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QUADRATURE METHODS
FOR MULTIVARIATE HIGHLY OSCILLATORY INTEGRALS

USING DERIVATIVES

ARIEH ISERLES AND SYVERT P. NØRSETT

We dedicate this paper to the memory of Germund Dahlquist

Abstract. While there exist effective methods for univariate highly oscilla-
tory quadrature, this is not the case in a multivariate setting. In this paper we
embark on a project, extending univariate theory to more variables. Inter alia,
we demonstrate that, in the absence of critical points and subject to a nonres-
onance condition, an integral over a simplex can be expanded asymptotically
using only function values and derivatives at the vertices, a direct counterpart
of the univariate case. This provides a convenient avenue towards the general-
ization of asymptotic and Filon-type methods, as formerly introduced by the
authors in a single dimension, to simplices and, more generally, to polytopes.
The nonresonance condition is bound to be violated once the boundary of the
domain of integration is smooth: in effect, its violation is equivalent to the
presence of stationary points in a single dimension. We further explore this
issue and propose a technique that often can be used in this situation. Yet,
much remains to be done to understand more comprehensively the influence
of resonance on the asymptotics of highly oscillatory integrals.

1. Introduction

Let Ω ⊂ R
d be a connected, open, bounded domain with sufficiently smooth

boundary. We are concerned in this paper with the computation of the highly
oscillatory integral

(1.1) I[f, Ω] =
∫

Ω

f(x)eiωg(x)dV,

where f, g : R
d → R are smooth, g �≡ 0, dV is the volume differential and ω � 1.

Integrals of this form feature frequently in applications, not least in applications
of the boundary element method to problems originating in electromagnetics and
in acoustics [STW90]. Another important source of highly oscillatory integrals
is geometric numerical integration and methods for highly oscillatory differential
equations that expand the solution in multivariate integrals [DS03, Ise02, Ise04a].

Building upon earlier work in [Ise04b, Ise05], we have recently developed two
general methods for the integration of univariate highly oscillatory integrals using
just a small number of function values and derivatives at the endpoints and at the
stationary points of g [IN05a, IN05b]. The outstanding feature of these methods,
which they share with an earlier method of Levin [Lev96], is that their precision
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grows with increasing oscillation. Indeed, judiciously using derivatives, it is possible
to speed up the decay of the error arbitrarily fast for large ω. The purpose of this
paper is to extend this work into the realm of multivariate integrals of the form
(1.1). To this end we provide in Section 2 a brief overview of the univariate theory
and of the asymptotic and Filon-type methods.

In Section 3 we commence the main numerical part of this paper by examining
product rules for integration in parallelepipeds. Although results of this section
can be alternatively obtained by techniques introduced later in the paper, there
are valid reasons to examine product rules first, since they represent the most
obvious extension of univariate theory, while demonstrating difficulties peculiar to
multivariate quadrature.

Our point of departure in Section 4 is a d-dimensional regular simplex Sd with
vertices at the origin and at the unit vectors e1, e2, . . . , ed ∈ R

d, combined with
a linear oscillator. We demonstrate how, subject to a nonresonance condition,
it is possible to represent highly oscillatory integration in Sd in terms of surface
integrals across its d + 1 faces, themselves (d − 1)-dimensional simplices. Iterating
this procedure ultimately leads to an asymptotic expression of the integral I[f,Sd]
as a linear combination of function and derivative values of f at the vertices of
Sd. This allows for a straightforward generalization of univariate highly oscillatory
quadrature methods to this setting.

The theme of Section 4 is continued in Section 5, except that there we allow
more general, nonlinear oscillators. This requires a more elaborate nonresonance
condition and more subtle analysis.

In Section 6 we develop a Stokes-type formula, which allows us, subject to non-
resonance conditions, to express a highly oscillatory integral in Sd as an asymptotic
expansion on its boundary. As well as providing an alternative tool for the analysis
of Section 5, this expansion is interesting in its own sake.

Finally, in Section 7 we consider multivariate highly oscillatory quadrature in
polytopes. Each polytope can be tiled by simplices, and this tessellation allows us
to infer from earlier material in this paper to general (neither necessarily convex,
nor even simply connected) polytopes. Thus, subject to nonresonance, we express
a highly oscillatory integral over a polytope asymptotically as a sum of function
and derivative values at its vertices. The outcome are two general quadrature
techniques, the asymptotic method and the Filon-type method.

A multivariate domain with smooth boundary can be approximated by poly-
topes, hence it might be tempting to use the dominated convergence theorem and
generalize our results from polytopes to such domains. Unfortunately, the nonreso-
nance condition breaks down once we consider smooth boundaries. We explore these
issues further, identify this breakdown with lower-dimensional stationary points and
present a technique, a combination of an asymptotic expansion and a Filon-type
method, which can be used in a bivariate setting.

A major issue in univariate computation of highly oscillatory integrals is pos-
sible presence of stationary points, where the derivative of oscillator g vanishes
[Olv74, Ste93]. In that instance the integral cannot be expanded asymptotically in
integer negative powers of ω. The expansion employs fractional powers of ω and is
considerably more complicated. The standard means of analysis is the method of
stationary phase [Olv74], except that it is insufficient for our needs. A considerably
simpler, yet more suitable from our standpoint, alternative is a technique originally
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introduced in [IN05a]. The same distinction is crucial in a multivariate setting. As
long as ∇g �= 0 in the closure of Ω, we can expand I[f, Ω] in negative integer powers
of ω and exploit this asymptotic expansion in construction of numerical methods.
However, once we allow nondegenerate critical points ξ ∈ Ω where ∇g(ξ) = 0,
det∇∇�g(ξ) �= 0, the situation is considerably more complex [Ste93]. In this pa-
per we do not pursue this issue, since critical points are explicitly excluded from
our setting by the nonresonance condition. Having said this, as we have already
mentioned, breakdown of nonresonance for smooth boundaries is equivalent to the
presence of univariate stationary points. Thus, even if we require that ∇g(x) �= 0
in the closure of Ω, problems associated with the presence of stationary points are
generic to domains with smooth boundaries. Our present understanding of uni-
variate quadrature methods for oscillators with stationary points is unequal to this
task and calls for further research.

2. The univariate case

Let d = 1 and Ω = (a, b). In other words, we consider

(2.1) I[f, (a, b)] =
∫ b

a

f(x)eiωg(x)dx.

Let us first consider strictly monotone oscillators g. In that case it has been proved
in [IN05a] that for any f ∈ C∞[a, b] the integral in (2.1) admits the asymptotic
expansion
(2.2)

I[f, (a, b)] ∼ −
∞∑

m=0

1
(−iω)m+1

{
eiωg(b)

g′(b)
σm[f ](b) − eiωg(a)

g′(a)
σm[f ](a)

}
, ω � 1,

where

σ0[f ](x) = f(x),

σm[f ](x) =
d
dx

σm−1[f ](x)
g′(x)

, m = 1, 2, . . . .

Note that each σm[f ] is a linear combination of f (i), i = 0, 1, . . . , m, with coefficients
that depend upon g and its derivatives.

Truncating (2.2) results in the asymptotic method

(2.3) QA
s [f, (a, b)] = −

s−1∑
m=0

1
(−iω)m+1

{
eiωg(b)

g′(b)
σm[f ](b) − eiωg(a)

g′(a)
σm[f ](a)

}
,

and it follows immediately that

QA
s [f, (a, b)] − I[f, (a, b)] ∼ O

(
ω−s−1

)
.

The information required to attain this rate of asymptotic decay, which improves
as the frequency ω grows, is just the values of f, f ′, . . . , f (s−1) at the endpoints of
the interval.

An alternative to the asymptotic method (2.3) which, while requiring identical
information and producing the same rate of asymptotic decay, is typically more
accurate is the Filon-type method. [IN05a]. In its basic reincarnation we construct a
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degree-(2s−1) Hermite interpolating polynomial ψ, say, such that ψ(j)(a) = f (j)(a),
ψ(j)(b) = f (j)(b), j = 0, 1, . . . , s − 1, and set

(2.4) QF
s [f, (a, b)] = I[ψ, (a, b)].

It readily follows, applying (2.2) to ψ − f , that

QF
s [f, (a, b)] − I[f, (a, b)] = I[ψ − f, (a, b)] = O

(
ω−s−1

)
, ω � 1.

The Filon-type method can be enhanced by interpolating f not just at a and b
but also at intermediate points. Although the asymptotic rate of decay remains
the same, the size of the error is significantly reduced. We refer to [IN05a] for
details and examples and to [IN05b] for techniques to estimate the error and an
explanation why Filon is usually (but not always) likely to produce a smaller error
than the asymptotic method.

A potential drawback of Filon-type methods is the need to evaluate explicitly
the moments

µm(ω) =
∫ b

a

xmeiωg(x)dx

of the oscillator g for a suitable range of nonnegative integers m. Although straight-
forward for quadratic g, this represents a genuine limitation of Filon-type methods.
This is the place to mention in passing the recent alternative approach of Levin-type
methods, which does not require the knowledge of moments [Olv05]. Unfortunately,
Levin-type methods cannot cater for stationary points: as often in computational
mathematics, no method is superior in all its aspects.

Both (2.3) and (2.4) can be generalized to cater for oscillators g with stationary
points in (a, b). For example, suppose that g′(y) = 0, g′′(y) �= 0 for some y ∈ (a, b)
and g′(x) �= 0 for x ∈ [a, b]\{y}. In that case the asymptotic expansion of I[f, (a, b)]
does not depend any longer just on f and its derivatives at the endpoints. Then
(2.2) needs to be replaced by the asymptotic expansion

I[f, (a, b)] ∼ µ0(ω)
∞∑

m=0

1
(−iω)m

ρm[f ](y)

−
∞∑

m=0

1
(−iω)m+1

(
eiωg(b)

g′(b)
{ρm[f ](b) − ρm[f ](y)}

−eiωg(a)

g′(a)
{ρm[f ](a) − ρm[f ](y)}

)
, ω � 1,

(2.5)

where µ0(ω) is the zeroth moment of the oscillator g and

ρ0[f ](x) = f(x),

ρm[f ](x) =
d
dx

ρm−1[f ](x) − ρm−1[f ](y)
g′(x)

, m = 1, 2, . . . .

Note that ρm for m ≥ 1 has a removable singularity at y, but, as long as f is
smooth in [a, b], so is each ρm However, while each ρm depends on f, f ′, . . . , f (m)

at the endpoints a and b, it also depends on f, f ′, . . . , f (2m) at the stationary point
ξ [IN05a].

The expansion (2.5) can be easily generalized to stationary points of degree r,
i.e., when g′(y) = · · · = g(r)(y) = 0, g(r+1)(y) �= 0, to several stationary points in
(a, b) and to stationary points at the endpoints.
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Once the expansion (2.5) is truncated, we obtain for every s ≥ 1 the asymptotic
method

QA
s [f ] = µ0(ω)

s−1∑
m=0

1
(−iω)m

ρm[f ](y)

−
s−1∑
m=0

1
(−iω)m+1

(
eiωg(b)

g′(b)
{ρm[f ](b) − ρm[f ](y)}

− eiωg(a)

g′(a)
{ρm[f ](a) − ρm[f ](y)}

)
,

(2.6)

a generalization of (2.3) to the present setting. Since µ0(ω) ∼ O
(
ω− 1

2

)
[Ste93], we

can prove that

QA
s [f ] − I[f, (a, b)] = O

(
ω−s− 1

2

)
, ω � 1.

Observe that QA
s [f ] depends on f (i)(a), f (i)(b), i = 0, 1, . . . , s − 1, but also on

f (i)(y), i = 0, 1, . . . , 2s − 2.
The Filon-type approach can be generalized to the present setting in a natural

way. Specifically, we choose nodes c1 = a < c2 < · · · < cν−1 < cν = b such that
y ∈ {c2, c3, . . . , cν−1} and multiplicities m1, m2, . . . , mν ∈ Z. Let ψ be a polynomial
of degree

∑
ml − 1 which interpolates f and its derivatives at the nodes,

ψ(i)(ck) = f (i)(ck), i = 0, . . . , mk − 1, k = 1, . . . , ν.

The Filon-type method is given, again, by (2.4). Note that n1, nν ≥ s and mr ≥
2s−1, where cr = y, imply that QF

s [f ]− I[f, (a, b)] = O
(
ω−s− 1

2

)
for ω � 1. Thus,

we again replicate the asymptotic order of decay of the asymptotic method, use the
same information, but have access to extra degrees of freedom that typically allow
for higher precision.

3. Product rules

The simplest generalization of univariate quadrature to multivariate setting is by
using product rules, and it is applicable to the case when Ω ⊂ R

d is a parallelepiped.
Although we will consider many more general domains later in the paper, it is useful
to commence with a simple example since it illustrates many issues that will be at
the center of our attention.

Without loss of generality we may assume that Ω is a unit cube. We consider
just the case d = 2, but general dimensions can be treated by identical means at
the price of more elaborate algebra. Thus, we wish first to expand asymptotically
and subsequently to approximate the integral

(3.1) I[f, (a, b)2] =
∫ b

a

∫ b

a

f(x, y)eiωg(x,y)dydx,

where f and g are smooth functions and g is real. We assume that the oscillator g
is separable,

g(x, y) = g1(x) + g2(y), x, y ∈ [a, b],
and that

(3.2) g′1(x), g′2(y) �= 0, x, y ∈ [a, b].
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The separability condition is stronger than absolutely necessary and will be relaxed
later in the paper, but it renders the algebra considerably simpler and, for the time
being, will suffice to illustrate salient points of our analysis.

We commence by expanding the inner integral in (3.1) into asymptotic series
(2.2), a procedure justified by the assumptions (3.2). Thus, exchanging integration
and summation,

I[f, (a, b)2] ∼ −
∞∑

m2=0

1
(−iω)m2+1

∫ b

a

{
eiωg(x,b)

g′2(b)
σ0,m2 [f ](x, b)

− eiωg(x,a)

g′2(a)
σ0,m2 [f ](x, a)

}
dx,

where

σ0,0[f ] = f, σ0,m2 [f ] =
∂

∂y

σ0,m2−1[f ]
g′2

, m2 ≥ 1.

Next, we expand the remaining integral in asymptotic series (2.2) and rearrange
terms,

I[f, (a, b)2] ∼
∞∑

m1=0

∞∑
m2=0

1
(−iω)m1+m2+2

{
eiωg(b,b)

g′1(b)g
′
2(b)

σm1,m2 [f ](b, b)

− eiωg(b,a)

g′1(b)g′2(a)
σm1,m2 [f ](b, a) +

eiωg(a,a)

g′1(a)g′2(a)
σm1,m2 [f ](a, a)

− eiωg(a,b)

g′1(a)g′2(b)
σm1,m2 [f ](a, b)

}
=

∞∑
m=0

1
(−iω)m+2

m∑
k=0

{
eiωg(b,b)

g′1(b)g′2(b)
σk,m−k[f ](b, b)(3.3)

− eiωg(b,a)

g′1(b)g
′
2(a)

σk,m−k[f ](b, a) +
eiωg(a,a)

g′1(a)g′2(a)
σk,m−k[f ](a, a)

− eiωg(a,b)

g′1(a)g′2(b)
σk,m−k[f ](a, b)

}
,

where

σm1,m2 [f ] =
∂

∂x

σm1−1,m2 [f ]
g′1

, m1 ≥ 1.

Let h ∈ C[(a, b)2] and

∂1[h] =
∂

∂x

h

g′1
, ∂2[h] =

∂

∂y

h

g′2
.

Separability of g implies that

∂1∂2[h] =
1

g′1g
′
2

∂2h

∂x∂y
− g′′2

g′1g
′
2
2

∂h

∂x
− g′′1

g′1
2g′2

∂h

∂y
+

g′′1 g′′2

g′1
2g′2

2 h = ∂2∂1[h].

Therefore the two operators commute, and we can redefine the function σm1,m2 ,

σm1,m2 [f ] = ∂m1
1 ∂m2

2 [f ], m1, m2 ≥ 0,

where ∂1 and ∂2 can be applied in any order.
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A number of observations are in order. As will be evident later in the paper,
they reflect a more general state of affairs and illustrate how the univariate theory
of [IN05a] generalizes to a multivariate setting.

• In the important special case g(x, y) = κ1x+κ2y, where κ1, κ2 are nonzero
constants, we have g′1 ≡ κ1, g′2 ≡ κ2,

σk,m−k[f ] =
1

κk
1κm−k

2

∂mf

∂xk∂ym−k
,

and the asymptotic expansion (3.3) simplifies to

I[f, (a, b)2] ∼
∞∑

m=0

1
(−iω)m+2

m∑
k=0

1
κk

1κm−k
2

×
[
ei(bκ1+bκ2)

∂mf(b, b)
∂xk∂ym−k

− ei(bκ1+aκ2)
∂mf(b, a)
∂xk∂ym−k

+ ei(aκ1+aκ2)
∂mf(a, a)
∂xk∂ym−k

− ei(aκ1+bκ2)
∂mf(a, b)
∂xk∂ym−k

]
.

• The asymptotic expansion (3.3) depends solely upon f and its derivatives
at the vertices of the square [a, b]2.

• Each σk,m−k can be expressed as a linear combination of ∂i+jf/∂ix∂jy,
i = 0, . . . , k, j = 0, . . . , m − k, with coefficients that depend solely on the
oscillator g and its derivatives.

• The asymptotic method

QA
s+1[f ] =

s−1∑
m=0

1
(−iω)m+2

×
m∑

k=0

{
eiωg(b,b)

g′1(b)g′2(b)
σk,m−k[f ](b, b)− eiωg(b,a)

g′1(b)g′2(a)
σk,m−k[f ](b, a)

+
eiωg(a,a)

g′1(a)g′2(a)
σk,m−k[f ](a, a)− eiωg(a,b)

g′1(a)g′2(b)
σk,m−k[f ](a, b)

}
(3.4)

depends on ∂i+jf/∂ix∂jy, i, j ≥ 0, i + j ≤ s − 1, at the vertices of the
square. Moreover,

QA
s+1[f ] − I[f, (a, b)2] = O

(
ω−s−2

)
, ω � 1,

hence the asymptotic method has asymptotic rate of decay of O
(
ω−s−2

)
.

• Let ψ : [a, b]2 → R be any Cs function that obeys the Hermite interpolation
conditions

∂i+jψ(vk)
∂ix∂jy

=
∂i+jf(vk)

∂ix∂jy
, i, j ≥ 0, i + j ≤ s − 1, k = 1, 2, 3, 4,

where

v1 = (b, b), v2 = (b, a), v3 = (a, a), v4 = (a, b)

are the vertices of the square [a, b]2. We define a Filon-type method

(3.5) QF
s+1[f ] = I[ψ, (a, b)2].

Thus, QF
s [f ] is exploiting exactly the same information as QA

s [f ]. Since

QF
s+1[f ] − I[f, (a, b)2] = I[ψ − f, (a, b)2],
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Figure 1. The absolute value of the error for QA
1 and QF

1 ,
on the left and right, respectively, scaled by ω3, for f(x) =
(x − 1

2 ) sin(π(x + y)/2) and g(x, y) = 2x − y, a = 0, b = 1 and
10 ≤ ω ≤ 100.

the asymptotic expansion (3.3), applied to ψ−f , in tandem with the above
interpolation conditions, proves at once that

QF
s+1[f ] − I[f, (a, b)2] = O

(
ω−s−2

)
, ω � 1,

thereby matching the rate of asymptotic error decay of the asymptotic
method (3.4).

Note that much smaller error can be attained with Filon’s method once
we interpolate f at other points in [a, b]2, a procedure which we have already
mentioned in the univariate context and to which we will return later in
the paper.

• It follows at once from the asymptotic expansion (3.3) that I[f, (a, b)2] =
O

(
ω−2

)
for ω � 1, in variance with the one-dimensional case, I[f, (a, b)] =

O
(
ω−1

)
. This is a reflection of the general scaling I[f, Ω] = O

(
ω−d

)
for

Ω ⊂ R
d [Ste93]. Therefore the relative error of both QA

s and QF
s is O(ω−s),

regardless of dimension: for the time being, we proved it only for a square
in R

2 but this will be generalized later in the paper.
As an example, we let (a, b) = (0, 1), set g(x, y) = 2x − y and consider the

simplest methods, with s = 1. In other words, we use only the function values, but
no derivatives, at the vertices. The asymptotic method is

QA
1 [f ] =

1
2ω2

[eiωf(1, 1) − e2iωf(1, 0) + f(0, 0) − e−iωf(0, 1)].

We interpolate at the vertices with the standard pagoda function (linear spline in
a rectangle)

ψ(x, y) = f(0, 0)(1 − x)(1 − y) + f(1, 0)x(1 − y) + f(0, 1)(1 − x)y + f(1, 1)xy.

Therefore

QF
1 [f ] = b1,1(ω)f(1, 1) + b1,0(ω)f(1, 0) + b0,0(ω)f(0, 0) + b0,1(ω)f(0, 1),
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where

b1,1(ω) = −1
2

eiω

(−iω)2
− 1

4

(1 − e−iω)(1 + eiω + 2e2iω)
(−iω)3

− 1
4

(1 + e−iω)(1 − eiω)
(−iω)4

,

b1,0(ω) = 1
2

e2iω

(−iω)2
− 1

4

(1 − eiω)(1 + 3eiω)
(−iω)3

+ 1
4

(1 + e−iω)(1 − eiω)
(−iω)4

,

b0,0(ω) = −1
2

1
(−iω)2

− 1
4

(1 − e−iω)(2 + eiω + e2iω)
(−iω)3

− 1
4

(1 + e−iω)(1 − eiω)
(−iω)4

,

b0,1(ω) = 1
2

e−iω

(−iω)2
+ 1

4

(1 − e−iω)(3 + eiω)
(−iω)3

+ 1
4

(1 + e−iω)(1 − eiω)
(−iω)4

.

In Figure 1 we present the errors (in absolute value) scaled by ω3. Each point on
the horizontal axis corresponds to a different value of ω: this mode of presentation,
originally used in [Ise04b], allows for easy comparison of methods. It is evident
that both the asymptotic and Filon-type methods behave according to the theory
above, with the error of QF

1 [f ] somewhat smaller.

4. Quadrature over a regular simplex, g(x) = κ�x

We denote by Sd(h) ⊂ R
d the d-dimensional open, regular simplex with vertices

at 0 and hek, k = 1, 2, . . . , d, where ek ∈ R
d is the kth unit vector and h > 0.

Thus,

S1(h) = {x ∈ R : 0 < x < h},
Sd(h) = {x ∈ R

d : x1 ∈ (0, h), (x2, . . . , xd) ∈ Sd−1(h − x1)}, d ≥ 2.(4.1)

We need to consider not just the standard regular simplex with h = 1, say, but all
values of h ∈ (0, 1), because of the method of proof of Theorem 1.

Given κ ∈ R
d, we say that it obeys the nonresonance condition if

κi �= 0, i = 1, 2, . . . , d, κi �= κj , i, j = 1, 2, . . . , d, i �= j.

In other words, κ is not orthogonal to the faces of Sd(h). Moreover, the faces of
each simplex are themselves simplices of one dimension less. Hence this procedure
can be continued iteratively until we reach zero-dimensional simplices: the vertices
of the original simplex. It is easy to see that κ is not orthogonal to the faces of any
of these simplices of dimension greater than one.

Let
vd,0 = 0, vd,k = ek, k = 1, 2, . . . , d.

We will be employing a multi-index notation in the rest of this paper. Thus,

fm(x) =
∂|m|f(x)

∂xm1
1 ∂xm2

2 · · · ∂xmd

d

,

where each mk is a nonnegative integer and |m| = 1�m.
We commence our discussion by considering the highly oscillatory integral

(4.2) I[f,Sd(h)] =
∫
Sd(h)

f(x)eiωκ�xdV.

Theorem 1. Suppose that κ obeys the nonresonance condition. There exist linear
functionals αd

m[vd,k]; Rd → R, k = 0, 1, . . . , d, |m| ≥ 0, such that for ω � 1 it is
true that

(4.3) I[f,Sd(h)] ∼
∞∑

n=0

1
(−iω)n+d

d∑
k=0

eiωhκ�vd,k

∑
|m|=n

αd
m[vd,k](κ)f (m)(hvd,k).
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Proof. By induction on d. For d = 1 we use the univariate asymptotic expansion:
the asymptotic expansion (2.2) reduces for g(x) = κ1x to

I[f, (0, h)] ∼
∞∑

n=0

1
(−iωκ1)n+1

1
κn+1

1

[−f (n)(0) + eiωhf (n)(h)],

hence (4.3) holds with

α1
n[v1,0](κ1) = − 1

κn+1
1

, α1
n[v1,1](κ1) =

1
κn+1

1

, n ≥ 0.

Because of (4.1), it is true that

I[f,Sd(h)] =
∫ h

0

I[f,Sd−1(h − x)]eiωκ1xdx.

Let
κ̃ = [κ2, κ3, . . . , κd]� ∈ R

d−1, m̃ = [m2, m3, . . . , md]� ∈ Z
d−1
+

and

F k,r
m̃

(x) =
dr

dxr
f (0,m̃)(x, (h − x)dd−1,k).

(By f (0,m̃) we really mean f (0,m̃�)� , except that it is arguably better to abuse
notation in a transparent fashion rather than unduly overburdening it.) Then, by
induction,

I[f,Sd(h)] ∼
∞∑

n=0

1
(−iω)n+d−1

d−1∑
k=0

eiωhκ̃�vd−1,k

∑
|m̃|=n

αd−1
m̃ [vd−1,k](κ̃)

×
∫ h

0

f (0,m̃)(x, (h − x)dd−1,k)eiω(κ1−κ̃�vd−1,k)xdx

∼
∞∑

n=0

1
(−iω)n+d−1

d−1∑
k=0

eiωhκ̃�vd−1,k

∑
|m̃|=n

αd−1
m̃ [vd−1,k](κ̃)

×
∞∑

r=0

1
(−iω)r+1

1
(κ1 − κ̃

�
vd−1,k)r+1

×
[

dr

dxr
f (0,m̃)(x, (h − x)vd−1,k)

x=0

−eiωh(κ1−κ̃�vd−1,k) dr

dxr
f (0,m̃)(x, (h − x)vd−1,k)

x=h

]
=

∞∑
n=0

∞∑
r=0

1
(−iω)n+r+d

×

⎡⎣d−1∑
k=0

eiωhκ̃�vd−1,k

(κ1−κ̃
�

vd−1,k)r+1

∑
|m̃|=n

αd−1
m̃ [vd−1,k](κ̃)F k,r

m̃ (0)

−eiωkκ̃�vd−1,k

d−1∑
k=0

eiωhκ̃�vd−1,k

(κ1−κ̃
�

vd−1,k)r+1

∑
|m̃|=n

αd−1
m̃ [vd−1,k](κ̃)F k,r

m̃ (h)

⎤⎦.

The nonresonance condition ensures that we never divide by zero.
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Note however that F 0,r
m̃ (0) is evaluated at 0 = hvd,0, while F k,r

m̃ (0) for k =
1, 2, . . . , d − 1 is evaluated at hvd,k+1 and, finally, F k,r

m̃
(h) is evaluated at hvd,1.

Each F k,r
m̃ (x) can be written using the Leibnitz rule in the form

F k,r
m̃ (x) =

r∑
j=0

(−1)r−j

(
r

j

)
f (je1+(r−j)ek+1+(0,m̃))(x, 0, . . . , 0, h − x, 0, . . . , 0).

In other words, F k,r
m̃ (x) is a linear combination of f (mj)(ψj(x)), where

mj = je1 + (r − j)ek−1 + (0, m̃), |mj | = r + |m̃| = r + n

and ψj(x) = xe1 + (h − x)ek+1, j = 0, 1, . . . , r. Observe, though, that ψj(0) =
hek+1 = hvd,k+1 and ψj(h) = 0 = hvd,0.

Substitution of F k,r
m̃

(0) and F k,r
m̃

(h) with the above linear combination of deriva-
tives of f and regrouping terms completes the proof. �

Note that, although in principle the method of proof generates recursive rules
for the evaluation of the functionals αd

m[vd,k], the latter are fairly complicated, in
particular for large d. They can be computed, though, for d = 2. In that instance
the condition that κ is not normal to ∂S2(h) is equivalent to κ1, κ2 �= 0 and κ1 �= κ2.
The asymptotic expansion (4.3) can be written in the form

I[f,S2(h)] ∼
∞∑

n=0

1
(−iω)n+2

2∑
k=0

eiωκ�v2,k

n∑
m=0

a2
n,m[v2,k](κ)f (m,n−m)(v2,k),

where

a2
n,m[(0, 0)](κ1, κ2) =

1
κm+1

1 κn−m+1
2

,

a2
n,m[(1, 0)](κ1, κ2) =

n∑
l=m

(−1)l−m

(
l

m

)
1

κn−l+1
2 (κ1 − κ2)l+1

− 1
κm+1

1 κn−m+1
2

,

a2
n,m[(0, 1)](κ1, κ2) = −

n∑
l=m

(−1)l−m

(
l

m

)
1

κn−l+1
2 (κ1 − κ2)l+1

.

Strictly speaking, an explicit form of ad
m is hardly necessary for the practical

purpose of computing I[f,Sd(h)]. Of course, had we wanted to use a multivariate
generalization of the asymptotic method QA

s , we would have needed to know (4.3)
in an explicit form. However, all we need to generalize a Filon-type method QF

s is
that, using directional derivatives of total degree ≤ s − 1 at the d + 1 vertices of
the simplex, an asymptotic method produces an error of O

(
ω−s−d

)
.

Theorem 2. Suppose that κ obeys the nonresonance condition. Let ψ : R
d → R

be any Cs function such that

(4.4) ψ(m)(vd,k) = f (m)(vd,k), |m| ≤ s − 1, k = 0, 1, . . . , d.

Set
QF

s [f ] = I[ψ,S(h)].
Then

QF
s [f ] = I[f,S(h)] + O

(
ω−s−d

)
, ω � 1.

Proof. Follows at once, in a similar vein as the univariate case, replacing f by ψ−f
in (4.3). �
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In practice, we use polynomial functions ψ, and the basic rules of their con-
struction can be borrowed virtually intact from the finite element method [Ise96].
For example, in two dimensions we need to interpolate f (and possibly its deriva-
tives) at the vertices of the 2-simplex, v2,0 = (0, 0), v2,1 = (1, 0) and v2,2 = (0, 1).
We may also interpolate at additional points, whether to equalize the number of
interpolation conditions to the number of degrees of freedom or to decrease the
approximation error. The four interpolation patterns which will concern us are
displayed in Figure 2.

To interpolate f at the vertices (the leftmost pattern in Figure 2) we use

ψ1(x, y) = a0,0 + a1,0x + a0,1y,

while to interpolate f both at the vertices and at the centroid (1
3 , 1

3 ) we employ

ψ2(x, y) = a0,0 + a1,0x + a0,1y + a1,1xy.

This leads to two QF
1 methods. In Figure 3 we display the scaled error for both: the

one corresponding to ψ1 on the left. The function in question is f(x, y) = ex−2y and
κ = (2,−1), but many other computational experiments with different fs and κs
have led to identical conclusions. Thus, numerical calculations confirm the theory
(as they should), and the use of extra information—in our case, the extra function
evaluation at the centroid—usually reduces the mean magnitude of the error.

In order to interpolate to f and its directional derivatives at the vertices, nine
conditions altogether, we let

ψ(x, y) = a0,0 + a1,0x + a0,1y + a2,0x
2 + a1,1xy + a0,2y

2 + a3,0x
3 + a2,1x

2y

+ a1,2xy2 + a0,3y
3.

Altogether we have ten degrees of freedom, and we need an extra condition to define
ψ uniquely. One option, corresponding to (c) in Figure 2 and the left-hand side of
Figure 4, is to require that the coefficients of cubic terms sum up to zero,

a3,0 + a2,1 + a1,2 + a0,3 = 0.

Another obvious possibility, widely used in finite element theory, is to interpolate
at the centroid. As evident from Figure 4, the first option leads to smaller mean

� �

�
�

�
�

�
�

�
� � �

�

�

�
�

�
�
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� �� ��

��
�

�
�

�
�

�
� �� ��

��

�

�
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�
�

�
(a) (b) (c) (d)

Figure 2. Patterns of interpolation in two dimensions. A disc
denotes an interpolation to f , while a disc in a circle denotes in-
terpolation to f , ∂f/∂x and ∂f/∂y.
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Figure 3. The absolute value of error for the two QF
1 methods,

on the left and right respectively, scaled by ω3, for f(x) = ex−2y

and g(x, y) = 2x − y.

ω

1

0.9

0.8

100

0.6

806020 40

0.7

0.5

ω

0.4

20

0.6

100

0.2

0.8

8040 60

Figure 4. The absolute value of error for the two QF
2 methods,

scaled by ω4, for f(x) = ex−2y and g(x, y) = 2x − y.

error, and this is confirmed by a welter of other numerical experiments. It is not
clear why this should be so.

It remains to investigate what happens when the nonresonance condition fails.
The two-dimensional case is sufficient in shedding light on this case. Without loss
of generality, let us assume that κ1 = κ2 and set h = 1. Specializing (2.2) to
g(x) = x, we have

(4.5) I[f, (a, b)] ∼ −
∞∑

m=1

1
(−iω)m

[eiωbf (m−1)(b) − eiωaf (m−1)(a)].
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Figure 5. The absolute value of
∫
S2(1)

ex−2yeiω(x+y)dV , scaled by ω.

We repeat the iterative procedure from the proof of Theorem 1 explicitly, using
(4.5) to expand univariate integrals:

I[f,S2(1)] =
∫ 1

0

∫ 1−x

0

f(x, y)eiω(x+y)dydx

∼ −
∞∑

n=0

1
(−iω)n+1

∫ 1

0

[eiω(1−x)f (0,n)(x, 1 − x) − f (0,n)(x, 0)]eiωxdx

= − eiω
∞∑

n=0

1
(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx

−
∞∑

n=0

∞∑
m=0

1
(−iω)m+n+2

[eiωf (m,n)(1, 0) − f (m,n)(0, 0)]

= −eiω
∞∑

n=0

1
(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx

−
∞∑

n=0

1
(−iω)n+2

n∑
m=0

[eiωf (m,n−m)(1, 0) − f (m,n−m)(0, 0)].

(4.6)

Therefore—and this explains the phrase “nonresonance condition”—we have a
rate of decay which is associated with a lower-dimensional problem: I[f,S1(1)] =
O

(
ω−1

)
for ω � 1, rather than O

(
ω−2

)
.

It is interesting to examine what happens once we disregard the above analy-
sis and apply Filon’s method in the presence of resonance. Thus, we revisit the
calculations of Figure 3, except that we let κ1 = κ2 = 1. As Figure 5 demon-
strates, the integral indeed decays like O

(
ω−1

)
. We considered two Filon-type

methods with s = 1: one that interpolates to f at the vertices and the second that
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Figure 6. The absolute value of error for the two QF
1 methods,

scaled by ω, for f(x) = ex−2y and g(x, y) = x − y.

interpolates to f both at the vertices and at ( 1
2 , 1

2 ), the midpoint of the “offend-
ing” face. (For completeness, ψ(x, y) = a0,0 + a1,0x + a0,1y in the first case, while
ψ(x, y) = a0,0+a1,0x+a0,1y+a1,1xy in the second.) As evident from Figure 6, both
methods produce errors that are just O

(
ω−1

)
but, while the error of the first is of

the same order of magnitude as the integral itself, the second method produces an
error which is about 40 times smaller. For the record, interpolating at the centroid
( 1
3 , 1

3 ) rather than at ( 1
2 , 1

2 ) does not help at all: it is the midpoint that apparently
matters, although, as things stand, we cannot underpin this observation by general
theory.
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Figure 7. The absolute value of error for the QA
1 (on the left) and

QA
2 methods, scaled by ω3 and ω4, respectively, for f(x) = ex−2y

and g(x, y) = x − y.
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An alternative is to truncate (4.6), producing an asymptotic method

QA
s [f ] = −eiω

s∑
n=0

1
(−iω)n+1

∫ 1

0

f (0,n)(x, 1 − x)dx

−
s−1∑
n=0

1
(−iω)n+2

n∑
m=0

[eiωf (m,n−m)(1, 0) − f (m,n−m)(0, 0)].

This allows us to approximate the error to an arbitrarily high rate of asymp-
totic decay, provided that we can evaluate exactly the nonoscillatory integrals∫ 1

0
f (0,n)(x, 1 − x)dx for relevant values of n. Figure 7 confirms that this approach

works for s = 1 and s = 2, producing an asymptotic rate of error decay of O
(
ω−3

)
and O

(
ω−4

)
, respectively.

5. Quadrature over a regular simplex, general oscillator

In the last section we investigated highly oscillatory quadrature over a regular
simplex and restricted our attention to the linear oscillator g(x) = κ�x. Still
keeping to a regular simplex, we presently extend the scope of our analysis to
nonlinear oscillators. In other words, in place of (4.1) we consider the integral

(5.1) I[f,Sd(h)] =
∫
Sd(h)

f(x)eiωg(x)dV,

where g : R
d → R is a sufficiently smooth oscillator.

The multivariate equivalent of a stationary point is a critical point ξ ∈ cl Ω such
that ∇g(ξ) = 0. We henceforth assume that there are no critical points in the
closure of Sd(h). The nonresonance condition in this, more general, situation is
that ∇g(x) is never orthogonal to the boundary of the simplex. In other words,

(5.2)
∂g(x)
∂xi

�= 0,
∂g(x)
∂xi

�= ∂g(x)
∂xj

, i, j = 1, 2, . . . , d, i �= j, x ∈ clSd(h).

Note that (5.2) automatically precludes critical points in the closure of the simplex.
Theorem 1 can be generalized to the present setting in a fairly straightforward

manner. We will demonstrate this in detail for the case d = 2: the proof for general
d ≥ 2 follows in a similar vein. Thus, consider S2(h), namely the triangle with
vertices (0, 0), (h, 0) and (0, h). Since, consistent with the nonresonance conditions
(5.2), ∂g(x, y)/∂y �= 0, we apply (2.2) to the inner integral,

I[f,S2(h)] =
∫ h

0

∫ h−x

0

f(x, y)eiωg(x,y)dydx

∼ −
∫ h

0

∞∑
m=0

1
(−iω)m+1

×
[

eiωg(x,h−x)

gy(x, h − x)
σ0,m[f ](x, h − x) − eiωg(x,0)

gy(x, 0)
σ0,m[f ](x, 0)

]
dx

= −
∞∑

m=0

1
(−iω)m+1

×
[∫ h

0

σ0,m[f ](x, h−x)
gy(x, h−x)

eiωg(x,h−x)dx−
∫ h

0

σ0,m[f ](x, 0)
gy(x, 0)

eiωg(x,0)dx

]
,
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where

σ0,0[f ] = f, σ0,m[f ] =
∂

∂y

σ0,m−1[f ]
gy

, m ≥ 1.

Each term in the asymptotic expansion is made out of two highly oscillatory
univariate integrals, which we expand using (2.2). Specifically,∫ h

0

σ0,m[f ](x, h − x)
gy(x, h − x)

eiωg(x,h−x)dx

∼ −
∞∑

n=0

1
(−iω)n+1

{
eiωg(h,0)

[gx(h, 0) − gy(h, 0)]gy(h, 0)
σ̃n,m[f ](h, 0)

− eiωg(0,h)

[gx(0, h) − gy(0, h)]gy(0, h)
σ̃n,m[f ](0, h)

}
,∫ h

0

σ0,m[f ](x, 0)
gy(x, 0)

eiωg(x,0)dx

∼ −
∞∑

n=0

1
(−iω)n+1

[
eiωg(h,0)

gx(h, 0)gy(h, 0)
σn,m[f ](h, 0)

− eiωg(0,0)

gx(0, 0)gy(0, 0)
σn,m[f ](0, 0)

]
,

where

σn,m[f ] =
∂

∂x

σn−1,m[f ]
gx

, n ≥ 1,

σ̃0,m[f ] = σ0,m[f ], σ̃n,m[f ] =
∂

∂x

σ̃n−1,m[f ]
gx − gy

− ∂

∂y

σ̃n−1,m[f ]
gx − gy

, n ≥ 1.

Nonresonance conditions imply that we never divide by zero.
We can assemble all this into an asymptotic expansion of the bivariate integral

in inverse powers of ω, but this is really not the point of the exercise. All that
matters is that we can expand I[f,S2(h)] asymptotically and that, as can be easily
verified, each ω−n−2 term depends on f (k,m−k), k = 0, 1, . . . , m, m = 0, 1, . . . , n, at
the vertices. Therefore, if ψ is an Cs−1 function such that

ψ(i,j)(0, 0) = f (i,j)(0, 0), ψ(i,j)(h, 0) = f (i,j)(h, 0), ψ(i,j)(0, h) = f (i,j)(0, h)

for i, j ≥ 0, i + j ≤ s − 1, and

QF
s [f ] = I[ψ,S2(h)] =

∫
S2(h)

ψ(x, y)eiωg(x,y)dV,

then QF
s [f ] − I[f,S2(h)] ∼ O

(
ω−s−2

)
, ω � 1.

Theorem 3. Suppose that g obeys the nonresonance conditions (5.2) and that ψ
is an arbitrary Cs[clSd(h)] function such that

ψ(m)(vd,k) = f (m)(vd,k), k = 0, 1, . . . , d, |m| ≤ s − 1.

Set
QF

s [f ] = I[ψ,Sd(h)].
Then

(5.3) QF
s [f ] − I[f,Sd(h)] ∼ O

(
ω−s−d

)
, ω � 1.
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Proof. Using the method of proof of Theorem 1, we can extend the above expansion
from d = 2 to arbitrary d ≥ 2. The asymptotic rate of decay in (5.3) then follows
similarly to the proof of Theorem 2. �

6. A Stokes-type formula

The proof of Theorems 1 and 3 depended on the progressive slicing of regular
simplices along hyperplanes parallel to their diagonal face. In the present section
we develop an alternative approach which pushes a highly oscillatory integral from
a regular simplex to its boundary—itself a union of lower-dimensional simplices.
It ultimately leads to an asymptotic expansion which is vaguely reminiscent of the
familiar Stokes and Green formulæ.

All the complexities of the proof already being present for d = 2, we develop our
expansion for S2 = S2(1): its generalization to all d ≥ 2 is trivial. Note that there
is no advantage in considering general h > 0, hence we let h = 1.

We assume again the nonresonance conditions (5.2) and, integrating by parts,
compute

I[g2
xf,S2] =

∫ 1

0

∫ 1−y

0

g2
x(x, y)f(x, y)eiωg(x,y)dxdy

=
1
iω

∫ 1

0

gx(1 − y, y)f(1 − y, y)eiωg(1−y,y)dy

− 1
iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy

− 1
iω

I

[
∂

∂x
(gxf),S2

]
=

1
iω

∫ 1

0

gx(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1
iω

∫ 1

0

gx(0, y)f(0, y)eiωg(0,y)dy

− 1
iω

I

[
∂

∂x
(gxf),S2

]
,

I[g2
yf,S2] =

∫ 1

0

∫ 1−x

0

g2
y(x, y)f(x, y)eiωg(x,y)dydx

=
1
iω

∫ 1

0

gy(x, 1 − x)f(x, 1 − x)eiωg(x,1−x)dx

− 1
iω

∫ 1

0

gy(x, 0)f(x, 0)eiωg(x,0)dx

− 1
iω

I

[
∂

∂y
(gyf),S2

]
.

Therefore, adding,

I[‖∇g‖2f,S2] = I[(g2
x + g2

y)f,S2]

=
1
iω

(M1 + M2 + M3) −
1
iω

I

[
∂

∂x
(fgx) +

∂

∂y
(fgy)

]
,
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where

M1 =
∫ 1

0

f(x, 0)n�
1 ∇g(x, 0)eiωg(x,0)dx,

M2 =
√

2
∫ 1

0

f(x, 1 − x)n�
2 ∇g(x, 1 − x)eiωg(x,1−x)dx,

M3 =
∫ 1

0

f(0, y)n�
3 ∇g(0, y)eiωg(0,y)dy.

Here n1 = [0,−1], n2 = [
√

2
2 ,

√
2

2 ] and n3 = [−1, 0] are the outward unit normals
along the edges extending from (0, 0) to (1, 0), from (1, 0) to (0, 1) and from (1, 0)
to (0, 0), respectively. Therefore

M1 + M2 + M3 =
∫

∂S2

f(x, y)n�(x, y)∇g(x, y)eiωg(x,y)dS,

where dS is the surface differential: note that the length of the edges is 1,
√

2 and 1,
respectively, and this is subsumed into the surface differential. The vector n(x, y)
is the unit outward normal at (x, y) ∈ ∂S2. We deduce the formula

I[‖∇g‖2f,S2] =
1
iω

∫
∂S2

f(x, y)n�(x, y)∇g(x, y)eiωg(x,y)dS − 1
iω

I[∇�(f∇g),S2].

Finally, we replace f by f/‖∇g‖2: since there are no critical points in the simplex,
this presents no difficulty whatsoever. The outcome is

I[f,S2] =
1
iω

∫
∂S2

n�(x, y)∇g(x, y)
f(x, y)

‖∇g(x, y)‖2
eiωg(x,y)dS(6.1)

− 1
iω

∫
S2

∇�
[

f(x, y)
‖∇g(x, y)‖2

∇g(x, y)
]

eiωg(x,y)dV.

The formula (6.1) can be generalized from d = 2 to general d ≥ 2. The method of
proof is identical: we express I[‖∇g‖2f,Sd], where Sd = Sd(1), as a linear combina-
tion of integrals along oriented faces of the simplex, minus (iω)−1I[∇�(f∇g),Sd].
The outcome is

I[f,Sd] =
1
iω

∫
∂Sd

n�(x)∇g(x)
f(x)

‖∇g(x)‖2
eiωg(x)dS(6.2)

− 1
iω

∫
Sd

∇�
[

f(x)
‖∇g(x)‖2

∇g(x)
]

eiωg(x)dV.

Theorem 4. For any smooth f and g and subject to the nonresonance condition
(5.2), it is true for ω � 1 that

(6.3) I[f,Sd] ∼ −
∞∑

m=0

1
(−iω)m+1

∫
∂Sd

n�(x)∇g(x)
σm(x)

‖∇(x)‖2
eiωg(x)dS,

where

σ0(x) = f(x),

σm(x) = ∇�
[

σm−1(x)
‖∇g(x)‖2

∇g(x)
]

, m ≥ 1.

Proof. Follows by an iterative application of (6.2) with f replaced by σm for in-
creasing m. �
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Corollary 1. Subject to the conditions of Theorem 4, we can express I[f,Sd] as
an asymptotic expansion of the form

(6.4) I[f,Sd] ∼
∞∑

n=0

1
(−iω)n+d

Θn[f ],

where each Θn[f ] is a linear functional and depends on ∂|m|f/∂xm, |m| ≤ n, at
the vertices of Sd.

Proof. The boundary of Sd is composed of d+1 faces which are (d−1)-dimensional
simplices, and each can be linearly mapped to the regular simplex Sd−1. Thus,
employing the requisite linear transformations, the terms on the right in the as-
ymptotic expansion (6.3) are each of the form I[f̃ ,Sd−1] for some function f̃ . We
apply (6.3) to each of these integrals, thereby expressing I[f,Sd] as a linear com-
bination of integrals over Sd−2. Continue by induction on descending dimension
until the original integral is expressed using point values and derivatives at the
vertices. �

Note that the functionals Θn depend upon the frequency ω: as a matter of fact,
it is easy to verify that they are almost-periodic functions of ω.

The expansions (6.3) and (6.4) are the multivariate generalization of (2.2). We
note in passing that Corollary 1 leads to an alternative proof of Theorem 3, hence
is relevant to the theme of this paper, multivariate quadrature of highly oscillatory
integrals.

The expansion of (6.3) is reminiscent of other theorems that express an integral
over a volume in terms of surface integrals on its boundary: the most famous of these
is the familiar Stokes theorem. Yet, it is subject to completely different conditions:
while the divergence of the integrand need not vanish, the oscillator g must obey
the nonresonance condition (5.2). Moreover, the surface integrals are embedded
into an asymptotic expansion. We note in passing that the aforementioned feature
of the Stokes theorem, “pushing” an integral from a domain to its boundary, plays
a fundamental part in algebraic and combinatorial topology. It is unclear at present
whether (6.3) has any topological relevance.

7. Quadrature in polytopes and beyond

Suppose that the domain Ω ⊂ R
d can be written as a union of a finite number

of disjoint subsets, Ω =
⋃r

k=1 Ωr, where Ωk ∩ Ωl is either an empty set or a set of
lower dimension for k �= l. Then

I[f, Ω] =
r∑

k=1

I[f, Ωk].

Therefore, once we have effective quadrature methods in each Ωk, we can trivially
extend them to Ω.

The term polytope has several subtly different definitions in literature. In this
paper we follow [Mun91] and say that Ω is a polytope if it is the underlying space
of a simplicial complex. We recall that a simplicial complex is a collection C of
simplices in R

d such that every face of a simplex in C is also in C and the intersection
of any two simplices in C is a face of each of them. Thus, a polytope is a union of
simplices forming a simplicial complex. In other words, a polytope is a domain with
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piecewise-linear boundary. It need be neither convex nor, indeed, singly connected.
We define a face of a polytope in an obvious manner.

We assume that Ω ⊂ R
d is a bounded polytope and extend the results of the

last three sections in two steps. First, we note that Corollary 1 remains true if
Sd is subjected to an affine map. Since any simplex in R

d can be obtained from
Sd by an affine map, it means that (6.4) remains valid once we replace Sd by any
simplex T in R

d. Of course, the nonresonance conditions (5.2) need be replaced by
the requirement that ∇g(x) is not orthogonal to the faces of T for any x ∈ clT .

Second, we interpret Ω ⊂ R
d as the underlying space of a simplicial complex.

Since we can change the complex by smoothly moving internal vertices, thereby
amending angles of internal faces, we can always choose a tessellation so that the
nonresonance condition is satisfied for every simplex T therein, except possibly on
an external face, i.e. a face of the polytope Ω.

The nonresonance condition for polytopes. We say that the oscillator g obeys
the nonresonance condition in the polytope Ω if ∇g(x) is not orthogonal to any of
the faces of Ω for all x ∈ clΩ.

Subject to the above nonresonance condition, we can readily generalize both
(6.3) and (6.4) to Ω. To this end we note that the internal faces of the tessellation
make no difference to I[f, Ω], since the latter is independent of the choice of internal
tessellation vertices. In other words, the contributions of internal vertices cancel
each other once we stitch simplices together in a manner consistent with a simplicial
complex. (Thus, we are not allowed, using the language of finite element theory,
hanging nodes.) It follows at once that, subject to the nonresonance condition,

I[f, Ω] ∼ −
∞∑

m=0

1
(−iω)m+1

∫
∂Ω

n�(x)∇g(x)
σm(x)

‖∇g(x)‖2
eiωg(x)dS.

Insofar as highly oscillatory quadrature is concerned, the more useful result is a
generalization of Corollary 1,

Theorem 5. Let Ω ⊂ R
d be a bounded polytope and suppose that the oscillator g

obeys the nonresonance condition. Then

(7.1) I[f, Ω] ∼
∞∑

n=0

1
(−iω)n+d

Θn[f ],

where each linear functional Θn[f ] depends on ∂|m|f/∂xm, |m| ≤ n, at the vertices
of the polytope.

Note that the functionals Θn are, in practice, unknown. They can be computed,
generally with great effort, but this is not necessary. All we need to know for
generalizing the Filon-type method is that the Θns depend on derivatives at the
vertices of Ω.

Theorem 6. Suppose that Ω ⊂ R
d is a bounded polytope and g obeys the nonreso-

nance condition. Let ψ ∈ Cs[cl Ω] and assume that

ψ(m)(v) = f (m)(v), |m| ≤ s − 1

for every vertex v of Ω. Set QF
s [f ] = I[ψ, Ω]. Then

(7.2) QF
s [f ] − I[f, Ω] ∼ O

(
ω−s−d

)
, ω � 1.
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Proof. Identical to the proof of Theorem 3. Thus,

QF
s [f ] − I[f, Ω] = I[ψ − f, Ω]

and the result follows by replacing f with ψ − f in (7.1) and using Hermite inter-
polation conditions at the vertices. �

Having generalized Filon-type methods from a regular simplex to a general poly-
tope, the next step seems to be to approach a general bounded domain Ω ⊂ R

d with
sufficiently “nice” boundary by a sequence of polytopes and to use the dominated
convergence theorem to generalize (7.1), say, to a curved boundary. There is an
obvious snag in this idea: it is impossible for ∇g(x) for any x ∈ Ω to be orthogonal
to any boundary point if ∂Ω is smooth. The simplest example is the semi-circle

Ω = {(x, y) : x2 + y2 < 1, y > 0}.

Obviously, given any vector emanating from a point in Ω, we can form a parallel
vector emanating from the origin which is normal to a point on the boundary. Yet,
on the face of it, this example contains within it the seeds of its own resolution.
Assume for simplicity’s sake that g(x) = κ�x, where κ2 �= 0. Given ε > 0, we
partition Ω into three sets,

Ω = Ωε,−1 ∪ Ωε,0 ∪ Ωε,1,

where

Ωε,−1 =
{

(x, y) : x2 + y2 < 1, y > 0,
x

y
< arctan

(
κ1

κ2
− ε

)}
,

Ωε,0 =
{

(x, y) : x2 + y2 < 1, y > 0, arctan
(

κ1

κ2
− ε

)
≤ x

y

≤ arctan
(

κ1

κ2
+ ε

)}
,

Ωε,1 =
{

(x, y) : x2 + y2 < 1, y > 0, arctan
(

κ1

κ2
− ε

)
<

x

y

}
.

Note that κ is never orthogonal to the boundary in Ωε,±1 and that I[f, Ωε,0] = O(ε).
It is thus tempting to approximate both Ωε,−1 and Ωε,1 as unions of increasingly
small triangles with a vertex at the origin and the remaining vertices on the bound-
ary of Ω. Since the nonresonance condition is valid in each such triangle, we hope
that, at the limit ε ↓ 0, we can confine resonance to a vanishingly small circular
wedge and extend at least some of the theory to Ω. It is a moot point what the
vertices v from Theorem 6 are in this setting, but we will not pursue it since the
above procedure, although tempting and “natural”, is flawed. Too many limiting
processes are in competition, ω � 1 is pitted against ε ↓ 0, and this renders intu-
ition wrong. (The correct approach, which we will not pursue further, is to take
ε = O

(
ω− 1

2

)
: in that instance we obtain the right rate of asymptotic decay, as

computed below.)
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We evaluate I[f, Ω] with g(x, y) = κ1x+κ2y directly, integrating by parts in the
inner integral,

I[f, Ω] =
∫ 1

−1

∫ √
1−x2

0

f(x, y)eiω(κ1x+κ2y)dydx

=
1

iωκ2

∫ 1

0

[f(x,
√

1 − x2)eiω(κ1x+κ2
√

1−x2) − f(x, 0)eiωκ1x]dx

− 1
iωκ2

∫ 1

0

∫ √
1−x2

0

fy(x, y)eiω(κ1x+κ2y)dydx

=
1

iωκ2

∫ 1

0

f(x,
√

1 − x2)eiωg1(x)dx − 1
iωκ2

∫ 1

0

f(x, 0)eiωκ1xdx

− 1
iωκ2

I[fy, Ω],

where
g1(x) = κ1x + κ2

√
1 − x2.

Note however that g′(x0) = 0 and g′′(x0) = −κ2/(1 − x2
0)3/2 �= 0 for x0 =

κ1/
√

κ2
1 + κ2

2 ∈ (−1, 1). In other words, the oscillator in the first integral has
a single stationary point of order one in (0, 1). It follows from the van der Corput
theorem [Ste93] that such an integral is O

(
ω− 1

2

)
for ω � 1. Since the second

integral is O
(
ω−1

)
and the third is at least O

(
ω−1

)
—actually, it is easy to prove

that it is O
(
ω− 3

2

)
—we deduce that

I[f, Ω] = O
(
ω− 3

2

)
, ω � 1.

In other words, in this particular instance a violation of the nonresonance condition
costs us an extra factor of ω

1
2 . This, however, is not necessarily true for all domains

Ω, not even in R
2. A crucial observation, though, is that a multivariate smooth

boundary has a similar effect as a univariate stationary point. Thus, suppose that

(7.3) Ω = {(x, y) : φ(x) < y < θ(x), 0 < x < 1},
where θ is a sufficiently smooth function of x. Assume further that gy(x, y) =
∂g(x, y)/∂y �= 0 for (x.y) ∈ Ω. Then, integrating by parts,

I[f, Ω] =
∫ 1

0

∫ θ(x)

φ(x)

f(x, y)eiωg(x,y)dydx =
1
iω

∫ 1

0

∫ θ(x)

φ(x)

f(x, y)
gy(x, y)

d
dy

eiωg(x,y)dydx

=
1
iω

∫ 1

0

f(x, θ(x))
gy(x, θ(x))

eiωg(x,θ(x))dx − 1
iω

∫ 1

0

f(x, φ(x))
gy(x, φ(x))

eiωg(x,φ(x))dx

− 1
iω

I

[
∂

∂y

f

gy
, Ω

]
.

Now, let

g1(x) = g(x, θ(x)), g2(x) = g(x, φ(x)), g̃1(x) = gy(x, θ(x)), g̃2(x) = gy(x, φ(x))

and

I1[f, (0, 1)] =
∫ 1

0

f(x, θ(x))eiωg1(x)dx, I2[f, (0, 1)] =
∫ 1

0

f(x, φ(x))eiωg2(x)dx.
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Figure 8. The absolute value of I[f, Ω] (on the left) and of er-
ror in the combination of QA

1,1 and Filon, scaled by ω
3
2 and ω

5
2 ,

respectively, for f(x) = sin[π(x + y)/2] and g(x, y) = x − 2y.

We next apply the same method as has been used already in [IN05a] to derive the
expansion (2.2). Iterating the above expression for I[f, Ω], we obtain the asymptotic
expansion

(7.4) I[f, Ω] ∼ −
∞∑

m=0

1
(−iω)m+1

{I1[σm[f ], (0, 1)] − I2[ρm[f ], (0, 1)]}, ω � 1,

where
σ0[f ] =

f

g̃1
, ρ0[f ] =

f

g̃2
,

σm[f ] =
∂

∂y

σm−1

g̃1
, ρm[f ] =

∂

∂y

ρm−1

g̃2
,

m ≥ 1.

The individual terms in (7.4) are themselves integrals I1 and I2. If θ and φ are
linear functions all is well: we integrate over a trapezium, and the theory of Sections
3–6 applies. However, unless both θ and φ are linear, at least one of the integrals
I1 and I2 has stationary points. Hence, these integrals must be treated in turn by
the asymptotic formula (2.5) or its generalization to several stationary points and
to stationary points of different degrees.

Our analysis leads to a method for bivariate highly oscillatory integrals where
the domain of integration Ω is given by (7.3). We truncate (7.4),

QA
s1,s2

[f ] = −
s1−1∑
m=0

1
(−iω)m+1

{
I1[σm[f ], (0, 1)] +

s2−1∑
m=0

1
(−iω)m+1

I2[ρm[f ], (0, 1)]

}
,

say, where s1 and s2 are chosen according to the nature of the stationary points of
g1 and g2, |s1 − s2| ≤ 1. We next apply the Filon method (2.4) to the individual
integrals above, taking care to interpolate to requisite order at the stationary points:
typically, we use different interpolants in I1 and I2.

As an example, let

Ω = {(x, y) : 0 < y < x2, 0 < x < 1},
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hence φ(x) ≡ 0 and θ(x) = x2. We take g(x, y) = x − 2y, therefore

QA
1,1[f ] = − 1

2iω

{∫ 1

0

f(x, x2)eiω(x−2x2)dx −
∫ 1

0

f(x, 0)eiωxdx

}
.

Thus, the first oscillator has a single simple stationary point at 1
4 , while g2 has no

stationary points. We let ψ1 be a cubic that interpolates the first integrand at 0, 1
4 , 1

with multiplicities 1, 2, 1, respectively, and choose ψ2 as a linear approximation to f
at the endpoints in the second integral. This replaces the two integrals with Filon-
type methods, with errors O

(
ω− 3

2

)
and O

(
ω−2

)
, respectively. The extra power

of ω−1 in front means that the overall error of this combined asymptotic–Filon
method is O

(
ω− 5

2

)
.

Figure 8 illustrates our discussion. Thus, we let f(x, y) = sin[π(x + y)/2] and
g(x, y) = x − 2y. The plot on the left verifies that, indeed, I[f, Ω] ∼ O

(
ω− 3

2

)
for ω � 1, while the plot on the right shows that, once we use the method of the
previous paragraph, the error decays asymptotically like O

(
ω− 5

2

)
.

Note that this combination of an asymptotic expansion and a Filon-type quadra-
ture can deal with bivariate highly oscillatory integrals, but obvious problems loom
once we try to apply it in, say, three dimensions. We can “reduce”, for example,
a triple integral to an asymptotic expansion in double integrals similarly to (7.4):
Given

Ω = {(x, y, z) : φ2(x, y) < z < θ2(x, y), φ1(x) < y < θ1(x), 0 < x < 1},

we have

I[f, Ω] =
1
iω

∫ 1

0

∫ θ1(x)

φ1(x)

f(x, y, θ2(x, y))
gz(x, y, θ2(x, y))

eiωg(x,y,θ2(x,y))dy dx

− 1
iω

∫ 1

0

∫ φ1(x)

φ1(x)

f(x, y, φ2(x, y))
gz(x, y, φ2(x, y))

eiωg(x,y,φ2(x,y))dy dx

− 1
iω

I

[
∂

∂z

f

gz
, Ω

]
.

This approach, unfortunately, is prey to a problem that already plagues the bi-
variate method: the calculation of moments. In order to use the Filon method,
we must be able to calculate the first few moments exactly, and, once there are
stationary points, this is also the case if, in place of Filon, we use an asymptotic
expansion á la (2.6). Now, even “nice” oscillators g lead in (7.4) to new oscillators
g̃1 and g̃2 whose moments, in general, are impossible to compute exactly in terms
of known functions, and the situation is bound to be considerably worse in higher
dimensions. A case in point is an attempt to integrate in a two-dimensional disc,
φ(x) = −

√
1 − x2, θ(x) =

√
1 − x2. An alternative to Filon might be the Levin

method [Lev96], which does not require the explicit computation of moments. How-
ever, the latter is not available in the presence of stationary points. Thus, before we
combine asymptotic, Filon’s and possibly Levin’s methods into an effective tool for
multivariate highly oscillatory integration in general domains, we must understand
more comprehensively the calculation of univariate integrals with stationary points.
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