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THE BOUNDARIES OF THE SOLUTIONS
OF THE LINEAR VOLTERRA INTEGRAL EQUATIONS

WITH CONVOLUTION KERNEL

ISMET ÖZDEMIR AND Ö. FARUK TEMIZER

Abstract. Some boundaries about the solution of the linear Volterra integral
equations of the second type with unit source term and positive monotonically
increasing convolution kernel were obtained in Ling, 1978 and 1982. A method
enabling the expansion of the boundary of the solution function of an equation
in this type was developed in I. Özdemir and Ö. F. Temizer, 2002.

In this paper, by using the method in Özdemir and Temizer, it is shown
that the boundary of the solution function of an equation in the same form
can also be expanded under different conditions than those that they used.

1. Introduction

An integral equation of the form

f(t) = φ(t) −
∫ t

0

K(t − τ ) f(τ ) dτ = φ(t) − K ∗ f(1.1)

is known as the second type linear Volterra integral equation with convolution
kernel, where φ is the source term, K is the kernel which are the known functions,
and f is an unknown function.

The way of obtaining a new equation equivalent to the equation of the form (1.1)
is given by Theorem A, called the Equivalence Theorem by R. Ling, below.

Theorem A (Equivalence Theorem) ([2, Theorem 1.1.1]). If
(1) K ∈ C1[0,∞),
(2) φ is locally integrable,

then the following two integral equations are equivalent:

f(t) = φ(t) −
∫ t

0

K(t − τ ) f(τ ) dτ,

f(t) = ψ(t) −
∫ t

0

L(t − τ ) f(τ ) dτ,
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where

ψ(t) = φ(t) +
∫ t

0

g′(t − τ ) φ(τ ) dτ,

L(t) = g′(t) + ag(t) +
∫ t

0

g(t − τ ) K ′(τ ) dτ,

and where a = K(0), g is any function such that g ∈ C1[0,∞) and g(0) = 1.

Sufficient conditions providing the obtaining of the solution of equation (1.1) by
means of g(t), which is the solution of the equation

g(t) = 1 −
∫ t

0

K(t − τ )g(τ )dτ = 1 − K ∗ g,(1.2)

is given by Theorem B, below:

Theorem B (Convolution Theorem) ([1, pp. 229–230]). If the conditions

(1) φ′(t) exists for 0 ≤ t ≤ T,

∫ T

0

|φ′(t)| dt < ∞ (T > 0),

(2)
∫ T

0

|K(t)| dt < ∞

hold, then the solution of equation (1.1) is given by

(1.3) f(t) = g(t) φ(0) +
∫ t

0

g(t − τ )φ′(τ )dτ = g(t) φ(0) + g ∗ φ′ (0 ≤ t ≤ T ),

where g(t) is the solution of (1.2).

Therefore, if g is known, so is f , or if the properties of g are known, then we
may be able to obtain certain properties of f by (1.3).

Some boundaries about the function f which is the solution of linear Volterra
integral equation of the second type with unit source term and monotonically in-
creasing kernel are obtained in Theorem C and Theorems 1–4, below:

Theorem C ([3, Theorem B]). Let us consider the equation

f(t) = 1 −
∫ t

0

K(t − τ ) f(τ )dτ = 1 − K ∗ f.(1.4)

If the conditions

(1) K(t) > 0, K ′(t) > 0 and K ′′(t) ≤ 0 for 0 ≤ t < ∞,

(2) 4b ≤ a2

hold, then the solution of (1.4) satisfies the inequality |f(t)| ≤ 1 for 0 ≤ t < ∞,
where a = K(0) and b = K ′(0).

Theorem 1 ([3, Theorem 3.1]). Let us consider the equation

f1(t) = 1 −
∫ t

0

K1(t − τ ) f1(τ )dτ = 1 − K1 ∗ f1.(1.5)
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If

(1) K1(t) > 0, K ′
1(t) > 0, K ′′

1 (t) > 0 and K ′′′
1 (t) ≤ 0 for 0 ≤ t < ∞,

(2) a2
10 < 4a11,

(3) 3a11 ≤ a2
10,

(4) 2a3
10 − 9a10a11 + 27a12 ≤ 0,

then the solution of (1.5) satisfies the inequality |f1(t)| ≤ 2 for 0 ≤ t < ∞, where
a10 = K1(0), a11 = K ′

1(0) and a12 = K ′′
1 (0).

Theorem 2 ([3, Theorem 3.3]). Let us consider the equation

f2(t) = 1 −
∫ t

0

K2(t − τ ) f2(τ )dτ = 1 − K2 ∗ f2.(1.6)

If

(1) K2(t) > 0, K ′
2(t) > 0, K ′′

2 (t) > 0, K ′′′
2 (t) > 0 and K

(4)
2 (t) ≤ 0 for 0 ≤ t < ∞,

(2) a2
20 < 3a21,

(3)
8
3
a21 ≤ a2

20,

(4) a3
20 − 4a20a21 + 8a22 ≤ 0,

(5) −3a4
20 + 16a2

20a21 − 64a20a22 + 256a23 ≤ 0,

then the solution of (1.6) satisfies the inequality |f2(t)| ≤ 4 for 0 ≤ t < ∞, where
a20 = K2(0), a21 = K ′

2(0), a22 = K ′′
2 (0) and a23 = K ′′′

2 (0).

Theorem 3. Let us consider the equation

f3(t) = 1 −
∫ t

0

K3(t − τ ) f3(τ )dτ = 1 − K3 ∗ f3.(1.7)

If

(1) K3(t) > 0, K ′
3(t) > 0, K ′′

3 (t) > 0, K ′′′
3 (t) > 0, K

(4)
3 (t) > 0 and K

(5)
3 (t) ≤ 0

for 0 ≤ t < ∞,

(2) a2
30 <

8
3
a31,

(3)
5
2
a31 ≤ a2

30,

(4) 4a3
30 − 15a30a31 + 25a32 ≤ 0,

(5) −3a4
30 + 15a2

30a31 − 50a30a32 + 125a33 ≤ 0,

(6) 4a3
30 − 25a30a31 + 125a32 > 0,

(7) 4a5
30 − 25a3

30a31 + 125a2
30a32 − 625a30a33 + 3125a34 ≤ 0,

then |f3(t)| ≤ 8 for 0 ≤ t < ∞, where a30 = K3(0), a31 = K ′
3(0), a32 = K ′′

3 (0),
a33 = K ′′′

3 (0) and a34 = K
(4)
3 (0), (for the proof, see [4]).

Theorem 4. Let us consider the equation

f4(t) = 1 −
∫ t

0

K4(t − τ )f4(τ )dτ = 1 − K4 ∗ f4.(1.8)
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If

(1) K4(t) > 0, K ′
4(t) > 0, K ′′

4 (t) > 0, K ′′′
4 (t) > 0, K

(4)
4 (t) > 0, K

(5)
4 (t) > 0

and K
(6)
4 (t) ≤ 0 for 0 ≤ t < ∞,

(2) a2
40 <

5
2
a41,

(3)
12
5

a41 ≤ a2
40,

(4) 5a3
40 − 18a40a41 + 27a42 ≤ 0,

(5) −5a4
40 + 242

40a41 − 72a40a42 + 144a43 ≤ 0,

(6) 7a3
40 − 36a40a41 + 108a42 > 0,

(7) a5
40 − 6a3

40a41 + 27a2
40a42 − 108a40a43 + 324a44 ≤ 0,

(8) 5a3
40 − 36a40a41 + 216a42 > 0,

(9) −5a4
40 + 36a2

40a41 − 216a40a42 + 1296a43 > 0,

(10) −5a6
40 + 36a4

40a41 − 216a3
40a42 + 1296a2

40a43 − 7776a40a44+46656a45 ≤ 0,

then |f4(t)| ≤ 16 for 0 ≤ t < ∞, where a40 = K4(0), a41 = K ′
4(0), a42 = K ′′

4 (0),
a43 = K ′′′

4 (0), a44 = K
(4)
4 (0) and a45 = K

(5)
4 (0), (for the proof, see [4]).

In the proof of Theorem 1, the equivalent of (1.5) is found by first using the
Equivalence Theorem, and second it is obtained that the kernel of the new equation
with unit source term related to equivalent equation satisfies the conditions of
Theorem C. Thus, by using Theorems C and B, respectively, a boundary |f1(t)| ≤ 2
for the function f1, which is the solution of equation (1.5), is obtained [3].

Also, in the proof of Theorem 2, first, the relation which is equivalent to (1.6) is
found by using the Equivalence Theorem, and second, it is obtained that the kernel
of the new equation with unit source term related to equivalent equation satisfies
the conditions of Theorem 1, [3]. Thus, by using Theorems 1 and B, respectively, a
boundary |f2(t)| ≤ 4 is found for the function f2, which is the solution of equation
(1.6).

By the same method, in Theorem 3, by using Theorems A, 2 and B, respectively,
it is obtained that a boundary is |f3(t)| ≤ 8 for the function f3, which is the solution
of equation (1.7), [4].

Also, by using Theorems A, 3 and B, respectively, a boundary |f4(t)| ≤ 16 is
obtained for the function f4, which is the solution of equation (1.8), [4, Theorem
4].

Furthermore, by using the method used in the proof of Theorems 1–4 succes-
sively, it is concluded that a boundary |fn(t)| ≤ 2n for the function fn, which is
the solution of the equation
(1.9)

fn(t) = 1 −
∫ t

0

Kn(t − τ ) fn(τ )dτ = 1 − Kn ∗ fn (n is an integer greater than 1),

with unit source term and monotonically increasing convolution kernel, could be
obtained, [4]. The sufficient conditions concerning obtaining a solution of equation
(1.9), as above, are given by Theorem 2.n which is the generalization of Theorem
2.
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2. The main results

In the case a2
10 ≥ 4a11 of Theorem 1, the new conditions enabling the validity of

the consequence of Theorem 1 are given by Theorem 2.1, below, which is different
than Theorem 1 of R. Ling [3].

In the present paper, it is first obtained, in the proof of Theorem 2.2 that equation
(2.5) is equivalent to equation (2.4) by the Equivalence Theorem. Besides, it is
obtained that the kernel L12 of equation (2.7) satisfies the conditions of Theorem
2.1. Thus, by using Theorems 2.1 and B, respectively, a boundary |f12(t)| ≤ 4 is
obtained for the function f12, which is the solution of equation (2.4).

Also, in the proof of Theorem 2.3, first, (2.15), which is equivalent to (2.14) is
found by the aid of the Equivalence Theorem, and later it is obtained that the
kernel L13 of equation (2.17) satisfies the conditions of Theorem 2.2. Thus, by
using Theorems 2.2 and B, respectively, a boundary |f13(t)| ≤ 8 is found for the
function f13 which is the solution of equation (2.14).

Besides, in the proof of Theorem 2.4, first, (2.25), which is equivalent to (2.24), is
found by using the Equivalence Theorem, and later it is obtained that the kernel L14

of equation (2.27) satisfies the conditions of Theorem 2.3. Thus, by using Theorems
2.3 and B, respectively, a boundary |f14(t)| ≤ 16 is found for the function f14 which
is the solution of equation (2.24).

Furthermore, by employing the method used in the proofs of Theorems 2.2–2.4,
successively, it is concluded that a boundary |f1n(t)| ≤ 2n, for the solution function
f1n of any equation of the form

f1n(t) = 1 −
∫ t

0

K1n(t − τ ) f1n(τ )dτ = 1 − K1n ∗ f1n

with unit source term and monotonically increasing convolution kernel, has been
obtained in Theorem 2.n which is the generalization of Theorem 2.1.

Also, the infinitely many numbers of kernels K1n of the form

K1n(t) =
n+1∑
m=0

cmtn+1−m + cn+2e
−t

satisfying the conditions of Theorem 2.n are derived by a method.
Hereafter, we assume unless stated otherwise that t ∈ [0,∞) and n is an arbitrary

element of N = {1, 2, 3, . . .}.

Theorem 2.1 ([3, Theorem 3.2]). Let us consider the equation of the form

f11(t) = 1 −
∫ t

0

K11(t − τ ) f11(τ )dτ = 1 − K11 ∗ f11.(2.1)

Suppose that the conditions

(1) K11(t) > 0, K ′
11(t) > 0, K ′′

11(t) > 0 and K ′′′
11(t) ≤ 0 for 0 ≤ t < ∞,

(2) a2
110 <

9
2
a111,

(3) 4a111 ≤ a2
110,

(4) 2a3
110 − 9a110a111 + 27a112 ≤ 0,

hold. Then the solution of (2.1) satisfies the inequality |f11(t)| ≤ 2 for 0 ≤ t < ∞,
where a110 = K11(0), a111 = K ′

11(0), a112 = K ′′
11(0).
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We should note that condition (2) of Theorem 2.1 is equivalent to the inequality
given [3]:

a110

3
<

a110 −
√

a2
110 − 4a111

2
.

Now, we can give a function K11 satisfying the conditions of Theorem 2.1, as
follows:

Example 2.1. If there exist the numbers a110, a111, a112 > 0 satisfying conditions
(2)–(4) of Theorem 2.1, then there exists at least one function K11 which satisfies
condition (1) of Theorem 2.1, of the form

K11(t) =
2∑

m=0

cmt2−m + c3e
−t(2.2)

such that

K11(0) = a110, K ′
11(0) = a111, K ′′

11(0) = a112.(2.3)

To see the validity of this assertion, we must first show that there exist the
numbers a110, a111, a112 > 0 satisfying conditions (2)–(4) of Theorem 2.1. Let us
choose the numbers a110 and a111 satisfying conditions (2) and (3) of Theorem 2.1
and define P11i for all i ∈ N3 and γ11 by

P11i(γ) =
i∑

k=0

(−γ)i−ka11(k−1) (a11(−1) ≡ 1, by convention) and γ11 =
a110

3
.

By Nk, hereafter we mean the set of positive integers all of which are less than or
equal to k ∈ N, that is, Nk = {1, 2, 3, . . . , k}.

Since condition (4) of Theorem 2.1 is equivalent to

P113(γ11) = −γ11P112(γ11) + a112 ≤ 0,

the number a112 > 0 can be chosen as

0 < a112 ≤ γ11P112(γ11).

Thus, the numbers a110, a111, a112 fulfill conditions (2)–(4) of Theorem 2.1.
The solution of the system of linear equations (2.3) which is equivalent to

c2 + c3 = a110, c1 − c3 = a111, 2c0 + c3 = a112

is obtained as

(c0, c1, c2, c3) =
(

a112 − c3

2
, a111 + c3, a110 − c3, c3

)
,

where c3 is an arbitrary constant such that

0 ≤ c3 < min{a110, a112}.
Hence, every function K11 given by (2.2) also satisfies condition (1) of Theorem
2.1.

For example, if the numbers a110 and a111 are taken as a110 = 21
10 and a111 = 1,

then γ11 = 7
10 and the number a112 satisfying the inequality

0 < a112 ≤ γ11P112(γ11) =
14

1000
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can be chosen as a112 = 1
100 . Also, c3 satisfying the inequality

0 ≤ c3 < min{a110, a112}
can be taken as c3 = 1

200 . Then,

c0 =
1

400
, c1 =

201
200

, c2 =
419
200

and

K11(t) =
1

400
t2 +

201
200

t +
419
200

+
1

200
e−t.

Theorem 2.2. Let us consider the equation

f12(t) = 1 −
∫ t

0

K12(t − τ )f12(τ )dτ = 1 − K12 ∗ f12.(2.4)

Suppose that the conditions

(1) K12(t) > 0, K ′
12(t) > 0, K ′′

12(t) > 0, K ′′′
12(t) > 0 and K

(4)
12 (t) ≤ 0 for

0 ≤ t < ∞,

(2) a2
120 <

28
9

a121,

(3) 3a121 ≤ a2
120,

(4) 106a3
120 − 405a120a121 + 729a122 ≤ 0,

(5) −2a4
120 + 9a2

120a121 − 27a120a122 + 81a123 ≤ 0,

hold. Then the solution of (2.4) satisfies the inequality |f12(t)| ≤ 4 for 0 ≤ t < ∞,
where a120 = K12(0), a121 = K ′

12(0), a122 = K ′′
12(0), a123 = K ′′′

12(0).

Proof. If the function g is taken as g(t) = e−γt (γ ∈ R) in Theorem A, then it is
observed that

f12(t) = e−γt − L12 ∗ f12(2.5)

which is equivalent to (2.4), where

L12(t) = (a120 − γ) e−γt + K ′
12 ∗ e−γt.(2.6)

By differentiating (2.6), it is obtained by L′
12(t), L′′

12(t) and L′′′
12(t) that

L′
12(t) =

(
γ2 − a120γ + a121

)
e−γt + K ′′

12 ∗ e−γt,

L′′
12(t) =

(
−γ3 + a120γ

2 − a121γ + a122

)
e−γt + K ′′′

12 ∗ e−γt

and

L′′′
12(t) =

(
γ4 − a120γ

3 + a121γ
2 − a122γ + a123

)
e−γt + K

(4)
12 ∗ e−γt.

Now, one can see that the kernel L12 of

h12(t) = 1 − L12 ∗ h12(2.7)

satisfies the conditions of Theorem 2.1.
The corresponding inequalities to conditions (2) and (3) of Theorem 2.1 are

[L12(0)]2 <
9
2
L′

12(0)(2.8)

and

4L′
12(0) ≤ [L12(0)]2,(2.9)
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respectively. Inequalities (2.8) and (2.9) are equivalent to

(a120 − γ)2 <
9
2

(
γ2 − a120γ + a121

)
(2.10)

and

4
(
γ2 − a120γ + a121

)
≤ (a120 − γ)2,(2.11)

respectively. Inequality (2.10) is equivalent to

q1(γ) = 7γ2 − 5a120γ + 9a121 − 2a2
120 > 0.

The discriminant of q1(γ) = 0 is 9(9a2
120 − 28a121), which is negative by condition

(2) of Theorem 2.2. Hence, q1(γ) > 0 for every γ ∈ R.
Inequality (2.11) is equivalent to

q2(γ) = 3γ2 − 2a120γ + 4a121 − a2
120 ≤ 0.

The discriminant of q2(γ) = 0 is 16(a2
120−3a121), which is nonnegative by condition

(3) of Theorem 2.2. Hence, if γ is taken as γ = γ12 = a120
3 , then q2(γ) = q2(γ12) ≤ 0.

The inequality corresponding to condition (4) of Theorem 2.1 is

2[L12(0)]3 − 9L12(0)L′
12(0) + 27L′′

12(0) ≤ 0

or

q3(γ) = 2(a120 − γ)3 − 9(a120 − γ)(γ2 − a120γ + a121)

+ 27(−γ3 + a120γ
2 − a121γ + a122) ≤ 0.

By condition (4) of Theorem 2.2,

q3(γ12) =
1
27

(106a3
120 − 405a120a121 + 729a122) ≤ 0.

The corresponding inequalities to condition (1) of Theorem 2.1 are

L12(t), L′
12(t), L′′

12(t) > 0 and L′′′
12(t) ≤ 0.

Since a120−γ12 is positive, L12(t) > 0 and the discriminant of γ2−a120γ +a121 = 0
is negative by condition (2) of Theorem 2.2, γ2

12 − a120γ12 + a121 > 0, and so
L′

12(t) > 0.
From condition (5) of Theorem 2.2,

−γ3
12 + a120γ

2
12 − a121γ12 + a122 =

1
27

(
2a3

120 − 9a120a121 + 27a122

)
> 0

and

γ4
12 − a120γ

3
12 + a121γ

2
12 − a122γ12 + a123

=
1
81

(
−2a4

120 + 9a2
120a121 − 27a120a122 + 81a123

)
≤ 0.

Therefore, L′′
12(t) > 0, L′′′

12(t) ≤ 0. So, the solution of equation (2.7) satisfies the
inequality |h12(t)| ≤ 2.

By Theorem B, the solution of equation (2.5) can be expressed as

f12(t) = h12(t) − γ12

∫ t

0

h12(t − τ )e−γ12τdτ ,

and thus,

|f12(t)| ≤ 2 + 2γ12

∫ t

0

e−γ12τdτ = 2 − 2(e−γ12t − 1) ≤ 4,

which completes the proof of Theorem 2.2. �
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A function K12 satisfying conditions (1)–(5) of Theorem 2.2 can be obtained by
the following method:

Example 2.2. If there exist the numbers a120, a121, a122, a123 > 0 satisfying
conditions (2)–(5) of Theorem 2.2, then there exists at least one function K12

which satisfies condition (1) of Theorem 2.2 of the form

K12(t) =
3∑

m=0

cmt3−m + c4e
−t(2.12)

such that

K12(0) = a120, K ′
12(0) = a121, K ′′

12(0) = a122, K ′′′
12(0) = a123.(2.13)

First, let us see that there exist the numbers a120, a121, a122, a123 > 0 satisfying
conditions (2)–(5) of Theorem 2.2. It is clear that the numbers a120 and a121

satisfying conditions (2) and (3) of Theorem 2.2 exist. Now, we shall define the
polynomial P12i for all i ∈ N4 and the number γ12 by

P12i(γ) =
i∑

k=0

(−γ)i−ka12(k−1) (a12(−1) ≡ 1, by convention) and γ12 =
a120

3
.

Then, it can be clearly obtained by the proof of Theorem 2.2 that the numbers a110

and a111 satisfying conditions (2) and (3) of Theorem 2.1 can be defined by

a110 = P121(γ12) and a111 = P122(γ12).

Besides, the number a112 > 0 can be found by means of a110 and a111 as it was
derived in Example 2.1. Since condition (4) of Theorem 2.2 is equivalent to

2[P121(γ12)]3 − 9P121(γ12)P122(γ12) + 27P123(γ12) ≤ 0,

a122 is found as

a122 = a112 + γ12P122(γ12) = a112 + γ12a111,

if P123(γ12) is taken as

P123(γ12) = −γ12P122(γ12) + a122 = a112.

Furthermore, since condition (5) of Theorem 2.2 is equivalent to

P124(γ12) = −γ12P123(γ12) + a123 ≤ 0,

the number a123 > 0 can be chosen as

0 < a123 ≤ γ12P123(γ12) = γ12a112.

Clearly, the numbers a120, a121, a122, a123 > 0, obtained above, satisfy conditions
(2)–(5) of Theorem 2.2. The solution of the system of linear equations (2.13) which
is equivalent to

c3 + c4 = a120, c2 − c4 = a121, 2c1 + c4 = a122, 6c0 − c4 = a123

is obtained as

(c0, c1, c2, c3, c4) =
(

a123 + c4

6
,
a122 − c4

2
, a121 + c4, a120 − c4, c4

)
,

where c4 is an arbitrary constant satisfying the inequality

max{−a121,−a123} < c4 ≤ 0.
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Hence, every function K12 of the form (2.12) also satisfies condition (1) of Theorem
2.2.

For example, if the numbers a120 and a121 are taken as a120 = 26
5 and a121 =

9, then γ12 = 26
15 ,

a110 = P121(γ12) =
52
15

and a111 = P122(γ12) =
673
225

.

By using Example 2.1, γ11 = 52
45 and the number a112 > 0 satisfying the inequality

0 < a112 ≤ γ11P112(γ11) =
33748
91125

can be chosen as a112 = 3
10 . Hence,

a122 = a112 + γ12a111 =
37021
6750

.

Furthermore, the number a123 > 0 satisfying the inequality

0 < a123 ≤ γ12a112 =
13
25

can be taken as a123 = 1
2 . Additionally, the number c4 satisfying the inequality

max{−a121,−a123} = max
{
−9,−1

2

}
< c4 ≤ 0

can be taken as c4 = −1
3 . Therefore,

(c0, c1, c2, c3, c4) =
(

1
36

,
39271
13500

,
26
3

,
83
15

,−1
3

)
,

and thus,

K12(t) =
1
36

t3 +
39271
13500

t2 +
26
3

t +
83
15

− 1
3
e−t.

Theorem 2.3. Let us consider the equation of the form

f13(t) = 1 −
∫ t

0

K13(t − τ )f13(τ )dτ = 1 − K13 ∗ f13(2.14)

under the following assumptions:

(1) K13(t) > 0, K ′
13(t) > 0, K ′′

13(t) > 0, K ′′′
13(t) > 0, K

(4)
13 (t) > 0 and K

(5)
13 (t) ≤ 0

for 0 ≤ t < ∞,

(2) a2
130 <

19
7

a131,

(3)
8
3
a131 ≤ a2

130,

(4) 161a3
130 − 576a130a131 + 864a132 ≤ 0,

(5) −11a4
130 + 48a2

130a131 − 128a130a132 + 256a133 ≤ 0,

(6) 3a3
130 − 16a130a131 + 64a132 > 0,

(7) 3a5
130 − 16a3

130a131 + 64a2
130a132 − 256a130a133 + 1024a134 ≤ 0,

where a130 = K13(0), a131 = K ′
13(0), a132 = K ′′

13(0), a133 = K ′′′
13(0), a134 =

K
(4)
13 (0). Then, the solution of (2.14) satisfies the inequality |f13(t)| ≤ 8 for 0 ≤

t < ∞.
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Proof. The equation (2.14) may be written in the form f13(t) = 1 − K13 ∗ f13. By
taking g(t) = e−γt (γ ∈ R) in Theorem A, the equivalent equation is obtained as

f13(t) = e−γt − L13 ∗ f13,(2.15)

where

L13(t) = (a130 − γ)e−γt + K ′
13 ∗ e−γt.(2.16)

By differentiating (2.16), it is found by L′
13(t), L′′

13(t), L′′′
13(t) and L

(4)
13 (t) that

L′
13(t) =

(
γ2 − a130γ + a131

)
e−γt + K ′′

13 ∗ e−γt,

L′′
13(t) =

(
−γ3 + a130γ

2 − a131γ + a132

)
e−γt + K ′′′

13 ∗ e−γt,

L′′′
13(t) =

(
γ4 − a130γ

3 + a131γ
2 − a132γ + a133

)
e−γt + K

(4)
13 ∗ e−γt

and

L
(4)
13 (t) =

(
−γ5 + a130γ

4 − a131γ
3 + a132γ

2 − a133γ + a134

)
e−γt + K

(5)
13 ∗ e−γt.

Let us turn to show that the kernel L13 of the equation

h13(t) = 1 − L13 ∗ h13(2.17)

satisfies all the conditions of Theorem 2.2. The corresponding inequalities to con-
ditions (2) and (3) of Theorem 2.2 are

[L13(0)]2 <
28
9

L′
13(0)(2.18)

and

3L′
13(0) ≤ [L13(0)]2,(2.19)

respectively. Inequalities (2.18) and (2.19) are equivalent to

(a130 − γ)2 <
28
9

(
γ2 − a130γ + a131

)
(2.20)

and

3
(
γ2 − a130γ + a131

)
≤ (a130 − γ)2 .(2.21)

Since inequality (2.20) is equivalent to

q1(γ) = 19γ2 − 10a130γ + 28a131 − 9a2
130 > 0

and the discriminant of q1(γ) = 0 is 112(7a2
130 − 19a131), which is negative by

condition (2) of Theorem 2.3, q1(γ) > 0 for every γ ∈ R.
Since inequality (2.21) is equivalent to

q2(γ) = 2γ2 − a130γ + 3a131 − a2
130 ≤ 0

and the discriminant of q2(γ) = 0 is 3(3a2
130 − 8a131), which is nonnegative by

condition (3) of Theorem 2.3, if γ is chosen as γ = γ13 = a130
4 , then q2(γ13) ≤ 0.

The inequality corresponding to condition (4) of Theorem 2.2 is

106[L13(0)]3 − 405L13(0)L′
13(0) + 729L′′

13(0) ≤ 0,

which is equivalent to

q3(γ) = 106 (a130 − γ)3 − 405 (a130 − γ)
(
γ2 − a130γ + a131

)
+ 729

(
−γ3 + a130γ

2 − a131γ + a132

)
≤ 0.
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By condition (4) of Theorem 2.3,

q3(γ13) =
27
32

(
161a3

130 − 576a130a131 + 864a132

)
≤ 0.

The inequality corresponding to condition (5) of Theorem 2.2 is

−2[L13(0)]4 + 9[L13(0)]2L′
13(0) − 27L13(0)L′′

13(0) + 81L′′′
13(0) ≤ 0,

which is equivalent to

q4(γ) = −2 (a130 − γ)4 + 9 (a130 − γ)2
(
γ2 − a130γ + a131

)
−27 (a130 − γ)

(
−γ3 + a130γ

2 − a131γ + a132

)
+

+81
(
γ4 − a130γ

3 + a131γ
2 − a132γ + a133

)
≤ 0.

By condition (5) of Theorem 2.3,

q4(γ13) =
81
256

(
−11a4

130 + 48a2
130a131 − 128a130a132 + 256a133

)
≤ 0.

Furthermore, a130 − γ13 is positive. Thus, L13(t) > 0. Since the discriminant of
γ2 − a130γ + a131 = 0 is negative by condition (2) of Theorem 2.3, γ2

13 − a130γ13 +
a131 > 0 and so, L′

13(t) > 0. Additionally, by condition (6) of Theorem 2.3,

−γ3
13 + a130γ

2
13 − a131γ13 + a132 =

1
64

(
3a3

130 − 16a130a131 + 64a132

)
> 0

and thus, L′′
13(t) > 0. By condition (7) of Theorem 2.3,

γ4
13 − a130γ

3
13 + a131γ

2
13 − a132γ13 + a133

=
1

256
(
−3a4

130 + 16a2
130a131 − 64a130a132 + 256a133

)
> 0

and

− γ5
13 + a130γ

4
13 − a131γ

3
13 + a132γ

2
13 − a133γ13 + a134

=
1

1024
(
3a5

130 − 16a3
130a131 + 64a2

130a132 − 256a130a133 + 1024a134

)
≤ 0,

and so, L′′′
13(t) > 0 and L

(4)
13 (t) ≤ 0.

In conclusion, L13 satisfies all the conditions of Theorem 2.2 and therefore, the
solution of (2.17) satisfies the inequality |h13(t)| ≤ 4. Using the Convolution The-
orem, the solution of (2.15) is found as

f13(t) = h13(t) − γ13

∫ t

0

h13(t − τ )e−γ13τdτ ,

and hence

|f13(t)| ≤ 4 + 4γ13

∫ t

0

e−γ13τdτ = 4 − 4(e−γ13t − 1) ≤ 8. �

At least one function K13 satisfying conditions (1)–(7) of Theorem 2.3 can be
obtained using the following method:
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Example 2.3. If there exist the numbers a130, a131, a132, a133, a134 > 0 satisfying
conditions (2)–(7) of Theorem 2.3, then there exists at least one function K13 of
the form

K13(t) =
4∑

m=0

cmt4−m + c5e
−t(2.22)

such that
(2.23)

K13(0) = a130, K
′
13(0) = a131, K

′′
13(0) = a132, K

′′′
13(0) = a133, K

(4)
13 (0) = a134

and K13 also satisfies condition (1) of Theorem 2.3.
To see the validity of this assertion let us first choose the numbers a130 and a131

satisfying conditions (2) and (3) of Theorem 2.3 and define the polynomial P13i for
all i ∈ N5 and the number γ13, as follows:

P13i(γ) =
i∑

k=0

(−γ)i−ka13(k−1) (a13(−1) ≡ 1, by convention) and γ13 =
a130

4
.

Then, it can be clearly seen from the proof of Theorem 2.3 that the numbers a120

and a121 defined by the equalities

a120 = P131(γ13) and a121 = P132(γ13)

satisfy conditions (2) and (3) of Theorem 2.2. It is of course that the numbers
a122, a123 can also be found by means of a120, a121 from Example 2.2.

Besides, since condition (4) of Theorem 2.3 is equivalent to

106[P131(γ13)]3 − 405P131(γ13)P132(γ13) + 729P133(γ13) ≤ 0,

if P133(γ13) is taken as

P133(γ13) = −γ13P132(γ13) + a132 = a122,

then the number a132 is obtained as

a132 = a122 + γ13P132(γ13) = a122 + γ13a121 > 0.

Since condition (5) of Theorem 2.3 is equivalent to

−2[P131(γ13)]4 + 9[P131(γ13)]2P132(γ13) − 27P131(γ13)P133(γ13) + 81P134(γ13) ≤ 0,

if P134(γ13) is taken as

P134(γ13) = −γ13P133(γ13) + a133 = a123,

then the number a133 is found as

a133 = a123 + γ13P133(γ13) = a123 + γ13a122 > 0.

Condition (6) of Theorem 2.3 is equivalent to P133(γ13) > 0 and since P133(γ13)
is equal to a122 which is positive, the numbers a130, a131 and a132, found as above,
satisfy condition (6) of Theorem 2.3, as well.

Finally, since condition (7) of Theorem 2.3 is equivalent to

P135(γ13) = −γ13P134(γ13) + a134 ≤ 0,

the number a134 > 0 can be chosen as

0 < a134 ≤ γ13P134(γ13) = γ13a123.
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The numbers a130, a131, a132, a133, a134 > 0 obtained by using the above method
satisfy conditions (2)–(7) of Theorem 2.3. The solution of the system of linear
equations (2.23) which is equivalent to

c4 + c5 = a130, c3 − c5 = a131, 2c2 + c5 = a132, 6c1 − c5 = a133, 24c0 + c5 = a134

is obtained as

(c0, c1, c2, c3, c4, c5)=
(

a134 − c5

24
,

a133 + c5

6
,

a132 − c5

2
, a131 + c5, a130 − c5, c5

)
,

where c5 is an arbitrary constant such that

0 ≤ c5 < min{a130, a132, a134}.
So, every function K13 of the form (2.22) also satisfies condition (1) of Theorem 2.3.
For example, if the numbers a130 and a131 are chosen as a130 = 15

2 and a131 = 21,
then

γ13 =
15
8

, a120 = P131(γ13) =
45
8

, a121 = P132(γ13) =
669
64

.

From Example 2.2,

γ12 =
15
8

, a110 = P121(γ12) =
15
4

, a111 = P122(γ12) =
219
64

.

From Example 2.1, γ11 = 5
4 and the number a112 satisfying the inequality

0 < a112 ≤ γ11P112(γ11) =
95
256

can be taken as a112 = 3
10 . Thus, from Example 2.2,

a122 = a112 + γ12a111 =
32853

10
;

the number a123 satisfying the inequality

0 < a123 ≤ γ12a112 =
9
16

can be taken as a123 = 1
2 . Hence,

a132 = a122 + γ13a121 =
8460543

2560
,

a133 = a123 + γ13a122 =
98567

16
.

Furthermore, the number a134 satisfying the inequality

0 < a134 ≤ γ13a123 =
15
16

can be chosen as a134 = 9
10 . The number c5 satisfying the inequality

0 ≤ c5 < min {a130, a132, a134} = min
{

15
2

,
8460543

2560
,

9
10

}

can be chosen as c5 = 4
5 . Thus, we have

(c0, c1, c2, c3, c4, c5) =
(

1
240

,
492899

480
,
1691699

1024
,
109
5

,
67
10

,
4
5

)

and

K13(t) =
1

240
t4 +

492899
480

t3 +
1691699

1024
t2 +

109
5

t +
67
10

+
4
5
e−t.
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Theorem 2.4. Let us consider the equation

f14(t) = 1 −
∫ t

0

K14(t − τ )f14(τ )dτ = 1 − K14 ∗ f14.(2.24)

Suppose that the conditions

(1) K14(t) > 0, K ′
14(t) > 0, K ′′

14(t) > 0, K ′′′
14(t) > 0, K

(4)
14 (t) > 0, K

(5)
14 (t) > 0

and K
(6)
14 (t) ≤ 0 for 0 ≤ t < ∞,

(2) a2
140 <

48
19

a141,

(3)
5
2
a141 ≤ a2

140,

(4) 718a3
140 − 2475a140a141 + 3375a142 ≤ 0,

(5) −7a4
140 + 30a2

140a141 − 75a140a142 + 125a143 ≤ 0,

(6) 11a3
140 − 50a140a141 + 125a142 > 0,

(7) 19a5
140 − 100a3

140a141 + 375a2
140a142 − 1250a140a143 + 3125a144 ≤ 0,

(8) 4a3
140 − 25a140a141 + 125a142 > 0,

(9) −4a4
140 + 25a2

140a141 − 125a140a142 + 625a143 > 0,

(10) −4a6
140 + 25a4

140a141 − 125a3
140a142 + 625a2

140a143 − 3125a140a144

+15625a145 ≤ 0,

hold. Then the solution of (2.24) satisfies the inequality |f14(t)| ≤ 16 for 0 ≤ t < ∞,
where a140 = K14(0), a141 = K ′

14(0), a142 = K ′′
14(0), a143 = K ′′′

14(0), a144 =
K

(4)
14 (0), a145 = K

(5)
14 (0).

Proof. If the function g is taken as g(t) = e−γt (γ ∈ R) in Theorem A, then the
equation which is equivalent to (2.24) is found as

f14(t) = e−γt − L14 ∗ f14,(2.25)

where

L14(t) = (a140 − γ)e−γt + K ′
14 ∗ e−γt.(2.26)

By differentiating (2.26), it is obtained by L′
14(t), L′′

14(t), L′′′
14(t), L

(4)
14 (t) and L

(5)
14 (t)

that

L′
14(t) =

(
γ2 − a140γ + a141

)
e−γt + K ′′

14 ∗ e−γt,

L′′
14(t) =

(
−γ3 + a140γ

2 − a141γ + a142

)
e−γt + K ′′′

14 ∗ e−γt,

L′′′
14(t) =

(
γ4 − a140γ

3 + a141γ
2 − a142γ + a143

)
e−γt + K

(4)
14 ∗ e−γt,

L
(4)
14 (t) =

(
−γ5 + a140γ

4 − a141γ
3 + a142γ

2 − a143γ + a144

)
e−γt + K

(5)
14 ∗ e−γt

and

L
(5)
14 (t) =

(
γ6 − a140γ

5 + a141γ
4 − a142γ

3 + a143γ
2 − a144γ + a145

)
e−γt+K

(6)
14 ∗e−γt.

Now, one can see that the kernel L14 of the equation

h14(t) = 1 − L14 ∗ h14(2.27)

satisfies the conditions of Theorem 2.3.
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The corresponding inequalities to conditions (2) and (3) of Theorem 2.3 are

[L14(0)]2 <
19
7

L′
14(0)(2.28)

and
8
3
L′

14(0) ≤ [L14(0)]2,(2.29)

respectively. Inequalities (2.28) and (2.29) are equivalent to

(a140 − γ)2 <
19
7

(
γ2 − a140γ + a141

)
(2.30)

and
8
3

(
γ2 − a140γ + a141

)
≤ (a140 − γ)2 ,(2.31)

respectively. Inequality (2.30) is equivalent to

q1(γ) = 12γ2 − 5a140γ + 19a141 − 7a2
140 > 0.

The discriminant of q1(γ) = 0 is 19(19a2
140 −48a141) which is negative by condition

(2) of Theorem 2.4. Hence, q1(γ) > 0 for every γ ∈ R.
Inequality (2.31) is equivalent to

q2(γ) = 5γ2 − 2a140γ + 8a141 − 3a2
140 ≤ 0.

The discriminant of q2(γ) = 0 is 32(2a2
140−5a141), which is nonnegative by condition

(3) of Theorem 2.4. Hence, q2(γ14) ≤ 0 whenever γ is chosen as γ = γ14 = a140
5 .

The corresponding inequalities to conditions (4)–(7) of Theorem 2.3 are

161[L14(0)]3 − 576L14(0)L′
14(0) + 864L′′

14(0) ≤ 0,

−11[L14(0)]4 + 48[L14(0)]2L′
14(0) − 128L14(0)L′′

14(0) + 256L′′′
14(0) ≤ 0,

3[L14(0)]3 − 16L14(0)L′
14(0) + 64L′′

14(0) > 0,

3[L14(0)]5 − 16[L14(0)]3L′
14(0) + 64[L14(0)]2L′′

14(0)

−256L14(0)L′′′
14(0) + 1024L

(4)
14 (0) ≤ 0,

respectively. These inequalities are equivalent to

q3(γ) = 161 (a140 − γ)3 − 576 (a140 − γ)
(
γ2 − a140γ + a141

)
+864

(
−γ3 + a140γ

2 − a141γ + a142

)
≤ 0,

q4(γ) = −11 (a140 − γ)4 + 48 (a140 − γ)2
(
γ2 − a140γ + a141

)
−128 (a140 − γ)

(
−γ3 + a140γ

2 − a141γ + a142

)
+256

(
γ4 − a140γ

3 + a141γ
2 − a142γ + a143

)
≤ 0,

q5(γ) = 3 (a140 − γ)3 − 16 (a140 − γ)
(
γ2 − a140γ + a141

)
+64

(
−γ3 + a140γ

2 − a141γ + a142

)
> 0,

q6(γ) = 3 (a140 − γ)5 − 16 (a140 − γ)3
(
γ2 − a140γ + a141

)
+64 (a140 − γ)2

(
−γ3 + a140γ

2 − a141γ + a142

)
−256 (a140 − γ)

(
γ4 − a140γ

3 + a141γ
2 − a142γ + a143

)
+1024

(
−γ5 + a140γ

4 − a141γ
3 + a142γ

2

−a143γ + a144) ≤ 0,
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respectively. By conditions (4), (5), (6) and (7) of Theorem 2.4, respectively, it is
obtained by q3(γ14), q4(γ14), q5(γ14) and q6(γ14) that

q3(γ14) =
32
125

(
718a3

140 − 2475a140a141 + 3375a142

)
≤ 0,

q4(γ14) =
256
125

(
−7a4

140 + 30a2
140a141 − 75a140a142 + 125a143

)
≤ 0,

q5(γ14) =
64
125

(
11a3

140 − 50a140a141 + 125a142

)
> 0

and

q6(γ14)=
1024
3125

(
19a5

140−100a3
140a141+375a2

140a142 − 1250a140a143+3125a144

)
≤0.

The corresponding inequalities to condition (1) of Theorem 2.3 are L14(t), L′
14(t),

L′′
14(t), L′′′

14(t), L
(4)
14 (t) > 0, L

(5)
14 (t) ≤ 0.

Since a140−γ14 is positive, L14(t) > 0 and the discriminant of γ2−a140γ+a141 = 0
is negative by condition (2) of Theorem 2.4, γ2

14 − a140γ14 + a141 > 0 and so,
L′

14(t) > 0.
By condition (8) of Theorem 2.4,

−γ3
14 + a140γ

2
14 − a141γ14 + a142 =

1
125

(
4a3

140 − 25a140a141 + 125a142

)
> 0.

Therefore, L′′
14(t) > 0.

By condition (9) of Theorem 2.4,

γ4
14−a140γ

3
14 + a141γ

2
14 − a142γ14 + a143

=
1

625
(
−4a4

140 + 25a2
140a141 − 125a140a142 + 625a143

)
> 0.

Thus, L′′′
14(t) > 0.

From condition (10) of Theorem 2.4,

− γ5
14 + a140γ

4
14 − a141γ

3
14 + a142γ

2
14 − a143γ14 + a144

=
1

3125
(
4a5

140 − 25a3
140a141 + 125a2

140a142 − 625a140a143 + 3125a144

)
> 0,

γ6
14 − a140γ

5
14 + a141γ

4
14 − a142γ

3
14 + a143γ

2
14 − a144γ14 + a145

=
1

15625
(
−4a6

140 + 25a4
140a141 − 125a3

140a142

+625a2
140a143 − 3125a140a144 + 15625a145

)
≤ 0.

So, L
(4)
14 (t) > 0, L

(5)
14 (t) ≤ 0. Hence, the solution of (2.27) satisfies the inequality

|h14(t)| ≤ 8 by Theorem 2.3. By Theorem B, the solution of (2.25) can be expressed
as

f14(t) = h14(t) − γ14

∫ t

0

h14(t − τ )e−γ14τdτ

and thus,

|f14(t)| ≤ 8 + 8γ14

∫ t

0

e−γ14τdτ = 8 − 8(e−γ14t − 1) ≤ 16,

which completes the proof of Theorem 2.4. �
A function K14 satisfying conditions (1)–(10) of Theorem 2.4 can be obtained

by the following method:
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Example 2.4. If there exist the numbers a140, a141, a142, a143, a144, a145 > 0
satisfying conditions (2)–(10) of Theorem 2.4, then there exists at least one function
K14 which satisfies condition (1) of Theorem 2.4 in the form

K14(t) =
5∑

m=0

cmt5−m + c6e
−t(2.32)

such that

(2.33)
K14(0) = a140, K

′
14(0) = a141, K

′′
14(0) = a142,

K ′′′
14(0) = a143, K

(4)
14 (0) = a144, K

(5)
14 (0) = a145.

First, let us show that there exist the numbers a140, a141, a142, a143, a144,
a145 > 0 satisfying conditions (2)–(10) of Theorem 2.4. It is clear that the numbers
a140 and a141 satisfying conditions (2) and (3) of Theorem 2.4 exist.

Now, we shall define the polynomial P14i for all i ∈ N6 and the number γ14 by

P14i(γ) =
i∑

k=0

(−γ)i−ka14(k−1) (a14(−1) ≡ 1, by convention) and γ14 =
a140

5
.

Then, it can be clearly observed from the proof of Theorem 2.4 that the numbers
a130 and a131 defined by

a130 = P141(γ14) and a131 = P142(γ14)

satisfy conditions (2) and (3) of Theorem 2.3. Besides, the numbers a132, a133, a134

can also be found by means of a130 and a131 as those were found in Example 2.3.
Since condition (4) of Theorem 2.4 is equivalent to

161[P141(γ14)]3 − 576P141(γ14)P142(γ14) + 864P143(γ14) ≤ 0,

if P143(γ14) is taken as

P143(γ14) = −γ14P142(γ14) + a142 = a132,

then the number a142 is obtained as

a142 = a132 + γ14P142(γ14) = a132 + γ14a131 > 0.

Since condition (5) of Theorem 2.4 is equivalent to

−11[P141(γ14)]4+48[P141(γ14)]2P142(γ14)−128P141(γ14)P143(γ14)+256P144(γ14)≤0,

if P144(γ14) is taken as

P144(γ14) = −γ14P143(γ14) + a143 = a133,

then the number a143 is found as

a143 = a133 + γ14P143(γ14) = a133 + γ14a132 > 0.

Because condition (6) of Theorem 2.4 is equivalent to

3[P141(γ14)]3−16P141(γ14)P142(γ14)+64P143(γ14) = 3a3
130−16a130a131 +64a132 >0

and 3a3
130−16a130a131+64a132 is positive from Example 2.3, the numbers a140, a141,

a142, found as above, satisfy condition (6) of Theorem 2.4, as well. Since condition
(7) of Theorem 2.4 is equivalent to

3[P141(γ14)]5 − 16[P141(γ14)]3P142(γ14) + 64[P141(γ14)]2P143(γ14)

−256P141(γ14)P144(γ14) + 1024P145(γ14) ≤ 0,
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if P145(γ14) is taken as

P145(γ14) = −γ14P144(γ14) + a144 = a134,

then the number a144 is found as

a144 = a134 + γ14P144(γ14) = a134 + γ14a133 > 0.

Since condition (8) of Theorem 2.4 is equivalent to P143(γ14) > 0 and P143(γ14)
is equal to a132, the numbers a140, a141, a142, obtained as above, satisfy condition
(8) of Theorem 2.4, as well. Because condition (9) of Theorem 2.4 is equivalent to
P144(γ14) > 0 and P144(γ14) is equal to a133, the numbers a140, a141, a142, a143,
found as above, satisfy condition (9) of Theorem 2.4, as well.

Finally, since condition (10) of Theorem 2.4 is equivalent to

P146(γ14) = −γ14P145(γ14) + a145 ≤ 0,

the number a145 > 0 which is chosen as

0 < a145 ≤ γ14P145(γ14) = γ14a134

and the numbers a140, a141, a142, a143, a144 satisfy condition (10) of Theorem 2.4.
Clearly, the obtained numbers a140, a141, a142, a143, a144 and a145 by presented

method satisfy conditions (2)–(10) of Theorem 2.4.
The solution of the system of linear equations (2.33) which is equivalent to

c5 + c6 = a140, c4 − c6 = a141, 2c3 + c6 = a142,

6c2 − c6 = a143, 24c1 + c6 = a144, 120c0 − c6 = a145

is obtained as

(c0, c1, c2, c3, c4, c5, c6)

=
(

a145 + c6

120
,

a144 − c6

24
,

a143 + c6

6
,

a142 − c6

2
, a141 + c6, a140 − c6, c6

)
,

where c6 is an arbitrary constant satisfying the inequality

max{−a141, −a143, −a145} < c6 ≤ 0.

Thus, every function K14 of the form (2.32) also satisfies condition (1) of Theorem
2.4. For example, if the numbers a140 and a141 are taken as a140 = 173

25 and
a141 = 19, then γ14, a130, a131 are obtained as

γ14 =
173
125

, a130 = P141(γ14) =
692
125

, a131 = P142(γ14) =
177159
15625

.

From Examples 2.3 and 2.2, respectively, we derive that

γ13 =
173
125

, a120 = P131(γ13) =
519
125

, a121 = P132(γ13) =
87372
15625

and
γ12 =

173
125

, a110 = P121(γ12) =
346
125

, a111 = P122(γ12) =
27514
15625

.

From Example 2.1, γ11 = 346
375 , and the positive number a112 satisfying the inequality

0 < a112 ≤ γ11P112(γ11) =
2835124
52734375

can be taken as a112 = 1
25 . Hence, one can derive from Example 2.2 that

a122 = a112 + γ12a111 =
4338047
1953125
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and the number a123 satisfying the inequality

0 < a123 ≤ γ12a112 =
173
3125

can be taken as a123 = 1
25 . From Example 2.3, we have that

a132 = a122 + γ13a121 =
19953403
1953125

,

a133 = a123 + γ13a122 =
846747756
244140625

.

Furthermore, the number a134 satisfying the inequality

0 < a134 ≤ γ13a123 =
173
3125

can be chosen as a134 = 1
25 . So,

a142 = a132 + γ14a131 =
10120382
390625

,

a143 = a133 + γ14a132 =
171947459
9765625

,

a144 = a134 + γ14a133 =
147708064913
30517578125

and the number a145 satisfying the inequality

0 < a145 ≤ γ14a134 =
173
3125

can be chosen as a145 = 1
25 . The number c6 satisfying the inequality

max {−a141,−a143,−a145} = max
{
−19,−171947459

9765625
,− 1

25

}
< c6 ≤ 0

can be chosen as c6 = − 1
125 . Thus, we have

(c0, c1, c2, c3, c4, c5, c6)

=
(

1
3750

,
73976102769
366210937500

,
28644889
9765625

,
10123507
781250

,
2374
125

,
866
125

,− 1
125

)

and

K14(t) =
1

3750
t5 +

73976102769
366210937500

t4 +
28644889
9765625

t3

+
10123507
781250

t2 +
2374
125

t +
866
125

− 1
125

e−t.

By continuing this process for n ∈ N, we have Theorem 2.n and Example 2.n
which may be stated, as follows:

Theorem 2.n. Let us consider the equation of the form

f1n(t) = 1 −
∫ t

0

K1n(t − τ ) f1n(τ )dτ = 1 − K1n ∗ f1n.(2.34)
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Suppose that the conditions

(1) K1n(t) > 0, K ′
1n(t) > 0, . . . , K

(n+1)
1n (t) > 0 and K

(n+2)
1n (t) ≤ 0,

for 0 ≤ t < ∞,

(2) a2
1n0 <

2(5n + 4)
5n − 1

a1n1

and

(3)
2(n + 1)

n
a1n1 ≤ a2

1n0

hold. Furthermore, we assume that conditions (4) − (4 + t1n) of Theorem 2.n are
the inequalities obtained by taking

P1n1(γ1n), P1n2(γ1n), . . . , P1n(n+1)(γ1n),

respectively instead of the constants a1(n−1)0, a1(n−1)1, . . . , a1(n−1)n in conditions
(4)−(4+t1n) of Theorem 2.(n−1) for n ≥ 2. Let conditions (5+t1n)−(2+n+t1n)
of Theorem 2.n be

P1n3(γ1n), P1n4(γ1n), . . . , P1nn(γ1n) > 0 for n ≥ 3,

respectively. Additionally, let condition (3 + n + t1n) of Theorem 2.n be

P1n(n+2)(γ1n) ≤ 0 for n ≥ 1,

where

a1n0 = K1n(0), a1n1 = K ′
1n(0), a1n2 = K ′′

1n(0), . . . , a1n(n+1) = K
(n+1)
1n (0),

t1n =
(n − 2)(n − 1)

2
,

P1ni(γ) =
i∑

k=0

(−γ)i−ka1n(k−1), ( a1n(−1) ≡ 1, by convention) for all i ∈ Nn+2

and
γ11 =

a110

3
for n = 1 and γ1n =

a1n0

n + 1
for n ≥ 2.

Then, the solution of (2.34) satisfies the inequality |f1n(t)| ≤ 2n for 0 ≤ t < ∞.

Proof. We prove the theorem by using the induction method.
The validity of Theorem 2.1 is known by [3].
Let us suppose the truth of Theorem 2.m for m ∈ N. So, the solution of the

equation
f1m(t) = 1 − K1m ∗ f1m

satisfies the inequality

|f1m(t)| ≤ 2m.(2.35)

Now, we should prove that Theorem 2.(m+1) is true. Namely, let us show that the
solution of the equation

f1(m+1)(t) = 1 − K1(m+1) ∗ f1(m+1)(2.36)

satisfies the condition

|f1(m+1)(t)| ≤ 2m+1.(2.37)
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If the function g is taken as g(t) = e−γt (γ ∈ R) in Theorem A, then one can see
that

f1(m+1)(t) = e−γt − L1(m+1) ∗ f1(m+1)(2.38)

is equivalent to (2.36), where

L1(m+1)(t) = (a1(m+1)0 − γ)e−γt + K ′
1(m+1) ∗ e−γt.(2.39)

By differentiating (2.39), L′
1(m+1)(t), L′′

1(m+1)(t), . . . , L
(m+2)
1(m+1)(t) are found, as fol-

lows:

L′
1(m+1)(t) =

(
γ2 − a1(m+1)0γ + a1(m+1)1

)
e−γt + K ′′

1(m+1) ∗ e−γt,

L′′
1(m+1)(t) =

(
−γ3+a1(m+1)0γ

2−a1(m+1)1γ+a1(m+1)2

)
e−γt + K ′′′

1(m+1)∗e−γt,

...
L

(m)
1(m+1)(t) =

(
(−1)m+1γm+1 + (−1)ma1(m+1)0γ

m + (−1)m−1a1(m+1)1γ
m−1

+ · · · − a1(m+1)(m−1)γ + a1(m+1)m

)
e−γt + K

(m+1)
1(m+1) ∗ e−γt,

L
(m+1)
1(m+1)(t) =

(
(−1)m+2γm+2 + (−1)m+1a1(m+1)0γ

m+1 + (−1)ma1(m+1)1γ
m

+ · · · − a1(m+1)mγ + a1(m+1)(m+1)

)
e−γt + K

(m+2)
1(m+1) ∗ e−γt,

L
(m+2)
1(m+1)(t) =

(
(−1)m+3γm+3+(−1)m+2a1(m+1)0γ

m+2+(−1)m+1a1(m+1)1γ
m+1

+ · · · − a1(m+1)(m+1)γ + a1(m+1)(m+2)

)
e−γt + K

(m+3)
1(m+1) ∗ e−γt.

We claim that the kernel of the equation

h1(m+1)(t) = 1 − L1(m+1) ∗ h1(m+1)(2.40)

satisfies the conditions of Theorem 2.m. That is, L1(m+1) satisfies all the conditions
of Theorem 2.m under the assumptions of Theorem 2.(m+1).

The corresponding inequalities to conditions (2) and (3) of Theorem 2.m are

[L1(m+1)(0)]2 <
2(5m + 4)
5m − 1

L′
1(m+1)(0)(2.41)

and
2(m + 1)

m
L′

1(m+1)(0) ≤ [L1(m+1)(0)]2,(2.42)

respectively. Inequalities (2.41) and (2.42) are respectively equivalent to
(
a1(m+1)0 − γ

)2
<

2(5m + 4)
5m − 1

(
γ2 − a1(m+1)0γ + a1(m+1)1

)
(2.43)

and
2(m + 1)

m

(
γ2 − a1(m+1)0γ + a1(m+1)1

)
≤

(
a1(m+1)0 − γ

)2
.(2.44)

Inequality (2.43) is equivalent to

q1(γ)=(5m + 9)γ2−10a1(m+1)0γ+2(5m + 4)a1(m+1)1−(5m − 1)a2
1(m+1)0 >0.

The discriminant of q1(γ) = 0 is

4(5m + 4)[(5m + 4)a2
1(m+1)0 − 2(5m + 9)a1(m+1)1]
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which is negative by condition (2) of Theorem 2.(m+1), and thus, q1(γ) > 0 for
every γ ∈ R. Inequality (2.44) is equivalent to

q2(γ) = (m + 2)γ2 − 2a1(m+1)0γ − ma2
1(m+1)0 + 2(m + 1)a1(m+1)1 ≤ 0.

The discriminant of q2(γ) = 0 is

4(m + 1)[(m + 1)a2
1(m+1)0 − 2(m + 2)a1(m+1)1],

which is nonnegative by condition (3) of Theorem 2.(m+1), and so q2(γ1(m+1)) ≤ 0
whenever γ is chosen as γ = γ1(m+1) = a1(m+1)0

m+2 . The corresponding inequalities
to conditions (4) − (3 + m + t1m) of Theorem 2.m are the inequalities obtained by
taking

P1(m+1)1(γ1(m+1)), P1(m+1)2(γ1(m+1)), . . . , P1(m+1)(m+2)(γ1(m+1)),

respectively, instead of the constants a1m0, a1m1, . . . , a1m(m+1) in conditions (4) −
(3+m+ t1m) of Theorem 2.m. These inequalities are conditions (4)− (4+ t1(m+1))
of Theorem 2.(m+1) for m ≥ 1, respectively. Hence, L1(m+1) satisfies conditions
(4) − (4 + t1m) of Theorem 2.m. Furthermore, the corresponding inequalities to
condition (1) of Theorem 2.m are

L1(m+1)(t), L′
1(m+1)(t), . . . , L

(m+1)
1(m+1)(t) > 0 and L

(m+2)
1(m+1)(t) ≤ 0.

Since P1(m+1)1(γ1(m+1)) is positive, L1(m+1)(t) > 0 and the discriminant of

P1(m+1)2(γ) = 0

is negative by condition (2) of Theorem 2.(m+1), P1(m+1)2(γ1(m+1)) > 0 and so,
L′

1(m+1)(t) > 0. Additionally, conditions (5+t1(m+1))−(3+m+t1(m+1)) of Theorem
2.(m+1) are

P1(m+1)3(γ1(m+1)), P1(m+1)4(γ1(m+1)), . . . , P1(m+1)(m+1)(γ1(m+1)) > 0 for m ≥ 2,

respectively. Therefore,

L′′
1(m+1)(t), L′′′

1(m+1)(t), . . . , L
(m)
1(m+1)(t) > 0 for m ≥ 2.

Condition (4 + m + t1(m+1)) of Theorem 2.(m+1) is

P1(m+1)(m+3)(γ1(m+1)) = −γ1(m+1)P1(m+1)(m+2)(γ1(m+1))
+ a1(m+1)(m+2) ≤ 0 for m ≥ 1.

Hence,

P1(m+1)(m+2)(γ1(m+1)) > 0

and thus,

L
(m+1)
1(m+1)(t) > 0, L

(m+2)
1(m+1)(t) ≤ 0 for m ≥ 1.

Since L1(m+1) satisfies all the conditions of Theorem 2.m, the solution of the
equation (2.40) satisfies (2.35). Namely, |h1(m+1)(t)| ≤ 2m.

By Theorem B, the solution of (2.38) can be expressed in the form

f1(m+1)(t) = h1(m+1)(t) − γ1(m+1)

∫ t

0

h1(m+1)(t − τ )e−γ1(m+1)τdτ,
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and so,

|f1(m+1)(t)| ≤ 2m + 2mγ1(m+1)

∫ t

0

e−γ1(m+1)τdτ

= 2m − 2m(e−γ1(m+1)t − 1) ≤ 2m+1.

Thus, (2.37) is fulfilled, which completes the proof of Theorem 2.(m+1). This
means that Theorem 2.n is satisfied for all n ∈ N. �

A function K1n satisfying conditions (1) − (3 + n + t1n) of Theorem 2.n can be
obtained by using the following method:

Example 2.n. If there exist the numbers a1n0, a1n1, . . . , a1n(n+1) > 0 satisfying
conditions (2)− (3+n+ t1n) of Theorem 2.n, then there exists at least one function
K1n which satisfies condition (1) of Theorem 2.n of the form

K1n(t) =
n+1∑
m=0

cmtn+1−m + cn+2e
−t(2.45)

such that

(2.46) K1n(0) = a1n0, K
′
1n(0) = a1n1, . . . , K

(n)
1n (0) = a1nn, K

(n+1)
1n (0) = a1n(n+1).

To show the truth of this fact, we first choose the numbers a1n0, a1n1 > 0 satisfying
conditions (2) and (3) of Theorem 2.n and define the polynomial P1ni for all i ∈
Nn+2, the number γ1n by

P1ni(γ) =
i∑

k=0

(−γ)i−ka1n(k−1) (a1n(−1) ≡ 1 by convention),

γ11 =
a110

3
for n = 1 and γ1n =

a1n0

n + 1
for n ≥ 2.

So, if n ≥ 2, then it can be clearly seen by the proof of Theorem 2.n that the
numbers a1(n−1)0 and a1(n−1)1 defined by

a1(n−1)0 = P1n1(γ1n) and a1(n−1)1 = P1n2(γ1n)

satisfy conditions (2) and (3) of Theorem 2.(n-1). Furthermore, the numbers
a1(n−1)2, a1(n−1)3, . . . , a1(n−1)n > 0 whenever n ≥ 2 can also be found by means
of the constants a1(n−1)0, a1(n−1)1 > 0 as those were obtained in Example 2.(n-1).
Thus, for n ≥ 2, by taking

P1n3(γ1n) = a1(n−1)2, P1n4(γ1n) = a1(n−1)3, . . . , P1n(n+1)(γ1n) = a1(n−1)n,

the numbers a1n2, a1n3, . . . , a1nn are obtained as

a1n2 = a1(n−1)2 + γ1na1(n−1)1 > 0,

a1n3 = a1(n−1)3 + γ1na1(n−1)2 > 0,

...
a1nn = a1(n−1)n + γ1na1(n−1)(n−1) > 0.

Besides for n ≥ 1, since condition (3 + n + t1n) of Theorem 2.n is

P1n(n+2)(γ1n) = −γ1nP1n(n+1)(γ1n) + a1n(n+1) ≤ 0,

the number a112 > 0 can be taken as

0 < a112 ≤ γ11P112(γ11),
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whenever n = 1, and in the case n ≥ 2, the number a1n(n+1) > 0 can be taken as

0 < a1n(n+1) ≤ γ1nP1n(n+1)(γ1n) = γ1na1(n−1)n.

Clearly, the numbers a1n0, a1n1, . . . , a1n(n+1) > 0 obtained by this way satisfy con-
ditions (2) − (3 + n + t1n) of Theorem 2.n.

The solution of the system of linear equations (2.46) which is equivalent to

cn+1 + cn+2 = a1n0, cn − cn+2 = a1n1, . . . , n!c1 + (−1)ncn+2

= a1nn, (n + 1)!c0 + (−1)n+1cn+2 = a1n(n+1)

is obtained as

(c0, c1, . . . , cn+1, cn+2)

=
(

a1n(n+1) − (−1)n+1cn+2

(n + 1)!
,
a1nn − (−1)ncn+2

n!
, . . . , a1n0 − cn+2, cn+2

)
,

where cn+2 is an arbitrary constant satisfying the condition

0 ≤ cn+2 < min{a1n0, a1n2, . . . , a1n(n−1), a1n(n+1)}
if n is odd and

max{−a1n1,−a1n3, . . . ,−a1n(n−1),−a1n(n+1)} < cn+2 ≤ 0

if n is even. Thus, every K1n of the form (2.45) satisfies condition (1) of Theorem
2.n as well.
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