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PRACTICAL SOLUTION OF THE DIOPHANTINE EQUATION
y2 = x(x + 2apb)(x − 2apb)

KONSTANTINOS DRAZIOTIS AND DIMITRIOS POULAKIS

Abstract. Let p be an odd prime and a, b positive integers. In this note we
prove that the problem of the determination of the integer solutions to the
equation y2 = x(x + 2apb)(x − 2apb) can be easily reduced to the resolution

of the unit equation u +
√

2v = 1 over Q(
√

2,
√

p). The solutions of the latter
equation are given by Wildanger’s algorithm.

1. Introduction

A widely studied class of Diophantine equations consists of elliptic equations. In
general, there are two methods for solving elliptic equations: the Thue approach
and the elliptic logarithm method. The Thue approach is the most classical [16,
Chapter 27]. Several factorizations over appropriate number fields lead to a finite
number of Thue equations. Some methods for the solution of Thue equations has
been given in [21] and [12]. The method of the elliptic logarithm was developed
independently in [20], [11] and [19]. It is applicable in general, if one knows a full
set of generators for the group of rational points on the curve, modulo torsion.
Algorithms for finding such generators exist but are not guaranteed to always give
an answer [7], [10].

Let En be the elliptic curve defined by the equation

y2 = x3 − n2x,(1)

where n is an integer ≥ 1. Since the map φ : En → Ec2n, given by (x, y) �→
(c2x, c3y), is an isomorphism of elliptic curves and the rank of E1(Q) is zero, then
the rank of En(Q), where n is a perfect square, is zero. Furthermore, since the rank
of E2(Q) is zero, the rank of E22k+1(Q), where k ≥ 1, is zero, and hence for every
m ≥ 1 the rank of E2m(Q) is zero. In [9, Lemma 1.1] some sufficient conditions
on n are listed for the rank of En(Q) to be zero. Note that the rank of En(Q) is
nonzero if and only if n is a congruent number [14, Chapter I]. Recently, in [8],
a simple method for the determination of the integer solutions of (1), in the case
where n = pk and p is a prime, is given. Finally, note that in [2, page 203], the
integer solutions of (1) with n ≤ 72 have been calculated by the elliptic logarithm
method or by a straightforward application of theorems given in [1] and [6].

In this note, we study the integer solutions of (1) when n = 2apb, where p is a
prime > 2 and a, b are positive integers not both even. Using the “multiplication
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by 2” on En, we reduce the problem of the determination of integer solutions of
(1) to the solution of the unit equation u +

√
2v = 1 over Q(

√
2,
√

p) which can
be solved by Wildanger’s algorithm [22]. Our approach goes back to Chabauty [4],
[15, page 140]. It has been used in [17] for the computation of an explicit upper
bound for the integer solutions of the general elliptic equation over a number field.
This result has been improved in [3].

Let a ≥ 3. If a is even, then we put

Σn = {pb(2a−2 + 1)2, pb(2a−2 − 1)2, pb(22(a−1) + 1), 2a−1(p2b + 1)}.

Let a be odd. If b is even, then we set

Σn = {2a−2(pb + 1)2, pb(22(a−1) + 1)}.

If b is odd, then we put

Σn = {2a−2(pb + 1)2, pb(22(a−1) + 1), pb(2a−2 + 1)2, pb(2a−2 − 1)2} ∪ Λn,

where Λn = {2a−325} when (p, b) = (3, 1), Λn = {3b−125} when (p, a) = (3, 3) and
Λn = ∅ otherwise. Finally, for a = 2 we put Σn = {2(p2b + 1), pb5} and for a = 1,
Σn = {(pb + 1)2/2, (pb − 1)2/2}.

Theorem 1. Let n = 2apb, where p is a prime > 2 and a, b are positive integers
not both even. If (x, y) ∈ Z2 is an integer solution to (1) with x > n and x 	∈ Σn,
then there is a unit u of Q(

√
2,
√

p) such that (1 − u)/
√

2 is also a unit and

x =
(u2 + 1)2n
4u(u2 − 1)

.

The units u and v = (1 − u)/
√

2 are a solution of the equation

u +
√

2v = 1

over Q(
√

2,
√

p). Wildanger’s algorithm is an efficient method for the resolution of
such equations. It uses Baker’s method, the LLL reduction algorithm and means
from the geometry of numbers. It is implemented in the Magma Computational
Algebraic System [23] and so easily provides the solutions of the above equation.
Thus Theorem 1 gives all the solutions of (1) with x > n. Since there are no
solutions with x < −n and 0 < x < n, the full set of solutions of (1) can easily be
determined. As far as we know, it is the first time that this approach is used for
the practical solution of an elliptic equation.

This paper is organized as follows. In Section 2, we give some lemmata which
will be needed for the proof of Theorem 1. The proof of Theorem 1 is given in
Section 2. Finally, in Section 3, we state a simple algorithm for the solution of (1)
and give some examples.

2. Auxiliary lemmata

In this section we give some lemmata which are useful for the proof of Theorem
1.

Lemma 1. Let n = 2apb, where p is a prime > 2 and a, b are positive integers not
both even. If (x, y) is an integer solution of (1) with x > n and x 	∈ Σn, then n|x.
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Proof. We have the following cases:
Case 1. 2 	 |x and p 	 |x. Then x, x − n, x + n are pairwise prime, and so there

are odd positive integers A, B, C satisfying

x = A2, x − n = B2, x + n = C2.

We have A2−B2 = n and gcd(A+B, A−B) = 2. Since A, B are odd, 8|A2−B2, and
so we get a ≥ 3. It follows that (A+B, A−B) = (2a−1pb, 2), (2a−1, 2pb), (2pb, 2a−1).
Thus A ∈ {2a−2pb + 1, 2a−2 + pb}. On the other hand, we have C2 − A2 = n and
gcd(C + A, C −A) = 2, whence A ∈ {2a−2pb − 1, 2a−2 − pb, pb − 2a−2}. We deduce
that p = 3, n = 24 and x = 25.

Case 2. 2|x and p 	 | x. Thus we can write x = 2kz, where z is an odd integer
not divisible by p and k ≥ 1. If k > a, then

y2 = 2k+2az(z2k−a − pb)(z2k−a + pb).

The integers z, z2k−a − pb, z2k−a + pb are odd and pairwise prime. So, k is even
and there are positive odd integers A, B, C with

z = A2, z2k−a − pb = B2, z2k−a + pb = C2.

It follows that C2 − B2 = 2pb. Since B and C are odd, we get 8|C2 − B2 and so
4|p, which is a contradiction. If k < a, then we obtain, working as in Case 1, that
p = 3, k = a − 3 ≥ 1, b = 1 and z = 25. It follows that x = 2a−325 and a is odd.
Suppose next that k = a. Then

y2 = 23az(z − pb)(z + pb).

We have gcd(z, z ± pb) = 1 and gcd(z − pb, z + pb) = 2. If a is even, then there are
positive integers A, B, C such that

z = A2, z − pb = 2B2, z + pb = 2C2.

We have C2 − B2 = pb and so C + B = pµ, C − B = pν . If ν > 0, then p|C and
hence p|z, which is a contradiction. Thus, C = (pb +1)/2 and so x = 2a−1(p2b +1).
If a is odd, then there are positive integers A, B, C and i, j ∈ {1, 2} with i + j = 3
such that

z = A2, z − pb = 2iB2, z + pb = 2jC2.

If (i, j) = (2, 1), then A2 − (2B)2 = pb, whence A + 2B = pr and A− 2B = ps with
b ≥ r > s ≥ 0. The case s > 0 implies p|A, whence p|z, which is a contradiction.
Thus s = 0, and we obtain that A = (pb + 1)/2, whence x = 2a−2(pb + 1)2. If
(i, j) = (1, 2), then we similarly obtain that x = 2a−2(pb − 1)2.

Case 3. 2 	 |x and p| x. Then we have x = pkz, where z is an odd integer not
divisible by p and k ≥ 1. If k > b, then

y2 = pk+2bz(zpk−b − 2a)(zpk−b + 2a).

The integers p, z, zpk−b − 2a, zpk−b + 2b are odd and pairwise prime. So, k is even
and there are positive odd integers A, B, C satisfying

z = A2, zpk−b − 2a = B2, zpk−b + 2a = C2.

It follows that C2 − B2 = 2a+1. The integers B, C are odd and so 8|C2 − B2,
whence a ≥ 2. Since gcd(C + B, C − B) = 2, we get C = 2a−1 + 1, B = 2a−1 − 1.
Thus, x = pb(22(a−1) +1). If k < b, then we deduce, as in Case 1, that p = 3, a = 3,
b odd and x = 3b−125. Finally, let k = b. Then

y2 = p3bz(z − 2a)(z + 2a).
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The integers z, z − 2a, z + 2a are pairwise prime. If b is even, then there are odd
positive integers A, B, C satisfying

z = A2, z − 2a = B2, z + 2a = C2.

So, we deduce, as previously, that x = pb(22(a−1) + 1). On the other hand, since
C2 − A2 = 2a, we obtain that x = pb(2a−2 − 1)2. Thus 22(a−1) + 1 = (2a−2 − 1)2,
which leads to a contradiction. If b is odd, then p divides either z − 2a or z + 2a,
and we deduce x = pb(2a−2 ± 1)2 and a ≥ 3.

From the previous cases we conclude that n|x whenever x 	∈ Σn.

Lemma 2. Let n = 2apb, where p is a prime > 2 and a, b are positive integers not
both even. We have the following cases:

(a) p = 3 and a, b are odd. Then the integer solutions (x, y) of (1) with
−n < x < 0 are given by x = −2a−13b and x = −2a3b−1.

(b) p = 7 and a, b are odd. Then (1) has only one integer solution (x, y) with
−n < x < 0, given by x = −2a−37b.

(c) p ≡ 1 (mod 8) and a is odd. If (x, y) is an integer solution of (1) with
−n < x < 0, then x = −2kplz, where k ≥ a, l even, k even if k > a and z
is an odd integer, which is a perfect square.

(d) p ≡ 1 (mod 8) and a is even. If (x, y) is an integer solution of (1) with
−n < x < 0, then x = −2aplz, where l even and z is an odd integer, which
is a perfect square.

Proof. Let x = −2kplz, where z is an odd integer not divisible by p. We distinguish
the following cases:

Case 1. 0 ≤ k < a. Suppose that 0 ≤ l < b. Then

y2 = 23kp3lz(2a−kpb−l − z)(2a−kpb−l + z).

The integers p, z, 2a−kpb−l − z and 2a−kpb−l + z are pairwise prime. Thus, k, l are
even, and there are odd positive integers A, B, C satisfying

z = A2, 2a−kpb−l − z = B2, 2a−kpb−l + z = C2.

It follows that C2 − B2 = 2z, and since C, B are odd we have 8|C2 − B2. Hence
4|z, which is a contradiction. If l > b, then we similarly obtain a contradiction.
Suppose now that l = b. Then

y2 = 23kp3bz(2a−k − z)(2a−k + z).

The integers 2, z, 2a−k − z and 2a−k + z are pairwise prime. Since z, 2a−k − z and
2a−k + z are odd, we deduce that k is even. If b is even, then there are odd positive
integers A, B, C satisfying

z = A2, 2a−k − z = B2, 2a−k + z = C2,

whence we obtain, as previously, a contradiction. If b is odd, then either p|2a−k − z
or p|2a−k + z. Suppose that p|2a−k − z. Then there are odd positive integers A, B,
C such that

z = A2, 2a−k − z = pB2, 2a−k + z = C2.

Thus C2 − A2 = 2a−k, whence (C + A)(C − A) = 2a−k. Hence C + A = 2µ,
C − A = 2ν with µ + ν = a − k and µ > ν, and so we deduce A = 2µ−1 − 2ν−1,
C = 2µ−1 + 2ν−1. Since A is odd, we have ν = 1, µ = a − k − 1 and therefore
z = (2a−k−2 − 1)2. We have 2a−k = C2 − A2 ≡ 0 (mod 8), whence a − k ≥ 3.
Further, since B ≡ z ≡ 1 (mod 8), we get p ≡ 7 (mod 8). On the other hand, we



SOLUTION OF DIOPHANTINE EQUATION y2 = x(x + 2apb)(x − 2apb) 1589

have (2a−k−2 − 1)2 < 2a−k, whence a − k ∈ {3, 4}. If a − k = 4, then the equality
16 − z = pB2 implies z = 9 and B = 1. Hence C2 = 17, which is a contradiction.
If a − k = 3, then a is odd, p = 7, z = 1, and so x = −2a−37b. Suppose next that
p|2a−k + z. Then there are odd positive integers A, B, C such that

z = A2, 2a−k − z = B2, 2a−k + z = pC2.

We have 2a−k − z = B2 + z ≡ 2 (mod 8), whence a− k = 1. Hence z = B = 1 and
a is odd. It follows that p = 3. Therefore x = −2a−13b.

Case 2. k > a. Then l < b. So, we have

y2 = p3l2k+2az(pb−l − 2k−az)(pb−l + 2k−az).

The integers 2, z, pb−l − 2k−az, pb−l + 2k−az are odd and pairwise prime. Thus, k,
l are even, and there are odd integers A, B, C such that

z = A2, pb−l − 2k−az = B2, pb−l + 2k−az = C2.

If a is odd, then we obtain that 2 and −2 are quadratic residue modulo p, whence
we get p ≡ 1 (mod 8). If a is even, then pb−l = C2 − (2(k−a)/2A)2, whence
C+2(k−a)/2A = pµ and C−2(k−a)/2A = pν , where b−l ≥ µ > ν ≥ 0. The case ν > 0
implies p|C, which is a contradiction. Thus ν = 0 and so z2a−k = (pb−l − 1)2/4. It
follows that pb−l − (pb−l − 1)2/4 = B2, and we get p = 3. On the other hand, we
have p ≡ 2k−a + 1 ≡ 1, 5 (mod 8), which is a contradiction.

Case 3. a = k. Then

y2 = p3l23az(pb−l − z)(pb−l + z).

We have gcd(pb−l − z, pb−l + z) = 2, and p, z, pb−l − z, pb−l + z are pairwise prime.
Thus, l is even, and there are positive integers A, B, C such that

z = A2, pb−l − z = 2sB2, pb−l + z = 2tC2,

where s, t are integers ≥ 1 with s + t = 3, if a is odd, and s + t = 2, if a is
even. Suppose that a is even. Then s = t = 1, and so 2 and −2 are residue
quadratic modulo p, whence we get p ≡ 1 (mod 8). Suppose next that a is odd.
If (s, t) = (2, 1), then we deduce that 2 and −2 are residue quadratic modulo p,
whence we get p ≡ 1 (mod 8). If (s, t) = (1, 2), then (2C)2 − A2 = pb−l, whence
2C + A = pµ and 2C − A = pν , where b − l ≥ µ > ν ≥ 0. The case ν > 0 implies
p|A, which is a contradiction. Thus ν = 0, and so we obtain z = (pb−l − 1)2/4.
Putting this value into the second equality, we get p = 3 and b − l = 1. Therefore
b is odd and x = −2a3b−1.

Lemma 3. Let f(T ) = T 4 − 4zT 3 + 2T 2 + 4zT + 1, where z is an integer ≥ 2.
If s is a root of f(T ), then the field K = Q(s) is a totally real Galois extension of
degree 4 over Q. Moreover, Gal(K/Q) ∼= Z2 × Z2.

Proof. First, we shall prove that f(T ) is irreducible. If f(T ) has a linear factor,
then there is s ∈ Z with f(s) = 0. It follows that s = ±1, which leads to the
contradiction 4 = 0. Suppose now that we have the factorization

f(T ) = (T 2 + AT + B)(T 2 + CT + D),
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where A, B, C, D ∈ Z. Thus

A + C = −4z,(2)
B + AC + D = 2,(3)

AD + BC = 4z,(4)
BD = 1.(5)

By (5), (B, D) = (1, 1) or (−1,−1). Suppose that (B, D) = (1, 1). Then (3)
implies AC = 0. If A = 0, then (2) gives C = −4z and substituting the values of
A and C in (4) we get z = 0, which is a contradiction. If C = 0, then we obtain a
contradiction similarly. Suppose next that (B, D) = (−1,−1). Then (3) gives AC =
4. Combining this equality with (2), it follows that (A, C) = (−1,−4), (−4,−1) or
(−2,−2). If (A, C) = (−1,−4) or (−4,−1), then (2) implies −5 = −4z, which
is impossible. If (A, C) = (−2,−2), then (2) gives z = 1, which is not the case.
Hence, f(T ) is irreducible.

The cubic resolvent of f(T ) is the polynomial

r(T ) = T 3 − 2T 2 − (16T 2 + 4)T − 32T 2 + 8 = (T + 2)(T − 2 − 4z)(T − 2 + 4z).

Since r(T ) splits into linear factors over Q, [13, Proposition 4.11, page 273] implies
that the splitting field K of f(T ) has Galois group Gal(K/Q) ∼= Z2 × Z2. So K/Q

is a Galois extension of degree 4. By [5, Proposition 4.1.14], K is either totally
real or totally complex. Since f(1) = 1 − 8zp + 8p2 + 32p3z + 16p4 > 0 and
f(4p) = (−384z+400)p4 < 0, f(T ) has a real root in the interval (1, 4p). Therefore
K is totally real.

3. Proof of Theorem 1

We denote by Q̄ an algebraic closure of Q. Let (x, y) ∈ Z2 be a solution to
(1) such that x > n and x 	∈ Σn. Let (s, t) ∈ Q̄2 be a point on En such that
[2](s, t) = (x, y) (we denote by [2](s, t) the double of the point (s, t) on the elliptic
curve En). By [18, page 59], we have

s4 − 4xs3 + 2n2s2 + 4n2xs + n4 = 0.(6)

Let K = Q(s). By Lemma 1, x = nz, where z is an integer > 1. Thus s1 = s/n
is a root of the equation

f(T ) = T 4 − 4zT 3 + 2T 2 + 4zT + 1 = 0,

and so s1 is a unit of K. By Lemma 3, K is a totally real Galois extension of
degree 4 over Q and Gal(K/Q) ∼= Z2 × Z2. Thus, the fundamental theorem of
Galois theory implies that K contains exactly two distinct real quadratic subfields
Q(

√
di) (i = 1, 2), where di ∈ R and 0 < d1 < d2. By [18, Proposition 1.5(b), page

193], every prime number different from 2 and p is unramified in K. It follows that
(d1, d2) ∈ {(2, p), (2, 2p), (p, 2p)}, and hence K = Q(

√
2,
√

p).
Now, we put

√
2s2 = 1 − s1. The resultant of the polynomials f(1 − WT ) and

W 2 − 2 with respect to W is equal to 16R(T ), where

R(T ) = T 8 + (4z − 8z2)T 6 + (2 − 16z + 20z2)T 4 + (4z − 8z2)T 2 + 1.

Since f(1 −
√

2s2) = f(s1) = 0, we have R(s2) = 0, and hence s2 is a unit of K.
Furthermore, we have

s1 +
√

2s2 = 1.
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Combining this result with (6), we obtain

x =
(s2 + n2)2

4s(s2 − n2)
,

where s/n is a unit of K such that (1 − s/n)/
√

2 is also a unit of K.

4. The algorithm

Theorem 1 and Lemma 2 yield the following algorithm for the solution of (1):

Input: An integer n = 2apb, where p is a prime > 2 and a, b are positive inte-
gers not both even.
Output: The integer solutions of (1).

(1) If p ≡ 1 (mod 8) and a is odd, then determine the integer solutions (x, y)
of (1) with −n < x < 0 and x = −2kplz, where k ≥ a, l is even, k is even if
k > a and z is an odd integer which is a perfect square. If p ≡ 1 (mod 8) and
a is even, then determine the integer solutions (x, y) of (1) with −n < x < 0
and x = −2aplz, where l is even and z is an odd integer which is a perfect
square. If p 	≡ 1 (mod 8), then go to step (2).

(2) Determine the integer solutions (x, y) of (1) with x ∈ Σn.
(3) Determine the set U of units u of Q(

√
2,
√

p) such that (1 − u)/
√

2 is also
a unit.

(4) Determine the integer solutions (x, y) of (1) with

x =
(u2 + 1)2n
4u(u2 − 1)

and u ∈ U.

(5) The points (0, 0), (−n, 0), (n, 0) and the integer solutions computed in
steps (1), (2) and (4) are all the integer solutions of (1) exept in cases
where p = 3, 7 and a, b are odd. If p = 3 and a, b are odd, then we have in
addition the solutions given by x = −2a−13b and x = −2a3b−1. If p = 7 and
a, b are odd, then there is in addition the solution given by x = −2a−37b.

Example 1. The integer solutions to the equation E6 are

(x, y) = (0, 0), (±6, 0), (−3,±9), (−2,±8), (12,±36), (18,±72), (294,±5040).

Note that the program mwrank of J. Cremona implies that the rank of the elliptic
curve E6 over Q is equal to 1. Let θ =

√
2+

√
3. A Z-basis of the ring of integers of

Q(
√

2,
√

3) obtained by the Magma Computational System is given by the elements

ω0 = 1, ω1 = θ, ω2 = (θ2 − 1)/2, ω3 = (θ3 + θ2 − θ − 1)/4.

We represent an algebraic integer of Q(
√

2,
√

3), z =
∑3

i=0 ziωi, where zi ∈ Z

(i = 0, 1, 2, 3), by [z0, z1, z2, z3]. Using Magma, we obtain the solutions (u, v) of the
unit equation u +

√
2v = 1 over Q(

√
2,
√

3), which are listed in Table 1.
The solutions of the unit equation yield the following nontrivial solutions for the

elliptic equation: (x, y) = (12,±36), (18,±72), (294,±5040). The other solutions
are easily obtained.

Example 2. The integer solutions to the equation E194 are

(x, y) = (0, 0), (±194, 0), (−144,±1560).
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Table 1.

([89, 280, 43,−126], [63, 196, 30,−88]) ([0, 1,−1, 0], [0,−1,−1, 1])
([−89, 280, 83,−126], [63,−200,−59, 90]) ([−1, 2,−1, 0], [0,−3,−2, 2])

([−9, 0,−13,−14], [7, 0, 9, 10]) ([1,−2, 1, 0], [0,−1, 1, 0])
([10, 31, 5,−14], [7, 20, 3,−9]) ([0,−1, 1, 0], [0,−3, 0, 1])

([9, 0, 27,−14], [7,−4, 18,−8]) ([0, 1, 1, 0], [0,−3,−1, 1])
([5, 18, 3,−8], [4, 9, 1,−4]) ([1, 2, 1, 0], [0,−1,−1, 0])

([−5, 18, 5,−8], [4,−13,−4, 6]) ([2,−5,−1, 2], [−1, 2, 1,−1])
([4, 9, 1,−4], [2, 7, 1,−3]) ([−1,−4,−1, 2], [−1,−4,−1, 2])

([−4, 9, 3,−4], [2,−11,−3, 5]) ([1,−4,−1, 2], [−1, 0, 0, 0])
([−1, 4, 1,−2], [1,−4,−1, 2]) ([2,−1, 1, 2], [−1, 0,−1,−1])

([1, 4, 1,−2], [1, 0, 0, 0]) ([4,−9,−3, 4], [−2, 7, 2,−3])
([2, 5, 1,−2], [1, 2, 0,−1]) ([−4,−9,−1, 4], [−2,−11,−2, 5])
([2, 1, 3,−2], [1, 0, 2,−1]) ([5,−18,−5, 8], [−4, 9, 3,−4])
([2, 1, 3,−2], [1, 0, 2,−1]) ([−5,−18,−3, 8], [−4,−13,−2, 6])

([−1,−2,−1, 0], [0,−3, 0, 2]) ([−9, 0,−27, 14], [−7, 0,−19, 10])
([0,−1,−1, 0], [0,−1, 0, 1]) ([10,−31,−9, 14], [−7, 20, 6,−9])
([0, 1,−1, 0], [0,−1,−1, 1]) ([9, 0, 13, 14], [−7,−4,−10,−8])

([89,−280,−83, 126], [−63, 196, 58,−88]) ([−89,−280,−43, 126], [−63,−200,−31, 90])

By the program mwrank of J. Cremona, the rank of the elliptic curve E194 over
Q is equal to 2. Let θ =

√
2 +

√
97. Magma gives the following Z-basis of the ring

of integers of Q(
√

2,
√

97):

ω0 = 1, ω1 = θ, ω2 = (θ2 + 2θ + 3)/4, ω3 = (θ3 + 87θ + 190)/380.

We represent an algebraic integer of Q(
√

2,
√

97), z =
∑3

i=0 ziωi with zi ∈ Z

(i = 0, 1, 2, 3), by [z0, z1, z2, z3]. Using Magma again we obtain the solutions of
the unit equation u +

√
2v = 1 over Q(

√
2,
√

97):

(u, v) = ([0, 1, 0,−2], [0,−1, 0, 2]), ([2, 1, 0,−2], [1, 0, 0, 0]),

([−2,−1, 0, 2], [−2,−1, 0, 2]), ([0,−1, 0, 2], [−1, 0, 0, 0]).

None of these solutions gives an integer point (x, y) on E97 with x > 194. So, the
only nontrivial solution obtained by our algorithm is (−144,±1560).

Example 3. The integer solutions to the equation E19336 are

(x, y) = (0, 0), (±19336, 0), (−3136,±1068480).

The rank of E19336 is 2. Put θ =
√

2+
√

2417. Magma gives the following Z-basis
of the ring of integers of Q(

√
2,
√

2417):

ω0 = 1, ω1 = θ, ω2 = (θ2 + 2θ + 3)/4, ω3 = (θ3 + 2407θ + 4830)/9660.

We represent an algebraic integer of Q(
√

2,
√

2417), z =
∑3

i=0 ziωi with zi ∈ Z

(i = 0, 1, 2, 3), by [z0, z1, z2, z3]. The solutions of the unit equation u +
√

2v = 1
over Q(

√
2,
√

2417) are

(u, v) = ([0, 1, 0,−2], [0,−1, 0, 2]), ([2, 1, 0,−2], [1, 0, 0, 0]),

([−2,−1, 0, 2], [−2,−1, 0, 2]), ([0,−1, 0, 2], [−1, 0, 0, 0]).

The above solutions do not provide us with a solution (x, y) on E19336 having x >
19336. Finally the only solution (x, y) with −19336 < x < 0 is (−3136,±1068480).
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