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SPECTRAL RESIDUAL METHOD
WITHOUT GRADIENT INFORMATION FOR SOLVING

LARGE-SCALE NONLINEAR SYSTEMS OF EQUATIONS

WILLIAM LA CRUZ, JOSÉ MARIO MARTÍNEZ, AND MARCOS RAYDAN

Abstract. A fully derivative-free spectral residual method for solving large-
scale nonlinear systems of equations is presented. It uses in a systematic way
the residual vector as a search direction, a spectral steplength that produces
a nonmonotone process and a globalization strategy that allows for this non-
monotone behavior. The global convergence analysis of the combined scheme
is presented. An extensive set of numerical experiments that indicate that
the new combination is competitive and frequently better than well-known
Newton-Krylov methods for large-scale problems is also presented.

1. Introduction

We introduce a derivative-free nonmonotone iterative method for solving the
nonlinear system of equations

(1) F (x) = 0,

where F : R
n → R

n is a continuously differentiable mapping. We are interested
in large-scale systems for which the Jacobian of F is not available or requires a
prohibitive amount of storage.

Recently, La Cruz and Raydan [17] introduced the Spectral Algorithm for Nonlin-
ear Equations (SANE) for solving (1). SANE uses in a systematic way the residual
±F (xk) as a search direction. The first trial point at each iteration is xk−σkF (xk),
where σk is a spectral coefficient. Global convergence is guaranteed by means of
a variation of the nonmonotone strategy of Grippo, Lampariello and Lucidi [13].
This approach requires descent directions with respect to the squared norm of the
residual. As a consequence, the computation of a directional derivative, or a very
good approximation of it, is necessary at every iteration.

The spectral coefficient is an appropriate Rayleigh quotient with respect to a
secant approximation of the Jacobian. Spectral gradient methods for minimization
were originated in the Barzilai–Borwein paper [1]. The properties of their method
for general quadratic functions were elucidated in [23]. Further analysis of spectral
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gradient methods can be found in [8, 10, 24], among others. For a review containing
the more recent advances on spectral choices of the steplength for minimization
problems (see [11]).

In this paper we introduce a new nonmonotone line-search technique that can
be associated to the same search directions and the same initial steplengths as
the SANE algorithm. In other words, the first trial point at each iteration will
be the same as in SANE, but the line-search strategy will be different. The main
consequence is that, in the new approach, directional derivatives are not required
at all.

We also present an extensive set of numerical experiments that indicate that the
new method is competitive and sometimes better than the SANE algorithm. We
recall that, in [17], SANE was in turn compared favorably with several Newton–
Krylov methods (see, e.g., [2, 6, 7]). Therefore, the new algorithm represents an
encouraging low-cost scheme for solving (1).

Notation. • J(x) will denote the Jacobian matrix of F computed at x.
• For all x ∈ R

n we denote g(x) = 2J(x)tF (x) = ∇‖F (x)‖2
2.

• The set of natural numbers will be denoted N = {0, 1, 2, . . .}.
• If {zk}k∈N is a sequence and K = {k1, k2, k3, . . .} is an infinite sequence of

natural numbers such that ki < kj if i < j, we denote

lim
k∈K

zk = lim
j→∞

zkj
.

• The symbol ‖ · ‖ will always denote the Euclidian norm.
• B(x, ε) will denote the open ball with center x and radius ε. That is,

B(x, ε) = {z ∈ R
n | ‖z − x‖ < ε}.

2. The new nonmonotone line-search strategy

The best known nonmonotone line-search technique for unconstrained optimiza-
tion was introduced by Grippo, Lampariello and Lucidi [13]. It has been used to
globalize the spectral gradient method [24] and some of its extensions for convex
constrained optimization [3, 4] and nonlinear systems of equations [17]. Differ-
ent nonmonotone line-search techniques, associated to Newton and quasi-Newton
strategies, have been proposed for solving (1) (see [12, 18]). Li and Fukushima [18]
presented an interesting idea that avoids the necessity of descent directions to
guarantee that each iteration is well defined. Let us briefly describe the Grippo–
Lampariello–Lucidi (GLL) and the Li–Fukushima (LF) schemes.

The GLL condition can be written as follows:

f(xk + αkdk) ≤ max
0≤j≤M−1

f(xk−j) + γαk∇f(xk)tdk,

where M is a nonnegative integer, 0 < γ < 1 and f is a merit function such that
f(x) = 0 if and only if ‖F (x)‖ = 0.

The LF condition can be written as follows:

‖F (xk + αkdk)‖ ≤ (1 + ηk)‖F (xk)‖ − γα2
k‖dk‖2

2,

where
∑

k ηk ≤ η < ∞.
It follows that if ∇f(xk)tdk < 0, then the GLL condition is satisfied for αk

sufficiently close to zero and we can compute a steplength αk by using a finite
backtracking process. However, when ∇f(xk)tdk = 0, the existence of αk satisfying
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the GLL condition is not guaranteed. Moreover, when dk = ±F (xk), ∇f(xk)tdk

could be close to zero or zero, and then stagnation or breakdown might occur during
the backtracking process.

One possible remedy is to use the LF condition. This condition does not need the
computation of J(xk)dk. Moreover, it is satisfied, if αk is small enough, indepen-
dently of the choice of dk. However, since ηk is usually very small when k is large,
the Li–Fukushima strategy generally imposes an almost monotone behavior of the
merit function when xk is close to a solution. This is not a good feature when
one uses spectral gradient or spectral residual steps because, in these cases, the
pure undamped methods (where αk = 1 for all k), although generally effective, are
usually highly nonmonotone even in the neighborhood of an isolated solution. The
reason for this is not completely understood, but the analogy with the behavior of
the spectral gradient (or Barzilai–Borwein) method for minimizing convex quadrat-
ics may be useful (see [23]). In the quadratic case the spectral gradient method
does not need line-search strategies for being globally convergent, but the func-
tional values do not decrease monotonically at all. Therefore, imposing any kind
of monotonicity is not convenient. Many authors, including Fletcher [11], pointed
out the necessity of avoiding monotonicity requirements in the spectral framework
as much as possible.

In this work we combine and extend the GLL and LF conditions to produce a
robust nonmonotone line-search globalization strategy that somehow takes into ac-
count the advantages of both schemes. Roughly speaking the new descent condition
can be written as

(2) f(xk+1) ≤ max
0≤j≤M−1

f(xk−j) + ηk − γα2
kf(xk).

The GLL term max0≤j≤M−1 f(xk−j) is responsible for the sufficiently nonmonotone
behavior of f(xk) even when k is large. On the other hand, the presence of ηk > 0
guarantees that all the iterations are well defined, and the forcing term −γα2

kf(xk)
provides the arguments for proving global convergence.

We would like to mention that a similar extension that also combines the GLL
with the LF conditions was presented and briefly discussed in the final remarks of
[17]. However, it was neither analyzed nor tested. The present work was motivated
by the need for studying the theoretical and practical properties of this globalization
technique.

3. Model algorithm and convergence

We assume that F : R
n → R

n has continuous partial derivatives. Let nexp ∈
{1, 2}. Define

f(x) = ‖F (x)‖nexp for all x ∈ R
n.

Assume that {ηk} is a sequence such that ηk > 0 for all k ∈ N and

(3)
∞∑

k=0

ηk = η < ∞.

Assume that 0 < γ < 1 and 0 < σmin < σmax < ∞. Let M be a positive integer.
Let τmin, τmax be such that 0 < τmin < τmax < 1, and let x0 ∈ R

n be an arbitrary
initial point.

We now present the DF-SANE algorithm.
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Algorithm DF-SANE (Derivative-free SANE).

Step 0.

Set k ← 0.

Step 1.

• Choose σk such that |σk| ∈ [σmin, σmax] (the spectral coefficient).
• Compute f̄k = max{f(xk), . . . , f(xmax{0,k−M+1})}.
• Set d ← −σkF (xk).
• Set α+ ← 1, α− ← 1.

Step 2.

If f(xk + α+d) ≤ f̄k + ηk − γα2
+f(xk), then

Define dk = d, αk = α+, xk+1 = xk + αkdk

else if f(xk − α−d) ≤ f̄k + ηk − γα2
−f(xk), then

Define dk = −d, αk = α−, xk+1 = xk + αkdk

else
choose α+ new ∈ [τminα+, τmaxα+], α− new ∈ [τminα−, τmaxα−],
replace α+ ← α+new, α− ← α− new

and go to Step 2.

Step 3.

If F (xk+1) = 0, terminate the execution of the algorithm. Else, set k ← k + 1
and go to Step 1.

Remark. As we will see later, the coefficient σk will be chosen to be an approxima-
tion of the quotient ‖F (xk)‖2

〈J(xk)F (xk),F (xk)〉 . This quotient may be positive or negative
(or even null).

Proposition 1. The iteration is well defined.

Proof. Since ηk > 0, after a finite number of reductions of α+ the condition

f(xk + α+d) ≤ f̄k + ηk − γα2
+f(xk)

necessarily holds. �

In the rest of this section we will prove several convergence results:
1. There exists an infinite sequence of indices K ⊂ N such that at every limit

point of the subsequence {xk}k∈K , the gradient of ‖F (x)‖2 is orthogonal to
the residual F (x). Therefore, if ‖F (x)‖ has bounded level sets, there exists
a limit point x∗ of {xk}k∈N such that

〈J(x∗)F (x∗), F (x∗)〉 = 0.

2. If some limit point of {xk}k∈N is a solution of (1), then every limit point is
a solution.

3. If a limit point x∗ of {xk}k∈N is an isolated solution, then the whole sequence
converges to x∗.

4. If the initial point x0 is close enough to some strongly isolated solution x∗,
then the whole sequence converges to x∗.
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Only the first result was proved for the original SANE algorithm [17], although
it is easy to realize that the other ones hold for SANE as well. When break-
down does not occur, under standard assumptions, Newton–Krylov methods have
stronger local convergence results in the sense that linear or, sometimes, superlinear
convergence can be proved.

Before we proceed with the convergence analysis, we need some preliminary
definitions (see [5]). Define V0 = f(x0) and

Vk = max{f(x(k−1)M+1), . . . , f(xkM )}
for all k = 1, 2, . . . .

Let ν(k) ∈ {(k − 1)M + 1, . . . , kM} be such that, for all k = 1, 2, . . . ,

f(xν(k)) = Vk.

Clearly,

f(xkM+1) ≤ max{f(x(k−1)M+1), . . . , f(xkM )} + ηkM − γα2
kMf(xkM )

= Vk + ηkM − γα2
kMf(xkM )

≤ Vk + ηkM ,

f(xkM+2) ≤ max{Vk, f(xkM+1)} + ηkM+1 − γα2
kM+1f(xkM+1)

≤ Vk + ηkM + ηkM+1 − γα2
kM+1f(xkM+1)

≤ Vk + ηkM + ηkM+1,

and so on.
Therefore, by an inductive argument,

(4) f(xkM+�) ≤ Vk +
�−1∑
j=0

ηkM+j − γα2
kM+�−1f(xkM+�−1)

for all � = 0, 1, 2, . . . , M . Moreover,

(5) f(xkM+�) ≤ Vk +
�−1∑
j=0

ηkM+j ∀ k, � ∈ N.

But ν(k + 1) ∈ {kM + 1, . . . , kM + M}, thus, by (4),

Vk+1 = f(xν(k+1)) ≤ Vk +
M−1∑
j=0

ηkM+j − γα2
ν(k+1)−1f(xν(k+1)−1)

= f(xν(k)) +
M−1∑
j=0

ηkM+j − γα2
ν(k+1)−1f(xν(k+1)−1).(6)

Using (4), (5) and (6) we can prove the following propositions:

Proposition 2. For all k, � ∈ N,

(7) f(xkM+�) ≤ f(xν(k)) +
∞∑

i=ν(k)

ηi ≤ f(xν(k)) + η.

Proof. Straightforward, using (5). �

Proposition 3.
lim

k→∞
α2

ν(k)−1f(xν(k)−1) = 0.
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Proof. Write the inequalities (6) for k = 1, 2, . . . , L. Observe that f(xν(k+1)) occurs
on the left-hand side of the kth inequality and also on the right-hand side of the
k + 1st inequality. Adding the L inequalities, we get

f(xν(L+1)) ≤ f(xν(1)) +
(L+1)M−1∑

j=M

ηj − γ
L∑

j=1

α2
ν(j+1)−1f(xν(j+1)−1).

Therefore, for all L = 1, 2, . . . , we obtain

γ
∑L

j=1 α2
ν(j+1)−1f(xν(j+1)−1) ≤ f(xν(1)) +

∑(L+1)M−1
j=M ηj − f(xν(L+1))

≤ f(xν(1)) +
∑(L+1)M−1

j=M ηj

≤ f(xν(1)) + η.

So, the series
∑∞

j=1 α2
ν(j+1)−1f(xν(j+1)−1) is convergent. This implies the desired

result. �

From now on we define

(8) K = {ν(1) − 1, ν(2) − 1, ν(3) − 1, . . .}
and

(9) K+ = {ν(1), ν(2), ν(3), . . .}.
Observe that

(10) ν(j + 1) ≤ ν(j) + 2M − 1 for all j = 1, 2, . . . .

In Theorem 1 we prove that, at every limit point x∗ of the subsequence {xk}k∈K

one necessarily has that 〈J(x∗)F (x∗), F (x∗)〉 = 〈F (x∗), g(x∗)〉 = 0. In other words
the gradient of ‖F (x)‖2 at x∗ is orthogonal to the residual F (x∗).

Theorem 1. Assume that {xk}k∈N is generated by the DF-SANE algorithm. Then,
every limit point x∗ of {xk}k∈K satisfies

(11) 〈F (x∗), J(x∗)tF (x∗)〉 = 0.

Proof. By Proposition 3 we have that

(12) lim
k∈K

α2
kf(xk) = 0.

Let x∗ be a limit point of {xk}k∈K . Let K1 ⊂ K be an infinite sequence of indices
such that

lim
k∈K1

xk = x∗.

Then, by (12),

(13) lim
k∈K1

α2
kf(xk) = 0.

If {αk}k∈K1 does not tend to zero, there exists an infinite sequence of indices
K2 ⊂ K1 such that αk is bounded away from zero for k ∈ K2. Then, by (13),

lim
k∈K2

f(xk) = 0.

Since f is continuous and limk∈K2 xk = x∗, this implies that f(x∗) = 0. Thus
F (x∗) = 0, and (11) holds.

So, we only need to analyze the case

(14) lim
k∈K1

αk = 0.
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At Step 2 of Algorithm DF-SANE one tests the inequality

(15) f(xk + α+d) ≤ f̄k + ηk − γα2
+f(xk).

If (15) does not hold, the inequality

(16) f(xk − α−d) ≤ f̄k + ηk − γα2
−f(xk)

is tested.
The first trial steps at (15)–(16) are α+ = α− = 1. By (14), there exists k0 ∈ K1

such that αk < 1 for all k ≥ k0, k ∈ K1. For those iterations of the DF-SANE
algorithm, the line-search was not immediately successful and α+ and α− were
adapted at least once. Suppose that in DF-SANE step k (i.e., the step which
generates xk+1) α+ and α− were adapted mk times in the line search process (i.e.,
the inequalities (15) and (16) were both violated together mk times). Let α+

k and
α−

k be the values of α+ and α− respectively in the last unsucessful line search step
(the last step at which (15) and (16) were violated together) in DF-SANE step k.
Because of the choice of α+ new and α− new at Step 2 of the DF-SANE algorithm
we have that

αk ≥ τmk

min

for all k ≥ k0, k ∈ K1 and so, by (14)

lim
k∈K1

mk = ∞.

But, again by the choice of α+ new and α− new,

α+
k ≤ τmk−1

max

and
α−

k ≤ τmk−1
max .

Therefore, since τmax < 1,

lim
k∈K1

α+
k = lim

k∈K1
α−

k = 0.

Clearly, since d = −σkF (xk), the fact that (15) and (16) are not satisfied by α+
k

and α−
k respectively implies that

(17) f(xk − α+
k σkF (xk)) > f̄k + ηk − γ(α+

k )2f(xk)

and

(18) f(xk + α−
k σkF (xk)) > f̄k + ηk − γ(α−

k )2f(xk)

for all k ∈ K1, k ≥ k0.
The inequality (17) implies that

f(xk − α+
k σkF (xk)) > f(xk) − γ(α+

k )2f(xk).

So,
f(xk − α+

k σkF (xk)) − f(xk) ≥ −γ(α+
k )2f(xk).

By Proposition 2, f(xk) ≤ c ≡ f(x0) + η for all k ∈ N. Thus,

(19) f(xk − α+
k σkF (xk)) − f(xk) ≥ −cγ(α+

k )2.

• Let us first consider the case nexp = 2. Then, by (19),

‖F (xk − α+
k σkF (xk))‖2 − ‖F (xk)‖2 ≥ −cγ(α+

k )2.
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• Now consider the case nexp = 1. The subsequence {xk}k∈K1 is convergent
and, therefore, bounded. Since ‖F (xk)‖, α+

k and σk are also bounded, we
have that {xk − α+

k σkF (xk)}k∈K1 is bounded. So, by the continuity of F ,
there exists c1 > 0 such that

‖F (xk − α+
k σkF (xk))‖ + ‖F (xk)‖ ≤ c1 for all k ∈ K1.

Multiplying both sides of (19) by ‖F (xk − α+
k σkF (xk))‖ + ‖F (xk)‖, we

obtain that

‖F (xk − α+
k σkF (xk))‖2 − ‖F (xk)‖2 ≥ −cc1γ(α+

k )2.

Setting C = c if nexp = 2 and C = cc1 if nexp = 1, we obtain that

‖F (xk − α+
k σkF (xk))‖2 − ‖F (xk)‖2 ≥ −Cγ(α+

k )2.

So,
‖F (xk − α+

k σkF (xk))‖2 − ‖F (xk)‖2

α+
k

≥ −Cγα+
k .

By the Mean Value Theorem, there exists ξk ∈ [0, 1] such that

〈g(xk − ξkα+
k σkF (xk)),−σkF (xk)〉 ≥ −Cγα+

k .

Therefore,

(20) σk〈g(xk − ξkα+
k σkF (xk)),−F (xk)〉 ≥ −Cγα+

k .

By the definition of the algorithm we have that σk > 0 for infinitely many
indices or σk < 0 for infinitely many indices. If σk > 0 for infinitely many indices
k ∈ K2 ⊂ K1, the inequality (20) implies that, for k ∈ K2, k ≥ k0,

(21) 〈g(xk − ξkα+
k σkF (xk)), F (xk)〉 ≤ Cγα+

k

σk
≤ Cγα+

k

σmin
.

Using (18) and proceeding in the same way, we obtain that, for k ∈ K2, k ≥ k0,

(22) 〈g(xk + ξ′kα−
k σkF (xk)), F (xk)〉 ≥ −Cγα−

k

σk
≥ −Cγα−

k

σmin

for some ξ′k ∈ [0, 1].
Since α+

k → 0, α−
k → 0, and ‖σkF (xk)‖ is bounded, taking limits in (21) and (22),

we obtain that

(23) 〈g(x∗), F (x∗)〉 = 0.

If σk < 0 for infinitely many indices, proceeding in an analogous way, we also deduce
(23). Thus, the thesis is proved. �

Corollary 1. Assume that {xk}k∈N is generated by the DF-SANE algorithm, x∗
is a limit point of {xk}k∈K and for all v ∈ R

n, v �= 0,

〈J(x∗)v, v〉 �= 0.

Then, F (x∗) = 0.

Proof. Straightforward, using Theorem 1. �
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As usual, we say that a matrix A ∈ R
n×n is positive-definite if 〈Av, v〉 > 0 for all

v ∈ R
n, v �= 0. If J(x) is positive-definite for all x ∈ R

n, we say that the mapping
F is strictly monotone. If F is strictly monotone or −F is strictly monotone, we
say that the mapping F is strict. If a mapping is strict and admits a solution, its
solution must be unique (see [22], Chapter 5).

Corollary 2. Assume that {xk}k∈N is generated by the DF-SANE algorithm and
the mapping F is strict. Then, every bounded subsequence of {xk}k∈K converges to
the solution of (1).

Proof. Straightforward, using Corollary 1. �

Corollary 3. Assume that {xk}k∈N is generated by the DF-SANE algorithm, the
mapping F is strict and the level set {x ∈ R

n | f(x) ≤ f(x0)+η} is bounded. Then,
{xk}k∈K converges to the solution of (1).

Proof. Straightforward, using Corollary 2. �

So far, we proved that at every limit point of {xk}k∈K the gradient of ‖F (x∗)‖2

is orthogonal to the residual F (x∗). The case in which there exists a limit point of
{xk}k∈N at which F (x∗) = 0 deserves further analysis. The theorem below shows
that, when such a limit point exists, all the limit points of the sequence generated
by the algorithm are solutions of the nonlinear system.

Theorem 2. Assume that the sequence {xk}k∈N is generated by the DF-SANE
Algorithm and that there exists a limit point x∗ of {xk}k∈N such that F (x∗) = 0.
Then

lim
k→∞

F (xk) = 0.

Consequently, F (x) vanishes at every limit point of {xk}k∈N.

Proof. Let K1 be an infinite subset of N such that

lim
k∈K1

xk = x∗

and

(24) F (x∗) = 0.

Then,
lim

k∈K1
F (xk) = 0.

Therefore, since xk+1 = xk ± αkσkF (xk) and |αkσk| ≤ σmax for all k ∈ N,

lim
k∈K1

‖xk+1 − xk‖ = 0.

So,
lim

k∈K1
xk+1 = x∗.

Proceeding by induction, we may prove that for all fixed � ∈ {0, 1, 2, . . . , 2M − 1},
(25) lim

k∈K1
xk+� = x∗.

Now, by (10), for all k ∈ K1, we can choose µ(k) ∈ {0, 1, . . . , 2M − 1} such that

(26) k + µ(k) ∈ K+.
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Moreover, at least one value of µ(k) must be repeated infinitely many times. So,
there exists �0 ∈ {0, 1, . . . , 2M − 1} such that µ(k) = �0 for infinitely many indices
k ∈ K1. Consider

K2 = {k + µ(k) | k ∈ K1 and µ(k) = �0}.
By (25) and (26) we have that K2 ⊂ K+ and

lim
k∈K2

xk = x∗.

Then, by (24),
lim

k∈K2
F (xk) = 0.

Since K2 ⊂ K+, there exists an infinite subsequence of indices J1 such that

(27) lim
j∈J1

xν(j) = x∗

and

(28) lim
j∈J1

f(xν(j)) = lim
j∈J1

Vj = 0.

Let us write J1 = {j1, j2, j3, . . .}, where j1 < j2 < j3 < · · · and limi→∞ ji = ∞.
By (28) we have that

(29) lim
i→∞

Vji
= 0.

Now, by (6) we have that for all j ∈ N, j > ji,

Vj ≤ Vji
+

∞∑
�=Mji

η�.

Therefore,

(30) sup
j≥ji

Vj ≤ Vji
+

∞∑
�=Mji

η�.

By the summability of ηk,

lim
i→∞

∞∑
�=Mji

η� = 0.

Then, by (29), taking limits on both sides of (30), we get

lim
i→∞

sup
j≥ji

Vj = 0.

Thus,
lim

j→∞
Vj = 0.

By the definition of Vj this implies that

(31) lim
k→∞

‖F (xk)‖ = lim
k→∞

f(xk) = 0,

as we wanted to prove.
The second part of the proof is straightforward: if x̄ is a limit point of {xk}k∈N

there exists a subsequence {xk}k∈K3 that converges to x̄. By (31) and the continuity
of F we have that

F (x̄) = lim
k∈K3

F (xk) = 0.

This completes the proof. �
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Now we prove two theorems of local convergence type. Theorem 3 says that if
an isolated solution is a limit point of {xk}, then the whole sequence xk converges
to this solution.

Theorem 3. Assume that the sequence {xk}k∈N is generated by the DF-SANE
algorithm and that there exists a limit point x∗ of the sequence {xk}k∈N such that
F (x∗) = 0. Moreover, assume that there exists δ > 0 such that F (x) �= 0 whenever
0 < ‖x − x∗‖ ≤ δ. Then, limk→∞ xk = x∗.

Proof. By Theorem 2 we have that

lim
k→∞

F (xk) = 0.

Therefore, since αk and σk are bounded,

lim
k→∞

‖xk+1 − xk‖ = 0.

Thus, there exists k1 ∈ N such that

(32) ‖xk+1 − xk‖ ≤ δ/2 for all k ≥ k1.

Consider the set

S = {x ∈ R
n | δ

2
≤ ‖x − x∗‖ ≤ δ}.

By hypothesis, S does not contain any solution of F (x) = 0. But, by Theorem 2,
all the limit points of {xk}k∈N are solutions of (1). Therefore, S does not contain
any limit point of {xk}k∈N. Thus, since S is compact, it cannot contain infinitely
many iterates xk. This implies that there exists k2 ∈ N such that

(33) xk /∈ S for all k ≥ k2.

Let k3 ≥ max{k1, k2} be such that

‖xk3 − x∗‖ ≤ δ/2.

By (32), we have

‖xk3+1 − x∗‖ ≤ ‖xk3 − x∗‖ + ‖xk3+1 − xk3‖ ≤ δ.

But, by (33), xk3+1 /∈ S, therefore, we have that

‖xk3+1 − x∗‖ ≤ δ/2.

Continuing this argument inductively we have that

(34) ‖xk − x∗‖ ≤ δ/2 for all k ≥ k3.

This implies that all the limit points x̄ of the sequence {xk}k∈N are such that

‖x̄ − x∗‖ ≤ δ/2.

By Theorem 2, F (x̄) = 0 at every limit point x̄ and, by the hypothesis of this
theorem, the set defined by 0 < ‖x − x∗‖ ≤ δ/2 does not contain solutions of (1).
Therefore, this set does not contain limit points. So, the only limit point x̄ that
satisfies ‖x − x∗‖ ≤ δ/2 is x∗. So, by (34), the sequence converges to x∗, as we
wanted to prove. �
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Theorem 4 is our second local convergence theorem. For proving it we need a
new definition and a technical lemma. We say that x∗ ∈ R

n is a strongly isolated
solution of (1) if F (x∗) = 0 and there exists ε > 0 such that

0 < ‖x − x∗‖ ≤ ε ⇒ 〈J(x)F (x), F (x)〉 �= 0.

That is, in a reduced neighborhood of a strongly isolated solution the residual
F (x) is not orthogonal to the gradient J(x)tF (x). Theorem 4 says that if the
initial point x0 is close enough to a strongly isolated solution x∗, then the sequence
{xk} converges to x∗. Observe that this cannot be deduced from Theorem 3 and,
moreover, Theorem 3 cannot be deduced from this result either, since the strong
isolation assumption is not necessary to prove that theorem.

Lemma 1. Assume that F (x∗) = 0, k̂ ∈ N and δ̄ > 0. Then, there exists δ(k̂) ∈
(0, δ̄] such that for any possible initial point x0 such that ‖x0 − x∗‖ < δ(k̂), the k̂th
iterate computed by the DF-SANE algorithm will satisfy

‖xk̂ − x∗‖ < δ̄.

(The value of δ(k̂) does not depend on the particular choice of σk at Step 1 or on
the choices of α+ new, α− new at Step 2.)

Proof. We proceed by induction. If k̂ = 0 the result is trivial with δ(k̂) = δ̄. Assume
that it is true for k = 0, 1, . . . , k̂, and let us prove it for k̂ + 1. Let δ̄ > 0. Observe
that, by the definition of the algorithm,

(35) ‖xk̂+1 − xk̂‖ ≤ σmax‖F (xk̂)‖.

Since F is continuous and F (x∗) = 0, there exists

(36) δ′ ∈ (0, δ̄/2)

such that
‖x − x∗‖ < δ′ ⇒ ‖F (x)‖ < δ̄/2σmax.

So, by (35),

(37) ‖xk̂ − x∗‖ < δ′ ⇒ ‖xk̂+1 − xk̂‖ < δ̄/2.

But, by the inductive hypothesis, there exists δ ∈ (0, δ′] such that

(38) ‖x0 − x∗‖ < δ ⇒ ‖xk̂ − x∗‖ < δ′.

By (36), (37) and (38), if ‖x0 − x∗‖ < δ, we have

‖xk̂+1 − x∗‖ ≤ ‖xk̂ − x∗‖ + ‖xk̂+1 − xk̂‖ < δ′ + δ̄/2 < δ̄.

This completes the proof. �

Theorem 4. Assume that x∗ is a strongly isolated solution of F (x) = 0. Then,
there exists δ > 0 such that

‖x0 − x∗‖ < δ ⇒ lim
k→∞

xk = x∗,

where {xk}k∈N is the sequence generated by the DF-SANE algorithm for the starting
point x0.
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Proof. Let ε > 0 be such that

(39) 0 < ‖x − x∗‖ ≤ ε ⇒ 〈J(x)F (x), F (x)〉 �= 0.

Since |σkαk| ≤ σmax, ‖xk+1 −xk‖ ≤ |σkαk|‖F (xk)‖ and F (x∗) = 0, the continu-
ity of F implies that there exists

ε1 ∈ (0, ε/2]

such that
(40)
‖xk − x∗‖ ≤ ε1 ⇒ ‖F (xk) − F (x∗)‖ = ‖F (xk)‖ ≤ ε

2σmax
⇒ ‖xk+1 − xk‖ < ε/2.

Define
Cε = {x ∈ R

n | ε1 ≤ ‖x − x∗‖ ≤ ε}.
Since Cε is compact and f is continuous, f has a minimum in Cε. So, there exists
x̂ ∈ Cε, β > 0, such that

(41) β ≡ f(x̂) ≤ f(x) for all x ∈ Cε.

Since f is continuous, the set {x ∈ B(x∗, ε1/2) | f(x) < β/2} is an open neigh-
borhood of x∗. Therefore, there exists δ̄ ∈ (0, ε1/2) such that

(42) ‖x − x∗‖ < δ̄ ⇒ f(x) < β/2.

Let m ≥ 1 be such that
∞∑

i=(m−1)M+1

ηi < β/2.

By Proposition 2, writing k0 = mM , we have that

(43) f(xk) ≤ Vm +
∞∑

i=(m−1)M+1

ηi < Vm + β/2

for all k ≥ k0.
Now, apply Lemma 1 for k̂ = (m − 1)M + 1, . . . , mM with δ̄ given by (42). It

turns out that there exist δ(m−1)M+1, . . . , δmM such that

‖x0 − x∗‖ < δ(m−1)M+j ⇒ ‖x(m−1)M+j − x∗‖ ≤ δ̄ < ε1, j = 1, 2, . . . , M.

So, taking δ = min{δ(m−1)M+1, . . . , δmM}, we have that

(44) ‖x0 − x∗‖ < δ ⇒ ‖x(m−1)M+j − x∗‖ ≤ δ̄ < ε1, j = 1, 2, . . . , M.

In particular, since k0 = mM ,

(45) ‖x0 − x∗‖ < δ ⇒ ‖xk0 − x∗‖ ≤ δ̄ < ε1.

By (42) and (44), f(x(m−1)M+j) < β/2 and thus Vm < β/2. So, by (43),

(46) f(xk) < β for all k ≥ k0.

Let us prove by induction that, choosing ‖x0 − x∗‖ < δ,

(47) ‖xk0+j − x∗‖ < ε1

for all j ∈ N. By (45), we have that (47) is true for j = 0.
Assume, as an inductive hypothesis, that, for some j ≥ 1,

‖xk0+j−1 − x∗‖ < ε1.
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Since ε1 ≤ ε/2, then
‖xk0+j−1 − x∗‖ < ε/2.

But, by (40),

(48) ‖xk0+j − x∗‖ ≤ ‖xk0+j−1 − x∗‖ + ‖xk0+j − xk0+j−1‖ < ε/2 + ε/2 = ε.

Since, by (46), f(xk0+j) < β, (41) and (48) imply that ‖xk0+j − x∗‖ < ε1. This
completes the inductive proof.

So, {xk}k≥k0 ⊂ B(x∗, ε1). Therefore, all the limit points x̄ of {xk}k∈N are such
that ‖x̄− x∗‖ ≤ ε1 < ε. But, by (39) and Theorem 1, the only possible limit point
is x∗. Therefore, limk→∞ xk = x∗, as we wanted to prove. �

Corollary 4. Assume that x∗ is a solution of F (x) = 0 and assume that J(x∗) is
either positive definite or negative definite. Then, there exists δ > 0 such that

‖x0 − x∗‖ < δ ⇒ lim
k→∞

xk = x∗

with {xk}k∈N the sequence generated by the DF-SANE algorithm for the starting
point x0.

Proof. Using the continuity of J we obtain that x∗ is strongly isolated. Then, the
thesis follows from Theorem 4. �

4. Numerical results

We implemented DF-SANE with the following parameters: nexp = 2, σmin =
10−10, σmax = 1010, σ0 = 1, τmin = 0.1, τmax = 0.5, γ = 10−4, M = 10, ηk =
‖F (x0)‖/(1 + k)2 for all k ∈ N.

The spectral steplength was computed by the formula

σk =
〈sk, sk〉
〈sk, yk〉

,

where sk = xk+1 − xk and yk = F (xk+1) − F (xk). Observe that

yk = [
∫ 1

0

J(xk + tsk)dt]sk,

so σk is the inverse of the Rayleigh quotient

〈[
∫ 1

0
J(xk + tsk)dt]sk, sk〉

〈sk, sk〉
.

However, if |σk| �∈ [σmin, σmax], we replace the spectral coefficient by

σk =

⎧⎨
⎩

1 if ‖F (xk)‖ > 1,
‖F (xk)‖−1 if 10−5 ≤ ‖F (xk)‖ ≤ 1,

105 if ‖F (xk)‖ < 10−5.

Since we use big values for σmax and 1/σmin, this replacement rarely occurs. In
the few cases in which the replacement is necessary, the first trial point is xk−F (xk)
if ‖F (xk‖ ≥ 1. If 10−5 ≤ ‖F (xk)‖ ≤ 1 the step σk is such that the distance between
xk and the first trial point is equal to 1. When ‖F (xk)‖ < 1 we prefer to allow
the distance between xk and the trial point to be smaller, choosing for σk the fixed
value 10−5.
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For choosing α+ new and α− new at Step 2, we proceed as follows. Given α+ > 0,
we take α+ new > 0 as

α+ new =

⎧⎨
⎩

τminα+ if αt < τminα+,
τmaxα+ if αt > τmaxα+,
αt otherwise,

where

αt =
α2

+f(xk)
f(xk + α+d) + (2α+ − 1)f(xk)

.

We use similar formulae for choosing α− new as a function of α−, f(xk) and
f(xk − α−d). This parabolic model is similar to the one described in [15, pp.
142–143], in which the Jacobian matrix at xk is replaced by the identity matrix
(see also [9]).

We also implemented SANE [17] with the following parameters: γ = 10−4,
ε = 10−8, σ1 = 0.1, σ2 = 0.5, α0 = 1, M = 10, and

δ =

⎧⎨
⎩

1 if ‖F (xk)‖ > 1,
‖F (xk)‖−1 if 10−5 ≤ ‖F (xk)‖ ≤ 1,

105 if ‖F (xk)‖ < 10−5.

Both in SANE and DF-SANE we stop the process when

(49)
‖F (xk)‖√

n
≤ ea + er

‖F (x0)‖√
n

,

where ea = 10−5 and er = 10−4.
We ran SANE and DF-SANE using a set of large-scale test problems. The first

twenty (1–20) test problems are fully described in [17] or references therein. The
complete set of test problems is described in our expanded report [16].

The numerical results are shown in Tables 1, 2, and 3. We report only one
failure, denoted by the symbol (*), when running problem 18 with n = 100. In that
case, DF-SANE fails because it generates a sequence that converges to a point x̄ at
which F (x̄)T g(x̄) = 0, but F (x̄) �= 0 and g(x̄) �= 0.

The results from Tables 1 and 2 are summarized in Table 3. In Table 3 we com-
pare the performance (the number of problems for which each method is a winner
with respect to the number of iterations, function evaluations and computer time)
between SANE and DF-SANE. In Tables 1 and 2 we report the problem number
and the dimension of the problem (Function(n)), the number of iterations (IT),
the number of function evaluations (including the additional functional evaluations
that SANE uses for approximating directional derivatives) (FE), the number of
backtrackings (BK), and the CPU time in seconds (T). In SANE it is necessary
to evaluate the directional derivative 〈F (xk), J(xk)tF (xk)〉 at each iteration. Since
we assume that the Jacobian is not easily available, we use the fact that

〈F (xk), J(xk)tF (xk)〉 = 〈J(xk)F (xk), F (xk)〉
and the approximation

J(xk)F (xk) ≈ F (xk + tF (xk)) − F (xk)
t

,

where t > 0 is a small parameter. Therefore, computing the approximate direc-
tional derivative involves an additional function evaluation (included in FE) at each
iteration.
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Table 1. SANE vs. DF-SANE for the first set of test problems.

SANE DF-SANE

Function(n) IT FE BK T IT FE BK T

1( 1000) 5 10 0 .010 5 5 0 .000
1(10000) 2 4 0 .060 2 2 0 .050

2( 500) 6 14 1 .010 11 11 0 .000
2( 2000) 2 7 1 .010 11 11 0 .030

3( 100) 5 10 0 .010 5 5 0 .000
3( 500) 1 2 0 .000 1 1 0 .010

4( 99) 130 335 69 .060 99 289 66 .060
4( 999) 130 335 69 .611 101 325 71 .611

5( 9) 23 59 12 .000 42 68 12 .000
5( 49) 552 1942 424 .070 732 2958 660 .130

6( 100) 2 5 1 .000 3 3 0 .000
6(10000) 2 5 1 .040 3 3 0 .060

7( 100) 23 49 2 .010 23 29 2 .000

7(10000) 23 49 2 .581 23 29 2 .511

8( 1000) 1 2 0 .000 1 1 0 .000
8(10000) 1 2 0 .030 1 1 0 .030

9( 100) 6 12 0 .040 6 6 0 .020
9( 1000) 6 12 0 3.826 6 6 0 2.063

10( 100) 1 8 1 .000 2 12 1 .000
10( 500) 1 8 1 .010 2 12 1 .010

11( 99) 11 34 4 .000 17 49 7 .000
11( 399) 11 34 4 .020 17 49 7 .030

12( 1000) 6 14 2 .040 30 62 12 .180
12(10000) 5 12 2 .421 23 59 11 2.073

13( 100) 3 8 1 .000 3 7 1 .010
13( 1000) 4 10 1 .020 4 8 1 .010

14( 2500) 11 25 1 .210 11 17 1 .160
14(10000) 12 28 1 1.082 12 20 1 .871

15( 5000) 5 10 0 .060 5 5 0 .050
15(15000) 5 10 0 .230 5 5 0 .180

16( 500) 14 29 1 .000 14 16 1 .010
16( 2000) 16 32 0 .010 16 16 0 .010

17( 100) 9 19 1 .010 9 11 1 .000
17( 1000) 7 15 1 .030 7 9 1 .030

18( 50) 24 50 2 .010 19 21 1 .000

18( 100) 24 49 1 .000 * * * *

19( 1000) 5 10 0 .010 5 5 0 .010
19(50000) 5 10 0 .771 5 5 0 .611

20( 100) 32 67 2 .010 40 42 1 .010
20( 1000) 51 117 9 .100 44 62 5 .070

21( 399) 4 9 1 .010 5 7 1 .000
21( 9999) 4 9 1 .200 5 7 1 .190

22( 1000) 1 2 0 .000 1 2 0 .000
22(15000) 1 2 0 .030 1 2 0 .040

Our results indicate that the new fully derivative-free scheme DF-SANE is com-
petitive with the SANE algorithm, which in turn is quite frequently preferable to the
Newton-Krylov methods: Newton - GMRES, Newton - BiCGSTAB, and Newton
- TFQMR (see [17] for comparisons). In particular, when comparing SANE with
Newton - GMRES (which was the Krylov-like method with the best performance
in [17]) the summary results shown in Table 4 were obtained.
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Table 2. SANE vs. DF-SANE for the second set of test problems.

SANE DF-SANE

Function(n) IT FE BK T IT FE BK T

23( 500) 1 10 1 .000 2 18 1 .010
23(1000) 1 11 1 .000 2 20 1 .000

24( 500) 25 54 4 .030 54 109 18 .070
24( 1000) 265 915 159 .951 17 25 3 .030

25( 100) 2 6 1 .000 2 6 1 .000
25( 500) 3 9 1 .000 3 9 1 .000

26( 1000) 1 2 0 .000 1 1 0 .000
26( 10000) 1 2 0 .020 1 1 0 .020

27( 50) 10 20 0 .260 10 10 0 .140
27( 100) 11 22 0 1.072 11 11 0 .561

28( 100) 1 2 0 .000 1 1 0 .000
28(1000) 1 2 0 .000 1 1 0 .000

29( 100) 1 4 1 .010 1 5 1 .000

29(1000) 1 4 1 .010 1 5 1 .010

30( 99) 18 39 3 .000 11 16 2 .000
30(9999) 18 39 3 .791 11 16 2 .411

31( 1000) 4 9 0 .030 6 6 0 .020
31( 5000) 4 9 0 .160 6 6 0 .130

32( 500) 6 12 0 .010 6 7 0 .010
32( 1000) 6 12 0 .020 6 7 0 .020

33( 1000) 3 20 2 .050 37 50 3 .120
33( 5000) 3 22 1 .270 4 16 2 .230

34( 1000) 22 52 4 .110 78 155 26 .381
34(5000) 12 27 1 .361 12 18 1 .280

35( 1000) 21 45 2 .180 21 27 2 .110
35( 5000) 29 63 3 1.402 38 48 3 1.202

36( 1000) 21 45 2 .270 28 34 2 .210
36(5000) 44 96 7 2.954 26 36 4 1.272

37( 1000) 23 49 2 .010 26 38 5 .010
37(5000) 23 49 2 .140 26 38 5 .210

38( 1000) 19 40 2 .050 25 30 2 .040
38(5000) 19 40 2 .320 25 30 2 .340

39(1000) 55 126 13 .160 14 20 1 .030
39(5000) 55 126 13 1.041 14 20 1 .210

40(1000) 1 2 0 .000 1 1 0 .000

40(5000) 1 2 0 .020 1 1 0 .020

41( 500) 7 15 1 .010 7 9 1 .010
41(1000) 2 5 1 .010 3 3 0 .000

42( 1000) 110 268 45 .190 173 412 85 .330
42( 5000) 110 268 45 1.392 173 412 85 2.654

43( 100) 80 175 11 .010 86 108 9 .010
43( 500) 488 1704 348 .601 586 1162 193 .451

44( 1000) 2 4 0 .020 4 4 0 .030
44(5000) 2 4 0 .100 3 3 0 .090

Table 3. Winners with respect to iterations, evaluations and time.

Method IT FE T
SANE 37 19 20
DF-SANE 10 64 38
Undecided 41 5 30
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Table 4. Winners with respect to iterations, evaluations and time
between SANE and Newton-GMRES reported in [17].

Method IT FE T
Newton-GMRES 51 9 19
SANE 9 51 41

5. Conclusions

The algorithm presented in this paper may be considered a damped quasi-
Newton method for solving nonlinear systems (see [9, 20]). The iterations are

(50) xk+1 = xk − αkB−1
k F (xk),

where the Jacobian approximation Bk has the very simple form

(51) Bk = σkI.

In most cases,

(52) σk =
〈sk, sk〉
〈yk, sk〉

.

Due to the simplicity of the Jacobian approximation, the method is very easy to
implement, memory requirements are minimal and, so, its use for solving large-scale
nonlinear systems is attractive.

In [17] it was shown that, perhaps surprisingly, a procedure that obeys the
scheme (50)–(52) behaves reasonably well for solving a number of classical nonlinear
systems, most of them coming from discretization of boundary value problems.
However, the algorithm introduced in [17] is not completely satisfactory in the
sense that a directional derivative estimate is needed in order to ensure convergence
and even well-definiteness of each iteration. In the present research we overcome
that difficulty introducing the method DF-SANE, which does not need directional
derivatives at all.

Our theoretical results are obtained without using the specific formula of σk

employed in our experiments. However, the method does not behave well for every
choice of σk. Therefore, much has to be said, from the theoretical point of view, to
explain the behavior of algorithms associated to the safeguarded spectral choice of
the steplength used here. In particular, although the theoretical properties of the
Barzilai–Borwein method for minimizing convex quadratics are now well understood
(see [23]), nothing is known about the properties of the spectral residual method
for solving nonsymmetric linear systems. Global and local convergence theorems,
as the ones presented in this paper, smooth the path for proving results on the
order of convergence. Nevertheless, it is necessary to understand what happens in
the linear case first.

Since the spectral residual method is a quasi-Newton method where the Jaco-
bian approximation is a multiple of the identity matrix, the best behavior of this
method must be expected when true Jacobians are close to matrices of that type.
The analogy with the Barzilai-Borwein method allows one to conjecture in which
(more general) situations the method should behave well. If the Jacobians are close
to symmetric matrices with clustered eigenvalues (see [21]), a good behavior of the
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Barzilai–Borwein method can be predicted, and, so, we also predict a fine behav-
ior of the spectral residual method. Very likely, in many practical situations the
performance of the method should be improved using some kind of preconditioning
that transforms the Jacobian on a matrix with a small number of clusters of eigen-
values. So, with respect to preconditioning features, the situation is analogous to
the one of Krylov-subspace methods. Preconditioned spectral gradient methods for
minimization were introduced in [19].

Our first set of experiments are discretization of boundary value problems. In
general, the Jacobians are positive definite, so that the mappings F are generally
monotone, or even strictly monotone. According to the corollaries of Theorem 1
this favors the behavior of DF-SANE, but also favors the behavior of almost every
nonlinear system solver. Since we are not using preconditioning at all, in general
eigenvalues are not clustered. In some problems the Jacobians are well conditioned
and in some other problems they are not. Moreover, in some problems the Jaco-
bian is singular at the solution. In principle ill-conditioning adversely affects both
spectral methods as Krylov subspace methods.

The second set of 22 problems does not show special characteristics from the
point of view of positive definiteness or conditioning. Moreover, some of these
problems have many solutions. In principle, we do not have strong reasons to predict
a good behavior of DF-SANE, therefore the rather robust and efficient performance
of the new algorithm for solving these problems is a pleasantly surprising fact that
needs theoretical explanation.

We would like to finish pointing out that a different modification of SANE, which
uses watchdog techniques and coordinate search, has been recently proposed in [14].
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