each processor takes a subdomain
composed of two substeps. For example, Proc 0 takes the top grid with the whole
time domain [T, 7™ "] as one subdomain with two substeps, Proc 1 takes the left
substep of Proc 0 as a subdomain and further divides it into two finer substeps, etc.
To relate this figure’s layout to the pairwise branching of Figure[@] consider the top
grid. Here, after Proc 0 has marched one substep, it has computed an interface
boundary condition that permits Proc 2 to start its march. Proc 1 also can start,
though it could have started concurrently with Proc 0. Taking the delayed start-up
of Proc 1, after Proc 0’s first substep, a pairwise branching fires up Proc 1 and
Proc 2. Next, on the second grid, once Proc 1 and Proc 2 each has completed its
first substep, they pairwise branch off to Proc 3 and Proc 4, and Proc 5 and Proc
6, respectively. This branching continues down to the third grid where the next
branching finally leads to the target temporal grid. The end result is a multilevel
partitioning composed of many small subdomains.

This branching procedure spawns off a variety of choices for the PC algorithm.
One option already alluded to is the immediate/delayed start-up of processors,
with this option arising whenever a time level is common to several grids. Using
immediate start-up, some of the processors alloted to the finer grids will be activated
rather early in the branching cycle. For example, in Figure [ once Proc 0 reaches
T"+%, in addition to Proc 2, Procs 5 and 11 can also start marching. Alternatively,
using delayed start-up, Procs 5 and 11 respectively start only after Procs 1 and 4
have completed their short marches. Although delayed start-up is less efficient, an
advantage it has is a construction of consistently accurate interface values on a grid
level. Moreover, since delayed start-up generates several different approximations
for a common time level, Richardson extrapolation can be applied to obtain better
approximations. In particular, delayed start-up can be used on a minimal number
of coarser grids, just enough to generate the necessary number of approximations
for an application of Richardson extrapolation. The extrapolated interface value
may be sufficiently accurate for use on all the remaining finer levels, i.e., immediate
start-up for these levels.

Up to now, a PC iteration with this branching cycle has not been described.
There are several options on how this iteration can be structured. One approach is
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Proc 0
I H I level 0
Proc 1 I_I Proc 2
I H =2 H I level 1
Proc 3 Proc 4 Proc 5 Proc 6

level 2
Proc 7 Proc 8 Proc 9 Proc 10 Proc 11 Proc 12 Proc 13 Proc 14 level 3

™ Tn+1/2 Tn+1

FicUre 7. Grid layout of processor scheduling for the multilevel
algorithm. Dark clips are the processor boundaries, square clips
are time levels where several approximations of different grid reso-
lutions exist. Richardson extrapolation can be performed on these
approximations to generate more accurate solutions at these time
levels.

to have the first PC iteration be the branching cycle, and then all future iterations
be the two-level scheme applied to the two finest grid levels. The purpose of the
branching cycle would be to efficiently form an accurate initial approximation over
the whole time domain, which then can reduce the total number of PC iterations
to reach convergence. However, although more processors will be alloted to the
predictor procedure of the two-level module, the sequential march of the predictor
nullifies the purpose of this allotment. Hence, this leads to the next option for the
PC iteration: branch cycle for each PC iteration. After the corrector procedure of
the finest grid, the next iteration begins again on the coarsest grid and branches
down to the finest grid. The active domain of this cycle is modified as in the two-
level method. But because the eliminated subdomains may cover only a fraction of
a substep on some of the coarser grids, only a portion of a substep will be removed
on these grids. Figure§illustrates this after two PC iterations. For iterate k = 1, a
substep will be removed on level 2, a half substep on level 1, and a quarter substep
on level 0. For iterate k = 2, totals of two substeps will be removed from level 2, a
whole substep on level 1, and an half substep on level 0.

Two other options for the PC iteration are in the correction term and the stop-
ping criterion. For the correction term, at right subdomain boundaries that are
positioned at mutual time levels of several grids, one can continue to use the cor-
rection term

nl,k—1 nl,k—1 nl,k—1
A\[Q]* (u\[F]iH - u£\117,+1 ),

%11:1 with a Richardson extrapolated value. For the stopping

criterion, one can choose a measure based on the difference between the solutions
at time 7™t! on the coarsest and finest levels, on the two finest levels, or on
the finest level and a Richardson extrapolated solution. Finally, we examine the
efficiency of this multilevel method. Figure [0 shows the number of solves required
in the first PC iteration for the delayed start-up option. One can see that for two
consecutive levels, the numbering on the coarser level repeats itself on the left half

or one can replace u
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FicUre 8. Grid layout of the multilevel improved PC iteration
after the initial 2 PC iterations. For the second iteration, labelled
k = 1, the left-hashed time interval is removed from the grid hi-
erarchy. For the third iteration, the next hashed time interval is

removed.
1 R 0 -
}/,\*A"'_ —= jevel 0
1 2 -2 3
}/—\A\” Ay -T LT Al evel 1
1/1\'1\ .2 3 3 A 3 A
- Vs A Al A &y A | level 2

Th -|-n+1l4 -|-n+112 Tn+3/4 T

FIGURE 9. Multilevel Method. Counting the substep solves in the
initial PC iteration. Substep solves that occur simultaneously on
different processors are counted only once.

of the finer level. Thus, the last solve occurs on the right half of the finest level. In
particular, a little reflection reveals that the last solve will occur in the second-to-
last subdomain of the finest level, e.g., in Figure[d it occurs in subdomain 7. This
transpires because of the delay resulting from generating an accurate interface value
for this subdomain. Assuming the number of subdomains on the target grid to be
2" n > 1 (other powers can be used but different tree structures will be formed),
this last solve will be numbered 2n. Thus, since the processor performing this solve
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FicUure 10. Counting the substep solves in the second, third,
fourth, and fifth (k = 1,2,3,4) PC iterations with the active do-
main decreasing. The reduction in the number of solves is minor.

has to wait for only 1 communication, the efficiency for the first PC iteration is

2n solves + 1 comm.

For future iterations, the number of solves only gradually decreases as the active
domain is reduced (see Figure [I0). Hence, for [ PC iterations, an upper bound for

the efficiency is

(5.1) 2nl solves + [ comms.

With immediate start-up, the efficiency may improve. Figure [[T]shows the solve
count for an immediate start-up on the same grid hierarchy used in Figure[@ One
can see that the last solve occurs on the last subdomain of the finest grid, and with
a total of 2", n > 1, subdomains on this grid, this solve is numbered (n + 2). Also,
the processor computing this solve must wait for only 1 communication, so that the

efficiency for the first PC iteration is

(n + 2) solves + 1 comms.
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FI1GURE 11. Counting the substep solves in the initial PC iteration
for immediate start-up.

But again the number of solves slowly decreases as the active domain is reduced.
Thus, for [ PC iterations, the efficiency is bounded above by

(5.2) I (n + 2) solves + [ comms.

Although this bound is smaller than the bound for delayed start-up, the overall
number of iterations to reach convergence for this scheme generally will be larger.

Comparing the efficiencies of the two-level and multilevel methods, it initially
appears that the latter method dramatically improves the efficiency. For example,
for a target grid with G = 1024 substeps, the cost for [ iterations for the optimal
two-level method is roughly

l <64 — UJ;”) solves + [ comms,

while the costs for delay and immediate start-up are respectively
181 solves + [ comms

and
11{ solves + [ comms.

However, the two-level method is computed on only (v/G + 1) = 33 processors,
whereas the multilevel methods are computed on 1023 processors. Thus, these
multilevel extensions do not attain processor scalability, i.e., since there are roughly
31 times the number of processors used in the multilevel methods, but the speed-up
for [ iterations is roughly 4-6 times. Of course, this scalability would improve if
more iterations were needed in the two-level method than in the multilevel methods.

5.1. Multilevel FAS reformulation. This multilevel branch scheme may require
more iterations than one may anticipate. Since the coarser levels generally involve
much larger time-steps than the target fine grid, the correction terms given in (£9)—
(I0) may be ineffective in generating accurate interface values. On the other
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hand, correction term (ZI2]) can generate better interface values. More important,
using this correction term, the multilevel branch scheme becomes a multigrid FAS
iteration for the time march. Now the task of the coarse levels is not just to obtain
accurate initial values for the finer levels, but also to eliminate slow time error
modes of the target fine grid approximation [I3]. This can substantially improve
the convergence rate of the branch scheme (see Table [2)).

6. NUMERICAL EXAMPLES

In this section, we demonstrate the performance of the multilevel and two-level
methods on a linear advection equation and a reservoir simulation, respectively.
The goal of the advection problem is to exhibit the performance of the multilevel
scheme on a massively parallel computer system; the goal of the reservoir simulation
is to exhibit the applicability of our two-level method on a realistic, highly nonlinear
problem.

6.1. Linear advection equation: Multilevel schemes. We consider the fol-
lowing linear advection problem defined on the spatial domain D = (0,0.5)% with
inflow boundary ODinfiow = {(2, 9, 2) : zyz = 0} :

%?"‘%"‘%Z"‘?TZ =1 (z,y,2) € D,
(6.1) u(z,y,z,t=0) =1 (z,y,2) € D,
U(.’IZ‘, Y, th) =0 (.’IJ, Y, Z) S 8Dinﬂow~

The computational mesh is uniform for both space and time, with the same spatial
grid of 50 points in each direction (i.e., Az = Ay = Az = 0.01, a total of 125,000

spatial points) at every time-step, and with the time-step on coarsest level 0 being

Aty = 0.01 and on level i being At; = At’g"’l ,7 > 0. The discretization is finite

[n].k
12
metric, and hence, at each time-step, the linear systems are solved with GMRES
preconditioned with a Schaffer multigrid V cycle [12]. Lastly, the stopping criterion
for the multilevel PC iteration is

e, — iz
|}|D;—IcloarscstHP+1 S [Ato - Atﬁnes‘c]'
I'pia

volume in space and backward Euler in time. The operators A are nonsym-

Table 21 shows the results for runs made on a parallel computer system with a total
of 2096 Intel Xeon processors (2.4 GHz). For branch cycles with the correction

TABLE 2. Performance of the multilevel time-marching scheme on
a linear advection equation. Only the FAS cycle was used on the
1023 processors run because the convergence rate of the branch
cycle can already be observed to depend on the number of target
fine time-steps.

| # Procs | # Target Fine Subdomains H Branch Cycle | FAS Cycle |

63 32 19 2
127 64 37 2
255 128 73 2
511 256 >100 2

1023 512 - 2
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term given in ([@9)), the number of PC iterations does not scale with respect to the
number of finest level time-steps. Moreover, although the number of PC iterations
is less than the number of finest level subdomains, the total computational cost for
this method is unsatisfactory since the cost per branch cycle for the target time grids
used in these experiments is roughly 10 solves. However, using the FAS correction
term, which transforms the branch cycle to a FAS cycle, the number of PC iterations
does scale with respect to the number of finest level time-steps. Moreover, the small
number of iterations makes the FAS cycle extremely computationally efficient.

6.2. Fluid flow simulation: Two-level method. We now consider a realistic
nonlinear problem. The two-level methods of Sections and 4.3 are implemented
for the molar mass equations in Athena, our simulator for multiphase, multicom-
ponent, fluid flow in porous media. These experiments were conducted on a Linux
cluster with PIII processors, where the interface values are communicated to the
child processors only after the predictor has completed its full time march. The
correction terms for the predictor equations, Sl[g]i’k, are given in (£TIT).

Our experiments were carried out on a geological domain of size 1000 m x 100 m X
70m, with its upper end points located at a depth of 50 m from the earth’s sur-
face. The vertical topography of the domain consists of four layers of rock: shale,
sandstone, shale, sandstone. Hence, the mathematical equations have discontinu-
ous coefficients since the lithology for sandstone has a porosity of ¢ = 0.5 and a
permeability of

K, =500mD, K, =500mD, K, =500mD,
whereas the lithology for shale has a porosity of ¢ = 0.5 and a permeability of
K,=5-10"%mD, Ky =5-10"%mD, K, =5-10"°mD.

Finally, the chosen boundary conditions are a left inflow flux of 5-10~ mol/m?s for
oil and gas, a right outflow flux of 6.5 - 10~% mol/m?s for water, a top temperature
value of 450 K, and a bottom temperature value of 460 K. Figures[[2] and [[3] display
Athena’s output results for a simulation of a 100 years. These figures also illustrate
the computational grid used in our experiments.

0.227 0.422
0204 038

~0.181

~0.338

—0.159 ~0.296

~0.136 ~0.253

—0.113 0211

~0.0907 ~0.169

~0.068 ~0.127
~0.0a54 -0.0845
0 0

FIGURE 12. Gas saturation. FIGURE 13. Oil saturation.
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6.3. Improved parallel PC algorithm in Athena. We apply the improved par-
allel PC algorithm of Section to the molar mass equations.

6.3.1. Computational results: Scalability. In this experiment, we are interested in
the processor scalability of our parallel two-level algorithm, although we remark
that usually only 2 PC iterations were needed to attain convergence in our experi-
ments. By varying the number of processors, we explore the speedup of a parallel
run over a serial run. Ideally, as more processors are used, the wall-clock time
is expected to decrease linearly as a function of the number of processors used.
However, because of the sequentiality of the predictor march, this ideal situation
is observed only when the computational costs dominate the communication costs
up to the optimal subdomain partitioning.

Our implementation of the two-level method is based on an MPI master-slave
processor structure, where the number of subdomains equals the number of slave
processors. In our experiments, we vary the number of subdomains, or slave proces-
sors, while keeping the size of the target time-domain fixed to G = 16 time-steps.
Therefore, successively doubling the number of subdomains i times, i = 0,...,4,
the number of substeps in each subdomain successively halves to p = 2*~%. Since
a subdomain resides on one processor, increasing the number of subdomains de-
creases the amount of computation per slave processor, but increases the number
of communications and the sequential computation load of the predictor step.

Results for our experiments are shown in Figures [I4] and On the left plots
of these figures, the slave processor run-time is plotted against i, where 27 is the
number of subdomains. This slave processor run-time is the average of the times
for all slave processors. As can be observed, the computational time decreases
(monotonic decreasing curve) as the number of subdomains increases, but at the
same time, the collective broadcasting time increases (monotonic increasing curve).
Note that the computational time decreases more than expected, e.g., for i = 1,
one would expect the computational time only to halve, whereas the actual time
is quartered. There are two possibilities for this discrepancy. First, the number of

15.
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0.8 b
0.7}
0.6
0.5
0.4
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0.2}
0.1

0

FIGURE 14. Spatial grid of 200 cells. Run time vs. 4, where 2%,
i = 0,...,4, is the number of subdomains. On the top, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the bottom, the
speedup for the full slave and master run.
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FIGURE 15. Spatial grid of 800 cells. Run time vs. i, where 27,
i = 0,...,4 is the number of subdomains. On the left, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the right, the
speedup for the full slave and master run.

Newton-GMRES iterations is less in the parallel runs, and second, the number of
Jacobian matrix formations are clearly more in a serial run.

Now, the relevant timings are the sums of the computation and communication
times. These are plotted in the square-marked curve, which shows that the method
is competitive up to a degree of parallelism, i.e., to a balance between the compu-
tational and communication costs. For the small number of spatial points used in
this experiment, the communication costs are relatively high.

So far, we have considered only the timings for the corrector solves. To observe
the overall speedup of the two-level method, both the predictor (master processor)
and corrector (slave processors) timings need to be added. This is displayed on the
right-hand graph of Figure [[4l There we observe that the best speedup occurs in
the optimal subdomain partitioning with P = /16 = 22.

6.3.2. Computational results: Performance. In this subsection, we explore the scal-
ing when the number of spatial points is increased. As previously indicated, when
the number of spatial points increases, the computational costs dominate the com-
munication costs. This is indeed the case as can be seen from the left-hand graph of
Figure Hence, we have an overall improvement of the processor scalability. On
the right-hand graph, we see again that the best speedup occurs with the optimal
subdomain partitioning.

6.4. Linearized parallel PC algorithm in Athena. In this subsection, we re-
peat the experiments of Subsection [6.3 T using the linearized parallel PC algorithm.
Scalability results are plotted in Figure [I6] showing better parallel speedup since
there are less communications—only the last corrector solution needs to be com-
municated to the root processor. Also, the overall speedup is better because only
one time-step is needed in the corrector march. However, this linearized method
is inefficient for highly nonlinear systems because the initial values for the correc-
tor are so badly approximated that the required number of PC iterations to reach
convergence suffers an unacceptable increment.
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FIGURE 16. Spatial grid of 200 cells. Run time vs. i, where 27,
t = 0,...,4 is the number of subdomains. On the left, timing
for communication (.- increasing), calculation (.- decreasing), and
the sum of both (- -) for the slave processors. On the right, the
speedup for the full slave and master run.

7. CONCLUSIONS

In this paper, several Parareal-type schemes for time parallelization were devel-
oped. We introduced several simple predictor correction terms, and a progressive
domain reduction procedure that simulated forward substitution. We also extended
our two-level method to multilevels. In particular, using correction term (£12), our
multilevel branching cycle converts to a FAS time marching iteration, which has
better convergence properties.

The performance of these methods was demonstrated through a model linear
advection problem and a realistic reservoir simulation. Results of the advection
problem exhibited the performance of the multilevel methods on a large number
of processors. The FAS iteration displayed superior performance. Results of the
reservoir model demonstrated the applicability of the parallel time marching scheme
to realistic nonlinear problems. Although only a small number of processors were
used, our two-level scheme displayed encouraging performance for a highly nonlinear
problem. However, the linearized two-level PC iteration did not display similar
encouraging performance because of the equations’ high nonlinearity.
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