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LOWER BOUNDS FOR THE CONDITION NUMBER
OF A REAL CONFLUENT VANDERMONDE MATRIX

REN-CANG LI

Abstract. Lower bounds on the condition number κp(Vc) of a real confluent
Vandermonde matrix Vc are established in terms of the dimension n, or n and
the largest absolute value among all nodes that define the confluent Vander-
monde matrix and the interval that contains the nodes. In particular, it is
proved that for any modest kmax (the largest multiplicity of distinct nodes),

κp(Vc) behaves no smaller than On((1+
√

2 )n), or than On((1+
√

2 )2n) if all
nodes are nonnegative. It is not clear whether those bounds are asymptotically
sharp for modest kmax.

1. Introduction

Given n numbers α1, α2, . . . , αn called nodes, the associated Vandermonde matrix
is defined as

(1.1) V
def=

⎛⎜⎜⎜⎝
1 1 · · · 1
α1 α2 · · · αn

...
...

. . .
...

αn−1
1 αn−1

2 · · · αn−1
n

⎞⎟⎟⎟⎠ .

It, for example, arises from polynomial interpolation and others [3]. V is invertible
if all nodes αj are distinct, i.e., αi �= αj for i �= j, but it becomes singular whenever
αi = αj for some i �= j. A generalization of V for nodes not all of which are distinct
is the so-called confluent Vandermonde matrices, e.g.,⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0
α1 1 0 α4 α5 1
α2

1 2α1 2 α2
4 α2

5 2α5

α3
1 3α2

1 6α1 α3
4 α3

5 3α2
5

α4
1 4α3

1 12α2
1 α4

4 α4
5 4α3

5

α5
1 5α4

1 20α3
1 α5

4 α5
5 5α4

5

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where α1 = α2 = α3 and α5 = α6. The second, third, and sixth columns are ob-
tained by “differentiating” the previous column. Confluent Vandermonde matrices
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arise in Hermite interpolation [4], for example. Adopting the formulation in [8], we
define the confluent Vandermonde matrix Vc as follows. First

(1.2)
{αj}n

j=1 are ordered so that equal nodes are contiguous, i.e.,

αi = αj (i < j) ⇒ αi = αi+1 = · · · = αj .

Define

(1.3) Vc = (f1(α1) f2(α2) · · · fn(αn)),

where the vector function fj(t) is defined recursively by

(1.4) fj(t) =

{
(1 t · · · tn−1)T

, if j = 1 or αj �= αj−1,
d
dxfj−1(t), otherwise,

where “ ·T ” is the transpose of a vector or matrix. As far as defining Vc is concerned,
αj can be real or complex. But in this paper, we shall focus on real αj . In what
follows, αj and Vc , as well as

αmax
def= max

j
|αj |,

are reserved for their assignments here.
(Optimal) condition numbers for real Vandermonde matrices have been sys-

tematically studied by Gautschi and his coauthor (see [7] and references therein),
and more recently by Tyrtyshnikov [12], Beckermann [2], and Li [10]. In this pa-
per, we shall establish three lower bounds on the �p-condition number κp(Vc ) ≡
‖Vc ‖p‖V −1

c ‖p in terms of n, or n and αmax and the interval [α, β] that contains
all nodes. In particular, we will show that for fixed kmax (the largest multiplicity
of distinct nodes), κp(Vc ) behaves no smaller than On((1 +

√
2 )n), where notation

an = On(bn) means c1n
d1 ≤ an/bn ≤ c2n

d2 for some constants c1, c2, d1, and d2.
Optimally conditioned confluent Vandermonde matrices can be much worse ill-

conditioned than optimally conditioned Vandermonde matrices. One extreme ex-
ample would be that all nodes are equal α1 = · · · = αn for which Vc is lower
triangular, and thus

κp(Vc ) ≥ (n − 1)! ∼
√

2π nn−1/2 e−n

by Stirling’s asymptotic formula [1, Page 18], and it becomes an equality for α1 =
· · · = αn = 0. While for optimally conditioned Vandermonde matrices, κp(V ) goes
to ∞ as fast as (1 +

√
2 )n modulo a factor nd for |d| ≤ 1 [2, 10].

The rest of this paper is organized as follows. A general lower bound on κp(Vc )
is established in Section 2, but it is not uniform. Uniform bounds for p = ∞ are
obtained in Section 3 for all real Vc and for Vc with nonnegative nodes. Finally we
present our concluding remarks in Section 4.

2. A general lower bound

Given 1 ≤ p ≤ ∞, the �p-norm of vector u = (µ1 µ2 · · ·µn) T is defined as

‖u‖p =

⎛⎝ n∑
j=1

|µj |p
⎞⎠1/p

,
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and ‖u‖∞ = limp→∞ ‖u‖p = maxj |µj |. The associated �p-operator norm of the
m × n matrix A is defined as

(2.1) ‖A‖p = max
u �=0

‖Au‖p

‖u‖p
.

It can be proved that ‖A‖p = ‖AT ‖p′ , upon noticing

‖A‖p = max
u �=0,v �=0

|vT Au|
‖v‖p′‖u‖p

,

where 1/p + 1/p′ = 1 (see also [9]).
Let [α, β] be the interval in which all αj lie.

Tn(t) = cos(n arccos t) for |t| ≤ 1,(2.2)

=
1
2

(
t +

√
t2 − 1

)n

+
1
2

(
t −

√
t2 − 1

)n

for |t| ≥ 1(2.3)

is the nth Chebyshev polynomial of the first kind. Define the nth translated Cheby-
shev polynomial Tn(x; ω, τ ) def= Tn(x/ω + τ ), where

ω =
β − α

2
> 0, τ = −β + α

β − α
.

Let ajn ≡ ajn(ω, τ ) be the coefficient of xj in Tn(x; ω, τ ), i.e.,

(2.4) Tn(x; ω, τ ) = annxn + an−1 nxn−1 + · · · + a1nx + a0n.

Define [10]

Sn,p(ω, τ ) =

⎛⎝ n∑
j=0

|ajn|p
⎞⎠1/p

.

Now we are ready to state our main theorem for the section.

Theorem 2.1. Assume that there are � distinct nodes αj, and let kmax be the
largest multiplicity of the distinct nodes. Then

(2.5) κp(Vc ) ≥ min
1≤k≤kmax

[
(n − k)!
(n − 1)!

]2

ωk−1 × max{�1/p′
, αn−1

max}
Sn−1,p′(ω, τ )

n1/p′ .

Proof. Inequality (2.5) is a consequence of Lemmas 2.1 and 2.3 below. �

For kmax = 1, i.e., � = n and k1 = · · · = kn = 1 (and thus Vc = V ), (2.5)
becomes one of the lower bounds for κp(V ) in [10]. The right-hand side of (2.5)
entails the explicit computation of Sn,p′(ω, τ ). It can also be estimated fairly well,
too, by

n−1/pSn−1,1(ω, τ ) ≤ Sn−1,p′(ω, τ ) ≤ Sn−1,1(ω, τ ),(2.6)


n/2�−1/pSn−1,1(ω, 0) ≤ Sn−1,p′(ω, 0) ≤ Sn−1,1(ω, 0),(2.7)

in connection with the explicit formulas for Sn−1,1(ω, τ ) for τ = 0 or |τ | ≥ 1 in [10].
Here 
ξ� is the smallest integer that is larger than ξ. The formulas are

(2.8) Sn−1,1(ω, 0) = Tn−1(ι/ω) ∼ 1
2

(
1
ω

+

√
1 +

1
ω2

)n−1

,
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where ι =
√
−1, and for α ≥ 0 (for which τ ≤ −1),

(2.9) Sn−1,1(ω, τ ) = Tn−1(|τ | + 1/ω) ∼ 1
2

⎡⎣(
1
ω

+ |τ |
)

+

√(
1
ω

+ |τ |
)2

− 1

⎤⎦n−1

.

Lemma 2.1. Assume that there are � distinct nodes αj. Then

‖Vc ‖p ≥ max
{

�1/p′
, αn−1

max

}
,(2.10)

‖Vc ‖p ≥

⎛⎝ n∑
j=1

α(j−1)p
max

⎞⎠1/p

.(2.11)

Proof. Let ej be the jth column of the n × n identity matrix In (or simply I if n
is clear from the context). Use ‖Vc ‖p ≥ ‖V T

c e1‖p′ and ‖Vc ‖p ≥ ‖V T
c en‖p′ to get

(2.10), and use ‖Vc ‖p ≥ maxj ‖V T
c ej‖p to get (2.11). �

Lemma 2.2. For 0 ≤ k ≤ n,

(2.12)
∣∣∣∣ d

dxk
Tn(x; ω, τ )

∣∣∣∣ ≤ [n(n − 1) · · · (n − k + 1)]2

ωk
for x ∈ [α, β].

Proof. It follows from Tn(x; ω, τ ) = Tn(x/ω + τ ) ≡ Tn(t) that

dk

dxk
Tn(x; ω, τ ) =

1
ωk

T (k)
n (t),

where t ≡ t(x) = x/ω+τ . It suffices to show that |T (k)
n (t)| ≤ [n(n−1) · · · (n−k+1)]2

for t ∈ [−1, 1] since t(x) maps x ∈ [α, β] to t ∈ [−1, 1]. By Markov’s inequality [5,
Page 233],

max
t∈[−1,1]

|T (k)
n (t)| ≤ (n − k + 1)2 max

t∈[−1,1]
|T (k−1)

n (t)|

≤ · · ·
≤ [n(n − 1) · · · (n − k + 1)]2 max

t∈[−1,1]
|Tn(t)|

= [n(n − 1) · · · (n − k + 1)]2,

as expected. �

Lemma 2.3. Under the conditions of Theorem 2.1,

(2.13) ‖V −1
c ‖p ≥ min

1≤k≤kmax

[
(n − k)!
(n − 1)!

]2

ωk−1 × Sn−1,p′(ω, τ )
n1/p′ .

Proof. For the sake of this proof, let the � distinct nodes have multiplicities
k1, k2, . . . , k�, respectively, where k1 + k2 + · · · + k� = n, and the first k1 αj ’s
are equal, the next k2 αj ’s are equal, and so on. Let v be the vector of
the coefficients of the translated Chebyshev polynomial Tn−1(x; ω, τ ), i.e., v =
(a0 n−1 a1 n−1 · · · an−1 n−1)

T . Then

V T
c v = (Tn−1(α1; ω, τ ) T ′

n−1(α1; ω, τ ) · · · T
(k1−1)
n−1 (α1; ω, τ ) · · · · · ·)

T
,
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which yields, by Lemma 2.2, for 1 ≤ p′ < ∞

‖V T
c v‖p′

p′ ≤
�∑

j=1

(
1p′

+
[
(n − 1)2

ω

]p′

(2.14)

+ · · · +
[
[(n − 1)(n − 2) · · · (n − kj + 1)]2

ωkj−1

]p′)

≤
�∑

j=1

kj ×
(

max
1≤k≤kj

[
(n − 1)!
(n − k)!

]2 1
ωk−1

)p′

≤ n ×
(

max
1≤k≤kmax

[
(n − 1)!
(n − k)!

]2 1
ωk−1

)p′

,(2.15)

which gives

(2.16) ‖V T
c v‖p′ ≤ n1/p′ × max

1≤k≤kmax

[
(n − 1)!
(n − k)!

]2 1
ωk−1

.

This is proved so far for 1 ≤ p′ < ∞, but it can be verified that (2.16) holds for
p′ = ∞, too. Therefore, we have

‖V −T
c ‖p′ = max

u

‖u‖p′

‖V T
c u‖p′

≥ ‖v‖p′

‖V T
c v‖p′

≥ min
1≤k≤kmax

[
(n − k)!
(n − 1)!

]2

ωk−1 × Sn−1,p′(ω, τ )
n1/p′ ,

as was to be shown. �

In general, we may use (2.14), instead of (2.15), in estimating ‖V −1
c ‖p. Doing

so, however, will lead to a more complicated lower bound on κp(Vc ).

Remark 2.1. Lemma 2.3 is made possible by Lemma 2.2 which is proved with the
help of Markov’s inequality. Another classical inequality for the same purpose is
Bernstein’s inequality [5, Page 233], using which we can obtain the following. For
0 ≤ k ≤ n, if α < a

def= minj αj < b
def= maxj αj < β, then

(2.17)
∣∣∣∣ d

dxk
Tn(x; ω, τ )

∣∣∣∣ ≤ n(n − 1) · · · (n − k + 1)[
ω

√
1 −

(
max{β−b, a−α}

ω

)2
]k

for x ∈ [α, β].

This inequality improves (2.12) in the numerator part but has complications in the
denominator, and also it requires the interval [α, β] to be (slightly) larger than the
smallest interval containing all nodes. This can be bad because larger [α, β] will
weaken the effectiveness of Sn,p′(ω, τ ) in the later bounds on κp(Vc ); for example
Sn,p′(ω, τ ) is decreasing in ω [10].

3. Two uniform bounds

We present two theorems here, one for any real Vc and one for Vc with nonnega-
tive nodes. Their proofs will be given later after two lemmas. Again let 1 ≤ p ≤ ∞
and 1/p + 1/p′ = 1.
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Theorem 3.1. Under the conditions of Theorem 2.1, if

(3.1) kmax − 1 ≤ n − 1√
2

[
1 − (1 +

√
2 )−2n+2

]
∼ n − 1√

2
,

then

κp(Vc ) ≥
[
(n − kmax)!

(n − 1)!

]2
Sn−1,1(1, 0)

n1/p′ 
n/2�1/p

∼
[
(n − kmax)!

(n − 1)!

]2 [
1 +

√
2
]n−1

n1/p′ 
n/2�1/p
.

Theorem 3.2. Under the conditions of Theorem 2.1, if all αi ≥ 0 and

(3.2) kmax − 1 ≤ n − 1√
2

[
1 − (1 +

√
2 )−4(n−1)

]−1

∼ n − 1√
2

,

then

κp(Vc ) ≥
[
(n − kmax)!

(n − 1)!

]2 1
2kmax−1

Sn−1,1(1/2, 1)
n

∼
[
(n − kmax)!

(n − 1)!

]2 1
2kmax−1

[
1 +

√
2
]2(n−1)

n
.

Lemma 3.1. Let j ≥ 0 and m ≥ 1. ρjSm,1(ρ, 0) is decreasing in ρ for 0 ≤ ρ ≤ 1 if

(3.3) j ≤ m√
2

[
1 − (1 +

√
2 )−2m

]
∼ m√

2
.

Proof. We claim that under inequality (3.3), d
dρρjSm,1(ρ, 0) ≤ 0 for 0 ≤ ρ ≤ 1. To

this end, we notice that

d

dρ
ρjSm,1(ρ, 0) = jρj−1Sm,1(ρ, 0) + ρj d

dρ
Sm,1(ρ, 0).

Now for 0 ≤ ρ ≤ 1 and by (2.8), we have

Sm,1(ρ, 0) ≤ 1
2

[
1
ρ

+
√

1 +
1
ρ2

]m [
1 + ε−2m

]
,

− d

dρ
Sm,1(ρ, 0) ≥ m

2

[
1
ρ

+
√

1 +
1
ρ2

]m−1 [
1 − δ−2m

]
×

[
1
ρ2

+
1

ρ2
√

1 + ρ2

]
,
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where ε = 1 +
√

2 and δ = 0 for even m, and ε = 0 and δ = 1 +
√

2 for odd m.
Therefore, for ρ ≤ 1,

d
dρρjSm,1(ρ, 0)

m ρj−1Sm,1(ρ, 0)
=

j

m
+

ρ d
dρSm,1(ρ, 0)

m Sm,1(ρ, 0)

≤ j

m
−

ρ

[
1
ρ2 + 1

ρ2
√

1+ρ2

]
1
ρ +

√
1 + 1

ρ2

1 − δ−2m

1 + ε−2m

=
j

m
− 1√

1 + ρ2

1 − δ−2m

1 + ε−2m

≤ j

m
− 1√

2
1 − δ−2m

1 + ε−2m

≤ j

m
− 1√

2

[
1 − (1 +

√
2 )−2m

]
≤ 0

upon using (3.3). �

Lemma 3.2. Let j ≥ 0, γ ≥ 1, and m ≥ 1. For j satisfying (3.3) and ρ > 0,

ρj max{γ, ρm}Sm,1(ρ, 0) ≥ Sm,1(1, 0).

Proof. Let Φ1 = ρj ×γ Sm,1(ρ, 0) and Φ2 = ρj ×ρm Sm,1(ρ, 0). Then max{Φ1, Φ2}
is Φ1 for ρ ≤ γ1/m and Φ2 for ρ ≥ γ1/m. Φ2 is increasing in ρ for ρ > 0 because
ρmSm,1(ρ, 0) is a polynomial in ρ with nonnegative coefficients and thus increasing
in ρ for ρ > 0. So

max{Φ1, Φ2} ≥ Φ2 ≥ Sm,1(1, 0) for ρ ≥ 1.

For 0 ≤ ρ ≤ 1, Φ1 is decreasing in ρ by Lemma 3.1, and thus

max{Φ1, Φ2} ≥ Φ1 ≥ Sm,1(1, 0) for ρ ≤ 1.

This completes the proof. �

Proof of Theorem 3.1. Setting −α = β = αmax in (2.5), we have, upon using (2.7),

κp(Vc ) ≥ min
1≤k≤kmax

[
(n − k)!
(n − 1)!

]2

αk−1
max × max{�1/p′

, αn−1
max}

Sn−1,1(αmax, 0)
n1/p′ 
n/2�1/p

≥
[
(n − kmax)!

(n − 1)!

]2 1
n1/p′ 
n/2�1/p

min
1≤k≤kmax

Φ̃,(3.4)

where Φ̃ = αk−1
max × max{�1/p′

, αn−1
max}Sn−1,1(αmax, 0). Apply Lemma 3.2 with j =

k − 1, m = n − 1, γ = �1/p′
, and ρ = αmax to get Φ̃ ≥ Sn−1,1(1, 0), as needed. �

Proof of Theorem 3.2. Setting 0 = α < β = αmax in (2.5), we have, upon using
(2.6),

κp(Vc ) ≥ min
1≤k≤kmax

[
(n − k)!
(n − 1)!

]2 [αmax

2

]k−1

× max{�1/p′
, αn−1

max}
Sn−1,1(αmax/2, 1)

n

≥
[
(n − kmax)!

(n − 1)!

]2 1
n2kmax−1

min
1≤k≤kmax

Ψ̃,
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where
Ψ̃ = αk−1

max × max{�1/p′
, αn−1

max}Sn−1,1(αmax/2, 1).

It can be verified by (2.3), (2.8), and (2.9) that

Sn−1,1(αmax/2, 1) = S2(n−1),1(
√

αmax, 0).

Therefore

Ψ̃ = (
√

αmax)2(k−1) × max
{

�1/p′
, (
√

αmax)2(n−1)
}

S2(n−1),1(
√

αmax, 0)

≥ S2(n−1),1(1, 0),

upon using Lemma 3.2 with j = 2(k − 1), m = 2(n − 1), γ = �1/p′
, and

ρ =
√

αmax. �

4. Concluding remarks

We have obtained three lower bounds on the condition number κp(Vc ) of a real
confluent Vandermonde matrix Vc . Two of them are uniform in the sense that they
depend on n, the dimension of Vc only, while the other one is more general, as is the
function of n and αmax and the interval [α, β] that contains all αj . These bounds
grow exponentially for any fixed kmax, much as expected. While it is not clear
in general if (any of) our bounds are asymptotically optimal, in contrast to those
for Vandermonde matrices by Beckermann [2] and recently by the author [10], our
bounds are unlikely to be asymptotically optimal if kmax also grows, e.g., linearly
in n. This is illustrated by the extreme example kmax = n, as we commented in
Section 1.

We have focused on real confluent Vandermonde matrices here. It is conceiv-
able that there would be much better conditioned complex confluent Vandermonde
matrices or confluent Vandermonde-like matrices. This is partly an intuition one
might get from that although real Vandermonde matrices are very ill-conditioned
[7, 2, 10, 12], there exist very well-conditioned complex Vandermonde matrices and
Vandermonde-like matrices [6, 11]. We plan to investigate this issue in future work.
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