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PARAMETER-UNIFORM FINITE DIFFERENCE SCHEMES
FOR SINGULARLY PERTURBED PARABOLIC

DIFFUSION-CONVECTION-REACTION PROBLEMS

E. O’RIORDAN, M. L. PICKETT, AND G. I. SHISHKIN

Abstract. In this paper, parameter-uniform numerical methods for a class of
singularly perturbed parabolic partial differential equations with two small pa-
rameters on a rectangular domain are studied. Parameter-explicit theoretical
bounds on the derivatives of the solutions are derived. The solution is decom-
posed into a sum of regular and singular components. A numerical algorithm
based on an upwind finite difference operator and an appropriate piecewise
uniform mesh is constructed. Parameter-uniform error bounds for the numer-
ical approximations are established. Numerical results are given to illustrate
the parameter-uniform convergence of the numerical approximations.

1. Introduction

Consider the following class of singularly perturbed parabolic problems posed on
the domain G = Ω × (0, T ], Ω = (0, 1), Γ = Ḡ\G:

Lε,µu ≡ εuxx + µaux − bu − dut = f(x, t) in G,(1.1a)

u = s(x) on Γb,(1.1b)

u = q(t) on Γl ∪ Γr,(1.1c)

a(x, t) ≥ α > 0, b(x, t) ≥ β > 0, d(x, t) ≥ δ > 0,(1.1d)

where Γb = {(x, 0) | 0 ≤ x ≤ 1}, Γl = {(0, t) | 0 ≤ t ≤ T}, and Γr = {(1, t) |
0 ≤ t ≤ T}. We note that 0 < ε ≤ 1 and 0 ≤ µ ≤ 1 are perturbation parameters.
We assume sufficient regularity and compatibility at the corners so that the solution
and its regular component are sufficiently smooth for our analysis. Our interest lies
in constructing parameter-uniform numerical methods [1] for this class of singularly
perturbed problems. By this we mean numerical methods whose solutions converge
uniformly with respect to the singular perturbation parameters.

When the parameter µ = 1, the problem is the well-studied parabolic convection-
diffusion problem [2, 10, 15] and in this case a boundary layer of width O(ε) ap-
pears in the neighbourhood of the edge x = 0. When µ = 0 we have a parabolic

Received by the editor September 22, 2004.
2000 Mathematics Subject Classification. Primary 65M06, 65M15; Secondary 65M12.
Key words and phrases. Two parameter, reaction-convection-diffusion, piecewise-uniform

mesh.
This research was supported in part by the National Center for Plasma Science and Tech-

nology Ireland, by the Enterprise Ireland research scholarship BR-2001-110 and by the Russian
Foundation for Basic Research under grant No. 04-01-00578.

c©2006 American Mathematical Society
Reverts to public domain 28 years from publication

1135



1136 E. O’RIORDAN, M. L. PICKETT, AND G. I. SHISHKIN

reaction-diffusion problem [6] and boundary layers of width O(
√

ε) appear in the
neighbourhood of both x = 0 and x = 1.

Fitted operator methods based on exponentially fitted finite difference operators
have been developed for the steady-state version of (1.1) when µ = 0 and µ = 1.
Earlier results of Shishkin [13, 16] dealt with fitted operator methods for (1.1). In
the time dependent problem, when µ = 1, fitted operator methods were derived
in [15]. However, Shishkin [14] established that in order to obtain a parameter-
uniform numerical method, it is necessary to fit the mesh when parabolic layers
are present. This implies that we cannot use fitted operators on a uniform mesh to
obtain parameter-uniform convergence in the case of (1.1).

The asymptotic structure of the solutions to the steady-state version of (1.1) was
examined by O’Malley [7, 8], where the ratio of µ to

√
ε was identified as significant.

Vulanović [17] considers finite difference methods in the case of µ = ε
1
2+λ, λ > 0.

More recently, parameter-uniform numerical methods for the steady-state version
of (1.1) were examined by Linß and Roos [4], Roos and Uzelac [11] and O’Riordan
et al. [9]. Both [4] and [9] are concerned with finite difference methods and apply
standard finite difference operators on special piecewise uniform meshes. In [11]
the problem is solved using the streamline-diffusion finite element method on a
piecewise uniform mesh.

Parameter-uniform numerical methods composed of standard finite difference
operators and piecewise uniform meshes have been established [2, 10] for both the
steady-state and the time dependent versions of (1.1) in the two special cases of
µ = 0 and µ = 1. We will apply an upwind finite difference operator on a piecewise
uniform mesh in the construction of our numerical algorithm to solve (1.1) for all
values of the parameters in the range µ ∈ [0, 1] and ε ∈ (0, 1]. The analysis in
this paper naturally splits into the two cases of µ2 ≤ Cε and µ2 ≥ Cε. In the
first case the analysis follows closely when µ = 0; however, in the second case the
analysis is more intricate. In the case of µ2 ≤ Cε an O(

√
ε) layer appears in the

neighbourhood of x = 0 and x = 1. In the other case of µ2 ≤ Cε a layer of width
O( ε

µ ) appears in the neighbourhood of x = 0 and a layer of width O(µ) appears
near x = 1.

The analysis in this paper is based on the principles laid down in [12] and in the
books [1] and [5] for a single parameter singularly perturbed problem. We apply
similar analytical techniques to those used in [9] for a singularly perturbed ordinary
differential equation with two small parameters. The argument consists of estab-
lishing a maximum principle, a decomposition of the solution into regular and layer
components and deriving sharp parameter-explicit bounds on these components
and their derivatives. The discrete solution is decomposed into analogous compo-
nents and the numerical error between the discrete and continuous components are
analysed separately using discrete maximum principle, truncation error analysis,
and appropriate barrier functions. In [9], the piecewise uniform mesh constructed
consisted of the two transition points

(1.2) σ1 = min{1
4
,
2 ln N

η1
} and σ2 = min{1

4
,
2 ln N

η2
},

where η1 is the positive root of the quadratic equation εη2
1 − µαη1 − β = 0 and

similarly η2 is the positive root of the quadratic equation εη2
2 + µ‖a‖η2 − β = 0.

However, in this paper the choice of transition points in (4.1b) is simpler then those
given in (1.2).
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Notation. We define the zero order, first order, and second order differential op-
erators L0, Lµ, and Lε,µ as

L0z = −bz − dzt,(1.3a)
Lµz = aµzx + L0z,(1.3b)

Lε,µz = εzxx + Lµz.(1.3c)

We let γ = minḠ{ b
a} and we also adopt the notation

‖u‖Ḡ = max
Ḡ

|u(x, t)|.

If the norm is not subscripted, then ‖.‖ = ‖.‖Ḡ. Throughout this paper C (some-
times subscripted) denotes a constant that is independent of the parameters ε, µ, N ,
and M (number of mesh elements used in the space (N) and time (M) direction).

2. Bounds on the solution u and its derivatives

We will establish a priori bounds on the solution of (1.1) and its derivatives.
These bounds will be needed in the error analysis in later sections. We start by
stating a continuous minimum principle for the differential operator in (1.1), whose
proof is standard.

Minimum principle. If w ∈ C2(G)∩C0(Ḡ) such that Lε,µw |G≤ 0 and w |Γ≥ 0,
then w |Ḡ≥ 0.

The lemma below follows immediately from the minimum principle above.

Lemma 2.1. The solution u of problem (1.1), satisfies the bound

‖u‖ ≤ ‖s‖Γb
+ ‖q‖Γl∪Γr

+
1
β
‖f‖.

Lemma 2.2. The derivatives of the solution u of (1.1) satisfy the bounds for all
nonnegative integers k,m, such that 1 ≤ k + 2m ≤ 3. If µ2 ≤ Cε, then∥∥∥∥ ∂k+mu

∂xk∂tm

∥∥∥∥ ≤ C

(
√

ε)k
max

{
‖u‖,

2∑
i+2j=0

(
√

ε)i

∥∥∥∥ ∂i+jf

∂xi∂tj

∥∥∥∥,

4∑
i=0

∥∥∥∥ d is

d xi

∥∥∥∥
Γb

+
∥∥∥∥d iq

d ti

∥∥∥∥
Γl∪Γr

}
,

and if µ2 ≥ Cε, then∥∥∥∥ ∂k+mu

∂xk∂tm

∥∥∥∥ ≤ C
(µ

ε

)k(µ2

ε

)m

× max
{
‖u‖,

2∑
i+2j=0

( ε

µ

)i( ε

µ2

)j+1
∥∥∥∥ ∂i+jf

∂xi∂tj

∥∥∥∥,

4∑
i=0

∥∥∥∥ d is

d xi

∥∥∥∥
Γb

+
∥∥∥∥d iq

d ti

∥∥∥∥
Γl∪Γr

}
,

where C depends only on the coefficients a, b, d and their derivatives.
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Proof. The argument splits into two cases: µ2 ≤ Cε and µ2 ≥ Cε. If µ2 ≤ Cε,
consider the transformation ξ = x√

ε
. Our transformed domain is given by G̃ =(

0, 1√
ε

)
× (0, T ]. Also we have ũ(ξ, t) = u(x, t) with ã, b̃, d̃, and f̃ defined similarly.

Applying this transformation to (1.1) we obtain

ũξξ +
µ√
ε
ãũξ − b̃ũ − d̃ũt = f̃ , on G̃.

Then for every ζ ∈
(
0, 1√

ε

)
and δ > 0, we denote the rectangle ((ζ − δ, ζ + δ) ×

(0, T ])∩ G̃ by Rζ,δ. The closure of Rζ,δ is denoted R̄ζ,δ. For each (ζ, t) ∈ G̃, we use
[3] to obtain the following bounds for 1 ≤ k + 2m ≤ 3:∥∥∥∥ ∂k+mũ

∂ξk∂tm

∥∥∥∥
R̄ζ,δ

≤ C max
{
‖ũ‖,

2∑
i+2j=0

∥∥∥∥ ∂i+j f̃

∂ξi∂tj

∥∥∥∥,

4∑
i=0

∥∥∥∥d is̃

dξi

∥∥∥∥
Γ′

b

+
∥∥∥∥d iq̃

dti

∥∥∥∥
Γ′

l∪Γ′
r

}
,

where Γ′
b = R̄ζ,2δ ∩ Γb, Γ′

l = R̄ζ,2δ ∩ Γl, Γ′
r = R̄ζ,2δ ∩ Γr, and C is independent of

the rectangle Rζ,δ. These bounds hold for any point (ζ, t) ∈ G̃. Transforming back
to the original (x, t) variables gives us the required result. If µ2 ≥ Cε, then we
are required to stretch in time also. Introduce the transformation � = µx

ε , τ = µ2t
ε .

Applying this transformation to (1.1) we obtain for û(�, τ ) = u(x, t)

û�� + âû� − ε

µ2
b̂û − d̂ûτ =

ε

µ2
f̂ , on Ĝ.

Our transformed domain is given by Ĝ =
(
0, µ

ε

)
×

(
0, µ2T

ε

]
. Repeat the argument

for the previous case to obtain the result. �
Corollary 2.2.1. Assuming sufficient smoothness of the data, the second order
time derivative of the solution of (1.1) satisfies the bound

‖utt‖ ≤
{

C, if µ2 ≤ Cε,
Cµ4ε−2, if µ2 ≥ Cε.

Proof. This follows using the same argument as in Lemma 2.2. �

3. Decomposition of the solution

In order to obtain parameter-uniform error estimates we decompose the solution
of (1.1) into regular and singular components. The regular component will be
constructed so that the first two space derivatives of this component will be bounded
independently of the small parameters. Consider the differential equation

(3.1) Lε,µv = f on G.

In the case of µ2 ≤ γε
α , we decompose v as

(3.2a) v(x, t; ε, µ) = v0(x, t) +
√

εv1(x, t; ε, µ) + εv2(x, t; ε, µ),

where

L0v0 = f, v0(x, 0) = u(x, 0),(3.2b)
√

εL0v1 = (L0 − Lε,µ)v0, v1(x, 0; ε, µ) = 0,(3.2c)

εLε,µv2 =
√

ε(L0 − Lε,µ)v1, v2|Γ = 0.(3.2d)
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We see that v(0, t; ε, µ) = v0(0, t) +
√

εv1(0, t; ε, µ) and v(1, t; ε, µ) = v0(1, t) +√
εv1(1, t; ε, µ). Assuming sufficient smoothness of the data, and noting that αµ2 ≤

γε, we see that v0 and its derivatives with respect to x and t up to sixth order
and v1 and its derivatives with respect to x and t up to fourth order are bounded
independently of ε and µ.

Since v2 satisfies a similar equation to u we can apply Lemmas 2.1 and 2.2 to
problem (3.2d). We obtain for 0 ≤ k + 2m ≤ 3,

∥∥∥∥∂k+mv2

∂xk∂tm

∥∥∥∥ ≤ C

(
1√
ε

)k

.

We conclude that when µ2 ≤ γε
α , there exists a function v satisfying (3.1) where

the boundary conditions of v can be chosen so that it satisfies the following bounds
for 0 ≤ k + 2m ≤ 3, ∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥ ≤ C
(
1 + ε

2−k
2

)
.

From Corollary 2.2.1 we deduce that

‖vtt‖ ≤ C, if µ2 ≤ γε

α
.

Now consider the case of µ2 ≥ γε
α . Again we consider the differential equation

(3.1); however, we decompose v as

(3.3a) v(x, t; ε, µ) = v0(x, t; µ) + εv1(x, t; µ) + ε2v2(x, t; ε, µ),

where

Lµv0 = f, v0(x, 0; µ) = u(x, 0), v0(1, t; µ) chosen in (3.6),(3.3b)
εLµv1 = (Lµ − Lε,µ)v0, v1(x, 0; µ) = v1(1, t; µ) = 0,(3.3c)

ε2Lε,µv2 = ε(Lµ − Lε,µ)v1, v2(x, t; ε, µ)|Γ = 0.(3.3d)

We can establish the following for the differential operator Lµ by considering the
transformation w = eβ1T z

(
β1 < b

d

)
and using a proof-by-contradiction argument:

(3.4) If Lµz

∣∣∣∣
G1

≤ 0 and z

∣∣∣∣
Γ1

≥ 0, then z

∣∣∣∣
Ḡ1

≥ 0,

where Lµz = aµzx−bz−dzt = f , Γ1 = Γb∪Γr, and G1 = [0, 1)× (0, T ]. We should
note that the proof only requires that a and d are strictly positive.

Lemma 3.1. Suppose z(x, t) satisfies the first order initial-boundary value problem

(3.5) Lµz = f (x, t) ∈ [0, 1) × [0, T ], z(x, 0) = g1(x), z(1, t) = g2(t),

where a > 0, d > 0, and b ≥ β > 0. Then

‖z‖ ≤ 1
β
‖f‖ + ‖g1‖Γb

+ ‖g2‖Γr
.
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Proof. Consider Ψ±(x, t) = 1
β ‖f‖ + ‖g1‖Γb

+ ‖g2‖Γr
± z(x, t). We see that the

functions Ψ± are nonnegative for (x, t) ∈ Γ1 and

LµΨ±(x, t) = −b(
1
β
‖f‖ + ‖g1‖Γb

+ ‖g2‖Γr
) ± f ≤ 0. �

We now state and prove the following technical lemma that is needed when
examining how v0 and v1 depend on µ.

Lemma 3.2. Suppose z(x, t) ∈ Ck+m(Ḡ1) satisfies the problem (3.5). Then its
derivatives satisfy the bounds

∥∥∥∥ ∂k+mz

∂xk∂tm

∥∥∥∥ ≤ C

µk

(∥∥∥∥∂k+mf

∂tk+m

∥∥∥∥ +
k+m−1∑
r+s=0

µr

∥∥∥∥ ∂r+sf

∂xr∂ts

∥∥∥∥
+

k+m∑
j=0

∥∥∥∥d jg1

d xj

∥∥∥∥ +
k+m∑
j=0

∥∥∥∥d jg2

d tj

∥∥∥∥ + ‖z‖

⎞
⎠ e−(k+m)AT ,

where A = min{0, (a
d )

(
d
a

)
t
} and the constant C depends only on the coefficients a,

b, d and their derivatives.

Proof. Differentiate (3.5) with respect to time to obtain

L[1]
µ zt = µztx −

(
b

a
+

(
d

a

)
t

)
zt −

d

a
ztt =

(
f

a

)
t

+
(

b

a

)
t

z,

zt(1, t) = g′2(t), zt(x, 0) = φ1(x),

where φ1(x) can be expressed in terms of g1, g′1, f and the coefficients of (3.5).
Consider the barrier functions

Ψ±
1 (x, t) = C(‖f‖ + ‖ft‖ + ‖g1‖ + ‖g′1‖ + ‖g′2‖ + ‖z‖)e−At ± zt

with A as above. For C large enough the functions Ψ±
1 are nonnegative for (x, t) ∈

Γ1. Also

L[1]
µ Ψ±

1 (x, t) = −C

(
b

a
+

(
d

a

)
t

− d

a
A

)
(‖f‖ + ‖ft‖ + ‖g1‖ + ‖g′1‖ + ‖g′2‖ + ‖z‖)e−At

±
((

f

a

)
t

+
(

b

a

)
t

z

)
,

and we see that for C chosen correctly, we have L
[1]
µ Ψ±

1 ≤ 0. Therefore using (3.4)
we obtain

‖zt‖ ≤ C(‖f‖ + ‖ft‖ + ‖g1‖ + ‖g′1‖ + ‖g′2‖ + ‖z‖)e−AT ,

and using (3.5) we have that

‖zx‖ ≤ C

µ
(‖f‖ + ‖ft‖ + ‖g1‖ + ‖g′1‖ + ‖g′2‖ + ‖z‖)e−AT .
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Proceed by induction. Assume the statement is true for 0 ≤ k + m ≤ l. Differ-
entiate (3.5) l + 1 times with respect to t to obtain

L[l+1]
µ

∂l+1z

∂tl+1
= µ

(
∂l+1z

∂tl+1

)
x

−
(

b

a
+ (l + 1)

(
d

a

)
t

) (
∂l+1z

∂tl+1

)
− d

a

(
∂l+1z

∂tl+1

)
t

= ρ(x, t),

∂l+1z

∂tl+1
(1, t) =

dl+1g2

dtl+1
,

∂l+1z

∂tl+1
(x, 0) = φl+1(x).

The expression ρ(x, t) involves z and its t derivatives up to order l, f and its t
derivatives up to order l+1 and the coefficients and their derivatives. The function
φl+1(x) involves g1 and all its derivatives up to order l + 1, the derivatives of f of
the form µr ∂r+sf

∂xr∂ts up to order l and the coefficients and their derivatives. Consider
the barrier functions

Ψ±
l+1(x, t) = C

(∥∥∥∥∂l+1f

∂tl+1

∥∥∥∥ +
l∑

r+s=0

µr

∥∥∥∥ ∂r+sf

∂xr∂ts

∥∥∥∥
+

l+1∑
j=0

∥∥∥∥d jg1

d xj

∥∥∥∥ +
l+1∑
j=0

∥∥∥∥d jg2

d tj

∥∥∥∥ + ‖z‖

⎞
⎠ e−(k+m)At ± ∂l+1z

∂tl+1
.

We see that for C large enough Ψ±
l+1(x, t) is nonnegative for (x, t) ∈ Γ1. Also

for C chosen correctly we see that L
[l+1]
µ Ψ± ≤ 0. Therefore, using (3.4), we obtain∥∥∥∥∂l+1z

∂tl+1

∥∥∥∥ ≤ C

(∥∥∥∥∂l+1f

∂tl+1

∥∥∥∥ +
l∑

r+s=0

µr

∥∥∥∥ ∂r+sf

∂xr∂ts

∥∥∥∥
+

l+1∑
j=0

∥∥∥∥d jg1

d xj

∥∥∥∥ +
∥∥∥∥d jg2

d tj

∥∥∥∥ + ‖z‖

⎞
⎠ e−(k+m)AT .

Differentiate (3.5) appropriately to obtain the required result for k+m = l+1. �

We now continue with our analysis of v0 and v1. The following two lemmas
establish that when the boundary condition v0(1, t; µ) is chosen correctly, the first
two derivatives of v0(x, t; µ) are bounded independent of µ and the derivatives of
v1(x, t; µ) are bounded by inverse powers of µ.

Lemma 3.3. If v0 satisfies the first order problem (3.3b) then there exists a value
for v0(1, t; µ) such that the following bounds hold for 0 ≤ k + m ≤ 6:∥∥∥∥∂k+mv0

∂xk∂tm

∥∥∥∥ ≤ C(1 + µ2−k).

Proof. We further decompose v0(x, t; µ) as

(3.6a) v0(x, t; µ) = s0(x, t) + µs1(x, t) + µ2s2(x, t; µ),

where

L0s0 = f, s0(x, 0) = u(x, 0),(3.6b)

µL0s1 = (L0 − Lµ)s0, s1(x, 0) = 0,(3.6c)

µ2Lµs2 = µ(L0 − Lµ)s1, s2|Γ1 = 0.(3.6d)
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We see that v0(1, t; µ) = s0(1, t) + µs1(1, t), and if a, b, d, f ∈ C7(G) and u(x, 0) ∈
C7(Γb), we have∥∥∥∥∂k+ms0

∂xk∂tm

∥∥∥∥ ≤ C for 0 ≤ k + m ≤ 7,(3.7) ∥∥∥∥∂k+ms1

∂xk∂tm

∥∥∥∥ ≤ C for 0 ≤ k + m ≤ 6 and
∥∥∥∥ ∂7s1

∂x∂t6

∥∥∥∥ ≤ C.(3.8)

Next we apply Lemmas 3.1 and 3.2 to obtain for 0 ≤ k + m ≤ 6

(3.9)
∥∥∥∥∂k+ms2

∂xk∂tm

∥∥∥∥ ≤ C

µk
e−(k+m)AT ,

where A = min
{
0, a

d

(
d
a

)
t

}
. Using the decomposition (3.6) and the bounds (3.7),

(3.8) and (3.9), we obtain the required result. �

Lemma 3.4. If v1 satisfies the first order problem (3.3c) then the following bounds
hold for 0 ≤ k + m ≤ 4: ∥∥∥∥∂k+mv1

∂xk∂tm

∥∥∥∥ ≤ C

µk
.

Proof. We simply apply Lemmas 3.1 and 3.2 to (3.3c). �

Lemma 3.5. If v2(x, t; ε, µ) satisfies the parabolic problem (3.2d), then the follow-
ing bounds hold for 0 ≤ k + 2m ≤ 3:∥∥∥∥∂k+mv2

∂xk∂tm

∥∥∥∥ ≤ Cµm−2
(µ

ε

)k+m

, if µ2 ≥ Cε.

Proof. Since v2 satisfies an equation similar to u, we can use Lemma 2.1 and

‖v2(x, t; ε, µ)‖ ≤ ‖v2‖Γ +
1
β
‖v1xx‖.

Applying the bounds in Lemma 3.4, we have ‖v2‖ ≤ Cµ−2. Noting that v2 has
zero boundary conditions, we use Lemma 2.2, the bounds for v1, and the fact that( ε

µ

)k
∥∥∥∥∂k+mv1xx

∂xk∂tm

∥∥∥∥ ≤ Cµ−2
( ε

µ2

)k

≤ Cµ−2

to obtain the required result. �

Substituting all of these bounds for v0(x, t; µ), v1(x, t; µ), and v2(x, t; ε, µ) into
equation (3.3) and noting that µ2 ≥ Cε, we can conclude that in this case there
exists a function v satisfying (3.1) where the boundary conditions of v can be chosen
so that the following bounds hold for 0 ≤ k + 2m ≤ 3:∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥ ≤ C

(
1 +

(µ

ε

)k−2
)

.

Assuming sufficient smoothness of the data, from Corollary 2.2.1 and extending the
argument in the previous lemma to the case of k + 2m = 4, we deduce that

‖vtt‖ ≤ C(1 + ε2µ−2µ4ε−2) ≤ C, if µ2 ≥ γε

α
.
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In both cases we now have the following decomposition of the solution u. Let

(3.10a) u(x, t) = v(x, t) + wL(x, t) + wR(x, t),

where wL and wR satisfy homogeneous differential equations and

Lε,µv = f, v(0, t) and v(1, t) chosen in (3.2) or (3.3),(3.10b)

v(x, 0) = u(x, 0),

Lε,µwL = 0, wL(x, 0) = wL(1, t) = 0,(3.10c)

wL(0, t) = u(0, t) − v(0, t) − wR(0, t),

Lε,µwR = 0, wR(x, 0) = 0, wR(1, t) = u(1, t) − v(1, t),(3.10d)

if µ2 ≤ γε

α
, wR(0, t) = 0 else wR(0, t) is chosen in (3.12).

The boundary conditions of v are chosen in (3.2) or (3.3) so that the regular com-
ponent satisfies the bounds

(3.11)
∥∥∥∥ ∂k+mv

∂xk∂tm

∥∥∥∥ ≤ C
(
1 + ε2−k

)
, for 0 ≤ k + 2m ≤ 3, ‖vtt‖ ≤ C.

When µ2 ≤ γε
α , the singular components wL and wR satisfy the derivative bounds

given in Lemma 2.2 and Corollary 2.2.1. When µ2 ≥ γε
α , the value for wR(0, t) is

taken from the decomposition

(3.12a) wR(x, t; ε, µ) = w0(x, t; µ) + εw1(x, t; µ) + ε2w2(x, t; ε, µ),

where v(1, t) = v0(1, t) is given in (3.6) and

Lµw0 = 0, w0(x, 0; µ) = 0, w0(1, t; µ) = u(1, t) − v0(1, t),(3.12b)
εLµw1 = (Lµ − Lε,µ)w0, w1(x, 0; µ) = w1(1, t; µ) = 0,(3.12c)

ε2Lε,µw2 = ε(Lµ − Lε,µ)w1, w2(x, t; ε, µ)|Γ = 0.(3.12d)

Lemma 3.6. When wR(x, t) is decomposed as in (3.12), the following bound holds:

|wR(0, t)| ≤ e−2Bte
−γ
µ ,

where B < A = min
{
0, a

d ( d
a )t

}
.

Proof. We only need to consider the case of µ2 ≥ γε
α . Using the decomposition

(3.12), we see that wR(0, t) = w0(0, t) + εw1(0, t). We start by analysing w0(x, t).
Consider the barrier functions ψ±(x, t) = Ce−

γ
µ (1−x) ±w0(x, t). We can show that

for C large enough, ψ±∣∣
Γl∪Γr

≥ 0 and

LµΨ±(x, t) = C(aγ − b)e−
γ
µ (1−x) ≤ 0.

We can therefore apply (3.4) in order to obtain

(3.13) |w0(x, t)| ≤ Ce
−γ
µ (1−x).

In order to analyse w1(x, t), we first obtain sharp bounds on w0xx(x, t). Differ-
entiate (3.12b) with respect to t to obtain

L[1]
µ (w0t) = µ(w0t)x −

( b

a
+

(d

a

)
t

)
w0t −

d

a
(w0t)t =

( b

a

)
t
w0,

w0t(x, 0) = 0, w0t(1, t) = (wR(1, t))t.
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Consider the barrier functions ψ±
1 (x, t) = Ce−Bte−

γ
µ (1−x)±w0t(x, t), where B < 0 is

as defined. We can show that for C large enough ψ±
1

∣∣
Γl∪Γr

≥ 0 and L
[1]
µ Ψ±

1 (x, t) ≤ 0.
Apply (3.4) in order to obtain

|w0t(x, t)| ≤ Ce−Bte−
γ
µ (1−x).

Using (3.12b) this implies that

|w0x(x, t)| ≤ C

µ
e−Bte−

γ
µ (1−x).

If we differentiate (3.12b) twice with respect to t and apply the same argument, we
obtain

|w0tt(x, t)| ≤ Ce−2Bte−
γ
µ (1−x).

Using (3.12b), this implies that

|w0xt(x, t)| ≤ C

µ
e−2Bte−

γ
µ (1−x) and |w0xx(x, t)| ≤ C

µ2
e−2Bte−

γ
µ (1−x).

We now examine w1(x, t). Consider the barrier functions

ψ±
2 (x, t) =

C

µ2
e−2Bte−

γ
µ (1−x) ± w1(x, t).

Note that ψ±
2 (x, t)

∣∣
Γl∪Γr

≥ 0, also for C large enough

Lµψ±
2 (x, t) = C

[
γa − b + Bd

] 1
µ2

e−2Bte−
γ
µ (1−x) ± w0xx ≤ 0.

Therefore, using (3.4) we obtain

(3.14) |w1(x, t)| ≤ C

µ2
e−2Bte−

γ
µ (1−x).

Since µ2 ≥ γε
α , we can use (3.13) and (3.14) to complete the proof. �

Lemma 3.7. When the solution of (1.1) is decomposed as in (3.10a), the singular
components wL and wR satisfy the bounds

|wL(x, t)| ≤ Ce−θ1x and |wR(x, t)| ≤ Ce−θ2(1−x),

where

θ1 =

{ √
γα√
ε

, µ2 ≤ γε
α ,

αµ
ε , µ2 ≥ γε

α ,
θ2 =

{ √
γα

2
√

ε
, µ2 ≤ γε

α ,
γ
2µ , µ2 ≥ γε

α .

Proof. Use the barrier functions

ψ±(x, t) = Ce−θ1x ± wL(x, t)

to obtain the required bound on |wL(x, t)|. When µ2 ≤ γε
α , the proof in the case of

wR is similar. Consider the barrier functions ψ±(x, t) = Ce−
√

γα

2
√

ε
(1−x) ± wR(x, t).

Note that

Lε,µψ±(x, t) = C

(
γα

4
+

µa
√

γα

2
√

ε
− b

)
e−

√
γα

2
√

ε
(1−x)

≤ C
(γa

4
+

γa

2
− b

)
e
−

√
γα

2
√

ε
(1−x) ≤ 0.
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Since wR(0, t) 	= 0 in the case of µ2 ≥ γε
α , we have to be more careful. Consider

the barrier functions

ψ±
1 (x, t) = Ce−2Ate

−γ
2µ (1−x) ± wR(x, t),

where A is defined as before. Using the previous lemma, we have that ψ±
1 (x, t)

∣∣
Γ
≥ 0

for C large enough and Lε,µψ±
1 (x, t) ≤ 0. Use the minimum principle and the fact

that t ∈ (0, T ] to obtain the required bound. �

Lemma 3.8. When µ2 ≥ γε
α , wR the solution of (3.10d), satisfies the bounds∥∥∥∥∂kwR

∂xk

∥∥∥∥ ≤ C
(
µ−k + µ−1ε2−k

)
, 1 ≤ k ≤ 3 and

∥∥∥∥∂mwR

∂tm

∥∥∥∥ ≤ C. m = 1, 2.

Proof. Consider the decomposition (3.12). We start by analysing w0(x, t). Using
the same method as used for v1 in Lemma 3.4 we obtain for 0 ≤ k + m ≤ 6 that

(3.15)
∣∣∣∣∂k+mw0

∂xk∂tm

∣∣∣∣ ≤ C

µk
,

where A is defined as before. Using this method again for w1(x, t), we obtain for
0 ≤ k + m ≤ 4 that

(3.16)
∣∣∣∣∂k+mw1

∂xk∂tm

∣∣∣∣ ≤ C

µk+2
.

We can apply Lemma 2.1 to obtain

‖w2‖Ḡ ≤ ‖w2‖Γ +
1
β
‖w1xx‖Ḡ ≤ C

µ4
.

Finally from Lemma 2.2 we obtain for 1 ≤ k + 2m ≤ 3 that∥∥∥∥∂k+mw2

∂xk∂tm

∥∥∥∥
Ḡ

≤ Cµ−4
(µ

ε

)k+m

µm,

and by Corollary 2.2.1 ∥∥∥∥∂2w2

∂t2

∥∥∥∥
Ḡ

≤ Cµ−4µ4ε−2.

Using (3.12) and µ2 ≥ γε
α gives us the required result. �

Lemma 3.9. When µ2 ≥ γε
α , wL the solution of (3.10c), satisfies the bounds∥∥∥∥∂kwL

∂xk

∥∥∥∥ ≤ C
(µ

ε

)k
, 1 ≤ k ≤ 3 and

∥∥∥∥∂2wL

∂t2

∥∥∥∥ ≤ C(1 + µ2ε−1).

Proof. The bounds on the derivatives of the space derivatives follow from Lemma
2.2 and the fact that

wL(0, t) = (u − v0 − w0)(0, t) − ε(v1 + w1)(0, t).

To obtain the bound on the time derivative we introduce the decomposition

wL(x, t) = wL(0, t)φ(x, t) + εµ−2R(x, t),

where the function φ is the solution of the boundary value problem

εφxx + µa(0, t)φx = 0, x ∈ (0, 1), φ(0, t) = 1, φ(1, t) = 0.
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Note that, by using zne−z ≤ Ce−z/2, n ≥ 1, z ≥ 0, we have∣∣∣∣ ∂k+mφ

∂xk∂tm

∣∣∣∣ ≤ C
(µ

ε

)k
e−

µαx
(m+1)ε .

Note that R = 0 on Γ and

µ−2εLε,µR = wL(0, t)(µ(a(0, t)− a(x, t))φx + bφ) + d(wL(0, t)φ)t.

Thus, using

|Lε,µR(x, t)| ≤ Cµ2

ε

(
1 +

µ2x

ε

)
e−

µαx
ε + C

µ2

ε
e−

µαx
2ε ≤ Cµ2

ε
e−

µαx
2ε

one can deduce that
|R(x, t)| ≤ Ce−

µαx
2ε .

Finally, note that for 1 ≤ k + 2m ≤ 3,∥∥∥∥∂k+m(Lε,µR)
∂xk∂tm

∥∥∥∥
Ḡ

≤ C
µ2

ε

(µ

ε

)k
.

Using Lemma 2.2 (extended to the case of k + 2m = 4) and noting the exponent of
(m + 1), implies that ∥∥∥∥∂2R

∂t2

∥∥∥∥ ≤ Cε−2µ4. �

4. Discrete problem

We discretize (1.1) using a numerical method that is composed of a fully im-
plicit upwinded finite difference operator LN,M on a tensor product mesh ḠN,M =
{(xi, tj)}N,M

i=0,j=0, which is piecewise uniform in space and uniform in time. We have
the discrete problem

LN,MU(xi, tj) = εδ2U + µaD+
x U − bU − dD−

t U = f, (xi, tj) ∈ GN,M

U = u, (xi, tj) ∈ ΓN,M = ḠN,M ∩ Γ,(4.1a)

where the finite difference operators D+
x , D−

t , and δ2
x are

D+
x U(xi, tj) =

U(xi+1, tj) − U(xi, tj)
xi+1 − xi

,

D−
x U(xi, tj) =

U(xi, tj) − U(xi−1, tj)
xi − xi−1

,

D−
t U(xi, tj) =

U(xi, tj) − U(xi, tj−1)
tj − tj−1

,

and

δ2
xU(xi, tj) =

D+
x U(xi, tj) − D−

x U(xi, tj)
(xi+1 − xi−1)/2

.

The piecewise uniform mesh in space ΩN consists of two transition points:

σ1 =

{
min

{
1
4 , 2

√
ε√

γα ln N
}
, µ2 ≤ γε

α ,

min
{

1
4 , 2ε

µα ln N
}
, µ2 ≥ γε

α ,

σ2 =

{
min

{
1
4 , 2

√
ε√

γα ln N
}
, µ2 ≤ γε

α ,

min
{

1
4 , 2µ

γ ln N
}
, µ2 ≥ γε

α .

(4.1b)
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More specifically,

(4.1c) ΩN =

{
xi|xi =

⎧⎨
⎩

4σ1i
N , i ≤ N

4

σ1 + (i − N
4 )H, N

4 ≤ i ≤ 3N
4

1 − σ2 + (i − 3N
4 ) 4σ2

N , 3N
4 ≤ i ≤ N

}
,

where NH = 2(1 − σ1 − σ2) and the mesh in time is taken to be uniform with
tj = j

M , j = 0, . . .M . We now state a discrete comparison principle for the finite
difference operator in (4.1a), whose proof is standard.

Discrete minimum principle. If Z is any mesh function and LN,MZ |GN,M≤ 0
and Z |ΓN,M≥ 0, then Z |ḠN,M≥ 0.

A standard corollary to this is that for any mesh function Z,

(4.2) ‖Z‖ ≤ C‖LN,MZ‖ + ‖Z‖ΓN,M .

The discrete solution can be decomposed into the sum

(4.3a) U = V + WL + WR,

where the components are the solutions to the following:

LN,MV = f, V |ΓN,M = v|ΓN,M ,(4.3b)

LN,MWL = 0, WL|ΓN,M = wL|ΓN,M ,(4.3c)

LN,MWR = 0, WR|ΓN,M = wR|ΓN,M .(4.3d)

Theorem 4.1. We have the following bounds on WL and WR:

|WL(xj , tk)| ≤ C

j∏
i=1

(1 + θLhi)−1 = ΨL,j , ΨL,0 = C,(4.4a)

|WR(xj , tk)| ≤ C

N∏
i=j+1

(1 + θRhi)−1 = ΨR,j , ΨR,N = C,(4.4b)

where WL and WR are solutions of (4.3c) and (4.3d), respectively, hi = xi − xi−1

and the parameters θL and θR are defined as

(4.4c) θL =

{ √
γα

2
√

ε
, µ2 ≤ γε

α ,
µα
2ε , µ2 ≥ γε

α ,
θR =

{ √
γα

2
√

ε
, µ2 ≤ γε

α ,
γ
2µ , µ2 ≥ γε

α .

Proof. We start with WL. Consider Φ±
L (xj , tk) = ΨL,j ± WL(xj , tk). We have

LN,MΦ±
L (xj , tk) = εδ2

xΨL,j + µaD+
x ΨL,j − bΨL,j . Using the properties

ΨL,j > 0, D+
x ΨL,j = −θLΨL,j+1 < 0, and δ2ΨL,j = θL

2ΨL,j+1
hj+1

h̄j
> 0,

we obtain

LN,MΦ±
L (xj , tk) = εθL

2ΨL,j+1
hj+1

h̄j
− µaθLΨL,j+1 − bΨL,j ,

where h̄j = hj+1+hj

2 . Rewriting the right hand side of this equation, we have

LN,MΦ±
L,j ≤ ΨL,j+1

(
2εθL

2

(
hj+1

2h̄j
− 1

)
+ (2εθL

2 − µaθL − b) − βθLhj+1

)
.

Using this expression, we can show that for both values of θL, LN,MΦ±
L,j ≤ 0. Now

using the discrete minimum principle we obtain the required bound (4.4a).
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The same idea is applied to WR. Consider Φ±
R(xj , tk) = Ψ±

R,j ± WR(xj , tk). If
µ2 ≤ γε

α , it is easy to see that ΦR(0, tk) ≥ 0, ΦR(1, tk) ≥ 0, and ΦR(xj , 0) ≥ 0.
However, in the other case we need to look at ΦR(0, tk) in more detail. We know
that

(4.5) Φ±
R(0, tk) = C

N∏
i=1

(1 +
γ

2µ
hi)−1 ± WR(0, tk).

However, given that e−
γ
µ hi ≤ (1 + γ

2µhi)−1 and e−
γ
µ = e−

γ
µ

∑N
i=1 hi =

∏N
i=1 e−

γ
µ hi,

we see using Lemma 3.6 that Φ±
R(0, tk) ≥ 0.

Considering both cases together again,

LN,MΦ±
R(xj , tk) = εδ2

xΨR,j + µaD+
x ΨR,j − bΨR,j ,

and using

ΨR,j ≤ ΨR,j+1, ΨR,j > 0, D+
x ΨR,j = θRΨR,j , and δ2ΨR,j =

θR
2

(1 + θRhj)
ΨR,j

hj

h̄j
,

we obtain

LN,MΦ±(xj , tk)

≤ ΨR,j

(1 + θRhj)

(
2εθR

2(
hj

2h̄j
− 1) + (2εθ2

R + µaθR − b)(1 + θRhj) − 2εθ3
Rhj

)
.

Again, we can see that for both values of θR, that LN,MΦ±
R(xj , tk) ≤ 0. Therefore,

we apply the discrete minimum principle to obtain the required bound (4.4b). �

5. Error analysis

In this section, we analyse the error between the continuous solution of (1.1) and
the discrete solution of (4.1)

Lemma 5.1. At each mesh point (xi, tj) ∈ ḠN,M the regular component of the
error satisfies the estimate

|(V − v)(xi, tj)| ≤ C(N−1 + M−1),

where v is the solution of (3.10b) and V is the solution of (4.3b).

Proof. Using the usual truncation error argument and (3.11), we have

|LN,M (V − v)(xi, tj)| ≤ C1N
−1 (ε‖vxxx‖ + µ‖vxx‖) + C2M

−1‖vtt‖
≤ C(N−1 + M−1),

and we apply (4.2) to obtain the required result. �

Lemma 5.2. At each mesh point (xi, tj) ∈ ḠN,M , the left singular component of
the error satisfies the estimate

|(WL − wL)(xi, tj)| ≤
{

C(N−1(lnN) + M−1), if µ2 ≤ Cε,
C(N−1(lnN)2 + M−1 ln N), if µ2 ≥ Cε,

where wL is the solution of (3.10c) and WL is the solution of (4.3c).
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Proof. We use a classical argument in order to obtain the truncation error bounds

|LN,M (WL − wL)(xi, tj)|
≤ C1(hi+1 + hi) (ε‖wLxxx‖ + µ‖wLxx‖) + C2M

−1‖wLtt‖.
(5.1)

The proof splits into the two cases of (a) σ1 < 1
4 and (b) σ1 = 1

4 .
(a) We consider the case of σ1 < 1

4 . In this case the mesh is piecewise uniform.
First we analyse the error in the region [σ1, 1) × (0, T ] and then we proceed to
analyse the fine mesh on (0, σ1) × (0, T ]. To obtain the required error bounds in
[σ1, 1) × (0, T ], we will use Lemma 3.7 and (4.4a) instead of the usual truncation
error argument. From (4.4a) we have

|WL(xN
4
, tj)| ≤ C

(
1 + θL

4σ1

N

)−N
4
,

where θ1 and σ1 depend on the ratio of µ2 to ε and are given in (4.4c) and (4.1b),
respectively. For both these choices of θL and σ1 we can show that

|WL(xN
4
, tj)| ≤ C(1 + 4N−1 ln N)−

N
4 .

Using the inequality ln(1 + t) > t(1− t
2 ) and letting t = 4N−1 ln N , it follows that

(1 + 4N−1 ln N)−
N
4 ≤ 4N−1. Therefore,

|WL(xi, tj)| ≤ CN−1, (xi, tj) ∈ [σ1, 1) × (0, T ].

Looking at the continuous solution in this region, we have from Lemma 3.7 that

|wL(x, t)| ≤ Ce−θ1x ≤ Ceθ1σ1 ≤ CN−2,

for both choices of σ1 and θ1. Combining these two results we obtain the following
error bounds in the region [σ1, 1) × (0, T ] when σ1 < 1

4 :

|(WL − wL)(xi, tj)| ≤ CN−1.

We now consider the fine mesh region (0, σ1) × (0, T ]. We start with the case
µ2 ≤ γε

α . In this case the truncation error bound is

(5.2) |LN,M (WL − wL)(xi)| ≤
C1√

ε
(hi+1 + hi) + C2M

−1.

Since σ1 < 1
4 , we know that hi+1 = hi = 8

√
ε√

γαN−1 ln N , and therefore we obtain

|LN,M (WL − wL)(xi, tj)| ≤ C1(N−1 ln N + M−1).

We use (4.2) to obtain the required error bound. Next we consider the case of
µ2 ≥ γε

α . Here we know that hi+1 = hi = 8ε
µαN−1 ln N . The bound on the

truncation error given in (5.1) reduces to

|LN,M (WL − wL)(xi, tj)| ≤ C1N
−1 ln N + C2N

−1 µ2

ε
ln N + C4M

−1(1 + µ2ε−1).

If we choose

ψ±(xi, tj) = C
(
N−1 ln N + M−1 +

(
(σ1 − xi)

µ

ε

)
(N−1 ln N + M−1)

)
± (WL − wL)(xi, tj)

as our barrier functions, we find that we can choose C large enough, that both
functions are nonnegative at all points in GN,M of the form (0, tj), (xN

4
, tj) and
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(xi, 0) and LN,Mψ± ≤ 0. Therefore, by applying the discrete minimum principle,
we obtain

|(WL − wL)(xi, tj)| ≤ C
(
N−1 ln N + M−1 +

(
(σ1 − xi)

µ

ε

)
(N−1 ln N + M−1)

)
.

Finally, using σ1 = 2ε
µα ln N , we have

(5.3) |(WL − wL)(xi, tj)| ≤ C(N−1(lnN)2 + M−1 ln N).

(b) If σ1 = 1
4 and µ2 ≤ γε

α , then
√

γα
ε ≤ 8 ln N . Since (5.2) still holds, we obtain

|LN,M (WL − wL)(xi, tj)| ≤ C1(N−1 ln N + M−1).

When µ2 ≥ γε
α and σ1 = 1

4 , we have µα
ε ≤ 8 ln N and then

|LN,M (WL − wL)(xi, tj)| ≤ C(N−1(lnN)2 + M−1 ln N).

In both cases we use (4.2) to finish. �

Lemma 5.3. At each mesh point (xi, tj) ∈ ḠN,M , the right singular component of
the error satisfies the estimate

(5.4) |(WR − wR)(xi, tj)| ≤ C(N−1 ln N + M−1),

where wR is the solution of (3.10d) and WR is the solution of (4.3d).

Proof. (a) We consider the case of σ2 < 1
4 . We will start by examining the region

(0, 1 − σ2] × (0, T ]. Using (4.4b) we have

|WR(x 3N
4

, tj)| ≤ C
(
1 + θR

4σ2

N

)−N
4
,

where θR and σ2 depend on the ratio of µ2 to ε and are given in (4.4c) and (4.1b),
respectively. We can show that for both choices of θR and σ2, we have

|WR(x 3N
4

, tj)| ≤ C
(
1 + 4N−1 ln N

)−N
4

and, using the same argument as with WL, we conclude that if

(xi, tj) ∈ (0, 1 − σ2] × (0, T ],

then
|WR(xi, tj)| ≤ CN−1.

Next, looking at the continuous solution in this region we have

|wR(x, t)| ≤ Ce−θ2(1−x) ≤ Ce−θ2σ2 ≤ CN−1

for both choices of σ2 and θ2. Therefore, we obtain the following bounds on the
error in the region (0, 1 − σ2] × (0, T ] when σ2 < 1

4 :

(5.5) |(WR − wR)(xi, tj)| ≤ CN−1.

We now consider the fine mesh region (1 − σ2, 1) × (0, T ], where WR satisfies a
similar truncation error bound to that of WL in (5.1). We start with the case of
µ2 ≤ γε

α . As with WL, (5.1) simplifies to

(5.6) |LN,M (WR − wR)(xi, tj)| ≤
C1√

ε
(hi+1 + hi) + C2M

−1.
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Since we are in the fine mesh region, we have hi+1 = hi = 8
√

ε√
αγ N−1 ln N , and using

(5.6) we now obtain

|LN,M (WR − wR)(xi, tj)| ≤ C1N
−1 ln N + C2M

−1.

If µ2 ≥ γε
α , using classical analysis we can obtain the following truncation error

bounds

|LN,M (WR −wR)(xi, tj)| ≤ C1(hi+1 +hi) (ε‖wRxxx‖ + µ‖wRxx‖)+C2M
−1‖wRtt‖.

Using the bounds on wR in Lemma 3.8 and Corollary 2.2.1, we find that this
simplifies to

(5.7) |LN,M (WR − wR)(xi, tj)| ≤
C1

µ
(hi+1 + hi) + C2M

−1.

Since we are in the fine mesh region, we have hi+1 = hi = 8µ
γ N−1 ln N . Using (5.7)

we now obtain

|LN,M (WR − wR)(xi, tj)| ≤ C1N
−1 ln N + C2M

−1.

Use (4.2) to finish in both cases.
(b) If σ2 = 1

4 and µ2 ≤ γε
α , then

√
γα
ε ≤ 8 lnN , and since (5.2) holds, we have

|LN,M (WR − wR)(xi, tj)| ≤ C1N
−1 ln N + C2M

−1.

If µ2 ≥ γε
α and σ2 = 1

4 , then γ
µ ≤ 8 ln N , and using (5.7), we obtain

|LN,M (WR − wR)(xi, tj)| ≤ C1N
−1 ln N + C2M

−1.

In both cases, we use (4.2) to complete the proof. �

Theorem 5.4. At each mesh point (xi, tj) ∈ ḠN,M the maximum pointwise error
satisfies the following parameter-uniform error bound

(5.8) ‖U − u‖GN,M ≤
{

C(N−1(lnN) + M−1), if µ2 ≤ Cε,
C(N−1(lnN)2 + M−1 ln N), if µ2 ≥ Cε,

where u is the solution of (1.1) and U is the solution of (4.1).

Proof. The proof follows from Lemmas 5.1, 5.2, and 5.3. �

Remark 5.5. It is worth noting that the error bound (5.8) extends to the case of
−1 ≤ µ ≤ 1, where the discrete problem is defined to be

(5.9a) LN,MU(xi, tj) = εδ2U + µaDxU − bU − dD−
t U = f, (xi, tj) ∈ GN,M ,

Dx =

{
D−

x µ < 0,
D+

x µ ≥ 0,

and the transition points in the piecewise uniform mesh in space are taken to be

σ1 =

⎧⎪⎪⎨
⎪⎪⎩

min
{

1
4 , 2|µ|

γ ln N
}
, µ ≤ −

√
γε
µ ,

min
{

1
4 , 2

√
ε√

γα ln N
}
, |µ| ≤

√
γε
α ,

min
{

1
4 , 2ε

µα ln N
}
, µ ≥

√
γε
α ,

(5.9b)

σ2 =

⎧⎪⎨
⎪⎩

min
{

1
4 , 2ε

|µ|α ln N
}
, µ ≤ −

√
γε
α ,

min
{

1
4 , 2

√
ε√

γα ln N
}
, |µ| ≤

√
γε
α ,

min
{

1
4 , 2µ

γ ln N
}
, µ ≥

√
γε
α .

(5.9c)
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6. Numerical results

The numerical method (4.1), has been applied to the particular problem,
(εuxx + µ(1 + x)ux − u − ut)(x, t)

= 16x2(1 − x)2, (x, t) ∈ (0, 1) × (0, 1]; u|Γ = 0.
(6.1)

In the numerical experiments we have taken N = M . We define the maximum
pointwise two-mesh differences to be

DN
ε,µ = ‖UN

ε,µ − U
2N

ε,µ‖GN,M ,

where U
N

ε,µ are the piecewise linear interpolants of the numerical solutions UN
ε,µ.

From these values one can compute the ε-uniform maximum pointwise two-mesh
differences DN

µ and the (ε, µ)-uniform maximum pointwise two-mesh differences
DN , which are defined by

DN
µ = max

ε∈Rε

DN
ε,µ, DN = max

µ∈Rµ

max
ε∈Rε

DN
ε,µ,

where Rε = [2−26, 1] and Rµ = [2−22, 1]. Approximations for the order of local
convergence pN

ε.µ, the ε-uniform order of local convergence pN
µ and the (ε, µ)-uniform

order of convergence pN are computed from

pN
ε,µ = log2

DN
ε.µ

D2N
ε.µ

, pN
µ = log2

DN
µ

D2N
µ

, and pN = log2

DN

D2N
.

The numerical results presented in Tables 1, 2, and 3 are in agreement with the
theoretical asymptotic error bound (5.8).

Table 1. The orders of local convergence pN
ε,µ and the ε-uniform

orders of local convergence pN
µ generated by the upwind finite dif-

ference operator (4.1a) and the mesh (4.1c) applied to problem
(6.1) for µ = 2−2 and for various values of ε and N(= M).

Number of intervals N(= M)

ε 8 16 32 64 128 256

20 0.62 0.76 0.87 0.93 0.96 0.98

2−2 0.76 0.89 0.95 0.97 0.99 0.99

2−4 0.80 0.90 0.95 0.97 0.99 0.99

2−6 0.78 0.85 0.92 0.95 0.98 0.99

2−8 0.68 0.76 0.90 0.97 1.00 1.02

2−10 0.65 0.76 0.86 0.93 0.97 0.99

2−12 0.61 0.75 0.86 0.93 0.97 0.98

2−14 0.60 0.75 0.86 0.93 0.96 0.98

2−16 0.59 0.75 0.86 0.93 0.96 0.98

2−18 0.59 0.75 0.86 0.93 0.96 0.98

2−20 0.59 0.75 0.86 0.93 0.96 0.98

2−22 0.59 0.75 0.86 0.93 0.96 0.98

2−24 0.59 0.75 0.86 0.93 0.96 0.98

2−26 0.59 0.75 0.86 0.93 0.96 0.98

pN
µ=2−2 0.59 0.75 0.86 0.93 0.96 0.98
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Table 2. The orders of local convergence pN
ε,µ and the ε-uniform

orders of local convergence pN
µ generated by the upwind finite dif-

ference operator (4.1a) and the mesh (4.1c) applied to problem
(6.1) for µ = 2−10 and for various values of ε and N(= M).

Number of intervals N(= M)

ε 8 16 32 64 128 256

20 0.61 0.75 0.87 0.93 0.96 0.98

2−2 0.75 0.88 0.94 0.97 0.98 0.99

2−4 0.80 0.90 0.95 0.98 0.99 0.99

2−6 0.86 0.93 0.97 0.98 0.99 1.00

2−8 0.92 0.96 0.98 0.99 0.99 1.00

2−10 0.93 0.97 0.99 0.99 1.00 1.00

2−12 0.94 0.97 0.99 0.99 1.00 1.00

2−14 0.94 0.97 0.99 0.99 1.00 1.00

2−16 0.94 0.97 0.99 0.99 1.00 1.00

2−18 0.94 0.97 0.99 0.99 1.00 1.00

2−20 0.94 0.97 0.99 0.99 1.00 1.00

2−22 0.94 0.97 0.99 0.99 0.99 0.99

2−24 0.94 0.97 0.98 0.99 0.99 0.99

2−26 0.94 0.97 0.98 0.99 0.99 0.99

pN
µ=2−10 0.94 0.97 0.99 0.99 1.00 1.00

Table 3. The orders of ε-uniform local convergence pN
µ and the

(ε, µ)-uniform orders of local convergence pN generated by the up-
wind finite difference operator (4.1a) and the mesh (4.1c) applied
to problem (6.1) for various values of ε, µ and N(= M).

Number of intervals N(= M)

µ 8 16 32 64 128 256

20 0.41 0.46 0.58 0.66 0.71 0.80

2−2 0.59 0.75 0.86 0.93 0.96 0.98

2−4 0.85 0.91 0.97 0.98 0.99 1.00

2−6 0.89 0.98 0.97 0.98 1.01 1.00

2−10 0.94 0.97 0.99 0.99 1.00 1.00

2−14 0.95 0.97 0.99 0.99 1.00 1.00

2−18 0.95 0.97 0.99 0.99 1.00 1.00

2−22 0.95 0.97 0.99 0.99 1.00 1.00

pN 0.95 0.97 0.99 0.99 1.00 1.00
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