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NUMERICAL DIFFERENTIATION
FROM A VIEWPOINT OF REGULARIZATION THEORY

SHUAI LU AND SERGEI V. PEREVERZEV

Abstract. In this paper, we discuss the classical ill-posed problem of nu-
merical differentiation, assuming that the smoothness of the function to be
differentiated is unknown. Using recent results on adaptive regularization of
general ill-posed problems, we propose new rules for the choice of the stepsize
in the finite-difference methods, and for the regularization parameter choice in
numerical differentiation regularized by the iterated Tikhonov method. These
methods are shown to be effective for the differentiation of noisy functions,
and the order-optimal convergence results for them are proved.

1. Introduction

How do we approximate a derivative y′(t) of a smooth function y(t), t ∈ [0, 1]?
This question is discussed extensively in computational mathematics, and there
are many different formulae for numerical differentiation. At the same time, the
problem of numerical differentiation is known to be ill-posed [4] in the sense that
a small perturbation in the values of y(t) may lead to large errors in the computed
derivative. This fact has the unpleasant consequence that the function yδ(t), which
differs imperceptibly from y(t), has a derivative which differs vastly from y′(t).
Since in practice data will almost never be exactly available, one has to be aware
of numerical instabilities when a noisy observation yδ instead of y is known. In this
case the perturbation δ(t) = y(t)− yδ(t) represents measurement error or rounding
error and can be a nondifferentiable function having a quite erratic nature. Hence,
in order to approximate y′(t) in a stable way, regularization methods should be
applied.

These methods fall into two categories: methods which use noisy data yδ(t)
in a nondiscretized form, and methods based only on a finite amount of discrete
information regarding yδ(t). The well-known forward difference approximation

y′(t) ≈ yh
δ (t) =

yδ(t + h) − yδ(t)
h

(1.1)

is the simplest example of the method from the first category. Using (1.1) for re-
construction y′(t) one presupposes that the value yδ(t+h), for example, is available
for any sufficiently small h. Because as it has been observed in [6], [22], difference
schemes may construct stable regularizing algorithms only if a stepsize h is chosen
properly. An example of the method from the second category can be found in [7],
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where a derivative S′
n(t) of a natural cubic spine Sn(t) solving the minimization

problem

1
n − 1

n−1∑
i=1

(yδ(ti) − Sn(ti))2 + α ‖ S′′
n ‖2→ min(1.2)

is taken as an approximation for y′(t). To construct S′
n(t) one should know only

the values yδ(ti) at the points {ti}n
i=0 ⊂ [0, 1], t0 = 0, tn = 1, and choose the

regularization parameter α in (1.2).
These examples allow us to see a common distinguishing feature of numeri-

cal differentiation methods from both above-mentioned categories. Namely, these
methods always have some parameter that should be used for problem regulariza-
tion. For example, a stepsize h plays the role of regularization parameter for the
method (1.1). A number of regularization parameter choice techniques have been
developed for numerical differentiation. They yield satisfactory results when the
smoothness of the function to be differentiated is given very precisely [1], [2], [22],
[26]. However, in applications this smoothness is usually unknown, as one can see
it from the following example.

Example 1.1. In the simplest one-dimensional case the cooling of hot glass is
modelled by the parabolic system of the form

∂u

∂t
=

∂2u

∂x2
, u(0, x) = uin(x),

∂u

∂x
(t, 0) = β0(t),

∂u

∂x
(t, 1) = β1(t),(1.3)

(t, x) ∈ (0, T ] × [0, 1],

and one is interested in determining the heat exchange coefficients β0,β1 by means
of measurements of the boundary temperature. Assume that we have only a noisy
measurement uδ

0(t),uδ
1(t) of the boundary temperature u(t, 0),u(t, 1) on the whole

time interval [0, T ], where δ is a small parameter used for measuring the noise
level. Such data allow us to determine an approximate distribution u = uδ(t, x) of
the temperature u = u(t, x) in the whole interval [0, 1] as a solution of the initial
boundary-value problem with a noisy Dirichlet condition:

∂u

∂t
=

∂2u

∂x2
, u(0, x) = uin(x), u(t, 0) = uδ

0(t), u(t, 1) = uδ
1(t),(1.4)

(t, x) ∈ (0, T ] × [0, 1].

From the unique solvability of (1.3), (1.4) it follows that the solution u(t, x) of
(1.3) corresponding to the “true” coefficients β0,β1 is the same as the solution of
(1.4) with “pure” boundary data u(t, 0),u(t, 1) instead of uδ

0,u
δ
1. In view of the

well-posedness of (1.4) the deviation of u(t, x) from uδ(t, x) is of the same order as
the noise level. Then without loss of generality we can assume that ‖ u − uδ ‖≤ δ.

As soon as uδ has been determined from (1.4), the heat exchange coefficients can
be approximated as follows:

β0(t) ≈
uδ(t, h) − uδ

0(t)
h

, β1(t) ≈
uδ

1(t) − uδ(t, 1 − h)
h

.(1.5)

Keeping in mind that the values uδ(t, h),uδ(t, 1−h) are available for any h ∈ (0, 1),
approximation (1.5) can be considered as a numerical differentiation method of the
first category, because it uses the noisy data uδ(t, x) in a nondiscretized form.
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At the same time, one does not know a priori the smoothness of the function
u(t, x) to be differentiated. This smoothness depends on the so-called compatibility
conditions

duin

dx
(0) = β0(0),

duin

dx
(1) = β1(0).(1.6)

If they are not satisfied, then ∂u
∂x (t, ·) may be discontinuous for t = 0. On the other

hand, one cannot check (1.6), because β0(t) and β1(t) are the only functions that
should be recovered. Thus, the regularization parameter h in (1.5) should be chosen
without knowledge of the smoothness of function u(t, x) to be differentiated.

Surprisingly enough, in the case of unknown smoothness we cannot find any re-
sults providing us with the recipe for regularization parameter choice for numerical
differentiation. Only in the paper [7] the discrepancy principle for the choice of
the regularization parameter α in (1.2) has been discussed. This principle is usu-
ally applied in the case of unknown smoothness, but its efficiency for numerical
differentiation has been proved in [7] under the assumption that the function to be
differentiated is two times differentiable.

Thus, there is a gap in the analysis of such an important computational procedure
as numerical differentiation, and the goal of the present paper is to fill it out. It
will be done on the basis of recent results of regularization theory [15]–[17], [20].

In Section 2 we discuss the case of nondiscretized noisy data and suggest an
a posteriori rule for the choice of the stepsize h in the finite-difference methods.
Numerical differentiation with discrete noisy information is discussed in Section
3. In this section we make use of the adaptive regularization strategy from [16]
for solving the corresponding Volterra equation, which is an alternative to the
finite-difference methods. Numerical experiments supporting theoretical results are
presented in both sections. Section 4 contains some concluding remarks.

2. Regularized finite-difference methods

2.1. Adaptive choice of the stepsize. Within the framework of the finite-differ-
ence method Dl

h, l ∈ N , the approximate value of the derivative y′ at the point
t ∈ (0, 1) is calculated as

y′(t) ≈ Dl
hy(t) = h−1

l∑
j=−l

al
jy(t + jh),

where al
j are some fixed real numbers, and a stepsize h is so small that t+jh ∈ (0, 1)

for j = −l,−l+1, . . . , 0, . . . , l. The last restriction means that the distance between
point t and the boundary points of the interval should be sufficiently large. If instead
of y only yδ ∈ C[0, 1] is available such that

‖ y − yδ ‖
C[0,1]≤ δ,(2.1)

then the method Dl
h produces the approximation

Dl
hyδ(t) = h−1

l∑
j=−l

al
jyδ(t + jh),

and its error can be estimated as

|y′(t) − Dl
hyδ(t)| ≤ |y′(t) − Dl

hy(t)| + |Dl
hy(t) − Dl

hyδ(t)|,(2.2)



1856 SHUAI LU AND SERGEI V. PEREVERZEV

where the first term on the right-hand side is the consistency error of Dl
h, whereas

the second term is a propagation error. It can be bounded as

|Dl
hy(t) − Dl

hyδ(t)| ≤ δ

h

l∑
j=−l

|al
j |,(2.3)

and under the assumption (2.1) this bound is the best possible one. Moreover,
it does not depend on the smoothness of the function y, which is assumed to be
unknown.

On the other hand, the consistency error crucially depends on the smoothness of
the function to be differentiated . Usually, for properly chosen coefficients al

j one
has the bound

|y′(t) − Dl
hy(t)| ≤ crh

r−1 ‖ y(r) ‖C[0,1],(2.4)

for the consistency error provided that y ∈ Cr[0, 1].
At the same time method Dl

h should be robust in the sense that its consistency
error should converge to zero with h → 0 even for function y having very modest
smoothness properties. It can be seen from the following example.

Example 2.1. For l = 1, a1
−1 = 0, a1

0 = −1, a1
1 = 1 the finite-difference method

Dl
h gives us the well-known forward difference approximation (1.1). It satisfies (2.4)

with r = 2 provided that y ∈ C2[0, 1], but for y ∈ Cr[0, 1], r > 2, the order O(h)
cannot be improved in general. On the other hand, for y ∈ C1[0, 1] the consistency
error of the forward difference approximation can be estimated as follows:∣∣∣∣y′(t) − y(t + h) − y(t)

h

∣∣∣∣ =
1
h

∣∣∣∣∣
∫ t+h

t

{y′(t) − y′(τ )}dτ

∣∣∣∣∣
≤ 1

h

∫ t+h

t

|y′(t) − y′(τ )|dτ ≤ ω(y′; h),

where the quantity

ω(f ; h) := sup
t,τ :

|t−τ|≤h

|f(t) − f(τ )|

is known in function theory as a modulus of continuity of a real-valued function f .
It is well known that for y′ ∈ C[0, 1] (i.e., y ∈ C1[0, 1]) ω(y′; h) → 0 as h → 0. It
means that the consistency error of the forward difference approximation converges
to zero for any continuously differentiable function.

As Example 2.1 shows, the standard finite-difference methods have in common
that their consistency error is decreasing for decreasing h. Therefore, in general it
is natural to assume that there exists a nondecreasing function ψ(h) = ψ(y; Dl

h; h)
such that 0 = ψ(0) ≤ ψ(h) and

|y′(t) − Dl
hy(t)| ≤ ψ(h).

Combining it with (2.3) one arrives at the bound

|y′(t) − Dl
hyδ(t)| ≤ ψ(h) + dl

δ

h
,(2.5)
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where

dl =
l∑

j=−l

|al
j |.

Suppose we are given a finite set HN of possible stepsizes h = hi, i = 1, 2, . . . , N ,

δ = h1 < h2 < · · · < hN < 1,

and the corresponding set of the approximate values Dl
hi

yδ(t) of the derivative
produced by the finite-difference method Dl

h for h = hi, i = 1, 2, . . . , N .
As in [17], a nondecreasing function ψ : [0, 1] → [0, 1] will be called admissible for

t ∈ (0, 1), y ∈ C1[0, 1], HN , Dl
h if it satisfies (2.5) for any h ∈ HN and ψ(δ) < dl.

Let Ψt(y) = Ψt(y, HN , Dl
h) be the set of all such admissible functions. In view

of (2.5) the quantity

eδ(y, HN , Dl
h) = inf

ψ∈Ψt(y)
min

h∈HN

{ψ(h) + dl
δ

h
}

is the best possible accuracy that can be guaranteed for approximation y′(t) within
the framework of the method Dl

h under assumption (2.1). We will now present a
principle for the adaptive choice of the stepsize h+ ∈ HN that allows us to reach
this best possible accuracy up to multiplier 6ρ, where

ρ = ρ(HN ) = max
i=1,2,...,N

hi+1

hi
.

As we will see, such h+ can be chosen without any a priori information concerning
smoothness y ∈ C1[0, 1]. The idea of our adaptive principle has its origin in the
paper [11], devoted to statistical estimation of function y(t) with unknown Hölder
smoothness from direct observation blurred by Gaussian white noise. In the context
of general ill-posed problems this idea has been realized in [5], [25], [8], [15]–[17],
[20]. We use this idea for the adaptive choice of the stepsize in finite-difference
methods because the structure of the error estimate (2.5) is very similar to the loss
function of statistical estimation, where some parameter always controls the trade-
off between the bias and the variance of the risk. If, as is usual for statisticians, we
will treat the terms in the right-hand side of (2.5) as bias and variance, respectively,
then the idea is to choose the maximal h for which the “bias” ψ(h) is still dominated
by the “variance” dl

δ
h .

Let Hδ
N (Dl

h) be the set of all hi ∈ HN such that for any hj ≤ hi, hj ∈ HN ,

|Dl
hi

yδ(t) − Dl
hj

yδ(t)| ≤ 4dl
δ

hj
, j = 1, 2, . . . , i.

The stepsize h+ we are interested in is now defined as

h+ = max{hi ∈ Hδ
N (Dl

h)}.
We stress that the admissible functions ψ ∈ Ψt(y), as well as any other information
concerning the smoothness of the function to be differentiated, are not involved
in the process of the choice of h+. We can now formulate the main result of this
section.

Theorem 2.1. For any y ∈ C1[0, 1]

|y′(t) − Dl
h+

yδ(t)| ≤ 6ρeδ(y, HN , Dl
h).
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Proof. Let ψ ∈ Ψt(y, HN , Dl
h) be any admissible function and let us temporarily

introduce the stepsizes

hj0 = hj0(ψ) = max{hj ∈ HN : ψ(hj) ≤ dl
δ

hj
},

hj1 = hj1(ψ) = argmin{ψ(hj) + dl
δ

hj
, hj ∈ HN , j = 1, 2, . . . , N}.

Observe that

dlδ

hj0

≤ ρ(ψ(hj1) +
dlδ

hj1

),(2.6)

because either hj1 ≤ hj0 in which case

dlδ

hj0

≤ dlδ

hj1

< ρ(ψ(hj1) +
dlδ

hj1

), ρ > 1,

or hj0 < hj0+1 ≤ hj1 . But then, by the definition of hj0 , it holds true that dlδ
hj0+1

<

ψ(hj0+1) and

dlδ

hj0

=
hj0+1

hj0

dlδ

hj0+1
≤ ρψ(hj0+1) ≤ ρψ(hj1) < ρ(ψ(hj1) +

dlδ

hj1

).

We now show that hj0 ≤ h+. Indeed, for any hj ≤ hj0 , hj ∈ HN ,

|Dl
hj0

yδ(t) − Dl
hj

yδ(t)| ≤ |y′(t) − Dl
hj0

yδ(t)| + |y′(t) − Dl
hj

yδ(t)|(2.7)

≤ ψ(hj0) + dl
δ

hj0

+ ψ(hj) + dl
δ

hj

≤ 2ψ(hj0) + dl
δ

hj0

+ dl
δ

hj

≤ 3dl
δ

hj0

+ dl
δ

hj
≤ 4dl

δ

hj
.

It means that hj0 ∈ Hδ
N (Dl

h) and

hj0 ≤ h+ = max{hi ∈ Hδ
N (Dl

h)}.

Using this and (2.6), one can continue as follows:

|y′(t) − Dl
h+

yδ(t)| ≤ |y′(t) − Dl
hj0

yδ(t)| + |Dl
hj0

yδ(t) − Dl
h+

yδ(t)|

≤ ψ(hj0) + dl
δ

hj0

+ 4dl
δ

hj0

≤ 6dl
δ

hj0

≤ 6ρ(ψ(hj1) + dl
δ

hj1

)

≤ 6ρ min
h∈HN

{ψ(h) + dl
δ

h
}.

This estimation holds true for the arbitrary admissible function ψ ∈ Ψt(y). There-
fore, we conclude that

|y′(t) − Dl
h+

yδ(t)| ≤ 6ρ inf
ψ∈Ψt(y)

min
h∈HN

{ψ(h) + dl
δ

h
}.

The proof is complete. �
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Remark 2.1. In view of (2.7) the rule for the choice h+ can also be formulated in
one of the following forms:

h+ = max{hj ∈ HN : |Dl
hj

yδ(t) − Dl
hi

yδ(t)| ≤ dlδ(
3
hj

+
1
hi

), i = 1, 2, . . . , j},

h+ = max{hj ∈ HN : |Dl
hj

yδ(t) − Dl
hi

yδ(t)| ≤ 2dlδ(
1
hj

+
1
hi

), i = 1, 2, . . . , j}.

It is easy to check that for these rules Theorem 2.1 is still valid. On the other hand,
in a practical test, these rules did sometimes produce more accurate results.

2.2. Numerical test. We test our rule for the adaptive choice of the stepsize on
the function

y(t) = |t|7 + |t − 0.25|7 + |t − 0.5|7 + |t − 0.75|7 + |t − 0.85|7 ∈ C6[0, 1].(2.8)

The numerical values yδ(t+ jh) used in the test are the results of a simple program
in which the perturbation y(t + jh)− yδ(t + jh) ∈ [−δ, δ], δ = 0.01 · y(0.5) ∼ 10−5,
is produced by a uniform random number generator.

The function (2.8) was used for numerical experiments in the paper [21], where
several new and rather sophisticated finite-difference methods were proposed. We
borrow two of them. Namely, D2

h with the coefficients

a2
0 = 0, a2

1 = a2
−1 =

2
3
, a2

2 = −a2
−2 = − 1

12
,

and D4
h with the coefficients

a4
0 = 0, a4

1 = a4
−1 =

6528
8760

, a4
2 = −a4

−2 = −1272
8760

,

a4
3 = −a4

−3 =
128
8760

, a4
4 = −a4

−4 =
3

8760
.

Moreover, we also use well-known centered difference approximation D1
h with the

coefficients a1
0 = 0, a1

1 = −a1
−1 = 1

2 . The above-mentioned formulae meet (2.4)
with a different value r. Namely, for D1

h one has

D1
hy(t) = y′(t) +

y(3)(θ)
2

h2,

and in [21] it has been shown that

D2
hy(t) = y′(t) − y(6)(θ)

30
h5, D4

hy(t) = y′(t) +
4

511
y(8)(θ)h7,

for some θ ∈ (0, 1). As to the stability problem due to noise error propagation,
this was not discussed in [21]. As the same time, in Remark 5.1 of [21] it has
been suggested that according to the regularity of the function, the corresponding
formula should be used for the estimate of its derivative, because for nonsmooth
functions like (2.8) all the higher order formulae produce even worse results. In
accordance with this suggestion the method D2

h with h = 0.1 has been used in [21]
for estimating y′(0.5) = 0.09650714062500. Obtained accuracy is 0.001071 ∼ 10−3.

In our test we applied the above-mentioned formulae to noisy data yδ(t + jh)
with the stepsizes h = hi = 0.02 · i, i = 1, 2, . . . , and the first rule from Remark 2.1
was used for determining h+. For the method D2

h it gave h+ = 0.12, and the value
y′(0.5) was estimated with error 0.001885 ∼ 10−3, i.e., for noisy data the same
order of accuracy as in [21] was obtained. It is perhaps also instructive to see that
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for the stepsize h = 0.2, for example, the error is 0.016934, i.e., almost ten times
larger.

For the methods D1
h and D4

h the results are even better. Namely, D1
h, h = h+ =

0.06, and D4
h, h = h+ = 0.2, give the value y′(0.5) with errors −5.3209 · 10−4

and −2.44106 · 10−4, respectively. These tests do not support the suggestion from
Remark 5.4 of [21] that in practice only the lower order formulae should be used
so that no unexpected errors could occur. But from a viewpoint of regularization
theory the results of the tests are not so surprising, because the order of some finite-
difference method Dl

h (i.e., the highest possible r in (2.4)) can be interpreted as a
qualification of the regularization method based on Dl

h, and, as it is well known
(see, for example, [15]), if the regularization parameter (i.e., stepsize h) is properly
chosen, then the higher the qualification of the method is, the better the results
that can be obtained.

Another interesting observation is that in the considered case D1
h+

and D4
h+

give
the same order of accuracy, 10−4. It also is in good agreement with the theory,
because function (2.8) belongs to Cr[0, 1] for r = 6, and the best possible order of
accuracy that can be guaranteed for such functions under the noise level δ ∼ 10−5

is δ
r−1

r = δ
5
6 ∼ 10−4. Thus, in the considered case both methods can realize the

best order of accuracy provided that the stepsize is chosen properly.
Note that for each specific y and yδ the best possible stepsize hideal ∈ HN could

be defined as

hideal = arg min{|y′(t) − Dl
hi

yδ(t)|, hi ∈ HN , i = 1, 2, . . .N}.

Of course, such hideal is not numerically feasible. Our next test shows how far h+

can be from this ideal stepsize.
Consider y(t) = sin(t−0.4)/(t−0.4) and simulate noisy data in such a way that

yδ(t ± jh) = y(t ± jh) ± (−1)jδ, δ = 10−5. We use a centered difference approxi-
mation D1

h defined above. Then for t = 0.5 and H15 = {0.02 · i, i = 1, 2, . . . , 15},
hideal = 0.16, h+ = 0.28. On the other hand, the error of the method D1

h with
h = hideal is 1.47654 ·10−4, while for h = h+ D1

h approximate y′(0.5) with the error
2.96007 · 10−4. As one can see, in considered case h+ differs from hideal. Neverthe-
less, D1

h gives the accuracy of the same order as a finite-difference method with the
ideal stepsize.

3. Numerical differentiation with discrete noisy information

3.1. Setting of the problem. Suppose y(t) is a smooth function that has at least
one square integrable derivative on the interval [0, 1], i.e., y ∈ W 1

2 (0, 1). Assume
that noisy samples yε

i of the values y(ti) are known at the points of the grid σ =
{0 = t0 < t1 < · · · < tn = 1}. Let |σ| = max{ti − ti−1, i = 1, 2, . . . , n} be the mesh
size of the grid and suppose

|y(ti) − yε
i | ≤ ε, i = 0, 1, 2, . . . , n,(3.1)

where ε is a known level of noise in the data. We are interested in finding an
approximation of y′(t) from the given data {yε

i}.
At this point we note that in the situation considered the use of finite-difference

methods discussed in Section 2 may not be very satisfactory since the values yδ(t+
jh) may not be available for all desired stepsizes h.
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Therefore, one usually takes an approach discussed, for example, in [4, 19, 22],
and rewrites the numerical differentiation of a smooth function y as a Volterra
problem

Ax(t) :=
∫ t

0

x(τ )dτ = y(t), 0 ≤ t ≤ 1.(3.2)

Below we assume that

y(0) = yε
0 = 0,(3.3)

i.e., the initial data are known exactly. Then it is clear that x(t) = y′(t) is a unique
solution of (3.2).

On the other hand, since only the noisy samples {yε
i} are available, one has an

equation

Ax = y, ‖y − yδ‖L2 ≤ δ,(3.4)

which is exactly the problem to be solved, where yδ and A are given and x and
y are unknown. If the grid σ is fixed, then, as it is well known (see, for example,
[13]), the best possible order of accuracy that can be guaranteed for the recovery
of function y ∈ W 1

2 from a noisy sample {yε
i} is O(|σ|+ ε). This optimal order can

be realized by the piecewise linear interpolation

Sσ({yε
i}; t) =

n∑
i=1

bσ
i (t)yε

i ,

where

bσ
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t−ti−1
ti−ti−1

, t ∈ [ti−1, ti],

ti+1−t
ti+1−ti

, t ∈ [ti, ti+1], i = 1, 2, . . . , n − 1,

0, t /∈ [ti−1, ti+1],

bσ
n(t) =

⎧⎪⎨
⎪⎩

t−tn−1
tn−tn−1

, t ∈ [tn−1, tn],

0, t /∈ [tn−1, tn].

Indeed,

‖y − Sσ({yε
i}; ·)‖L2 ≤ ‖y − Sσ({y(ti)}; ·)‖L2 + ‖

n∑
i=1

bσ
i (·)(y(ti) − yε

i )‖L2

≤ c|σ|‖y′‖L2 + ε.

It means that yδ and δ can be chosen in (3.4) as

yδ(t) = Sσ({yε
i}; ·), δ = d0(ε + |σ|),(3.5)

where d0 is some designed parameter (constant) that can be fixed using any a priori
estimation for ‖y′‖L2 , or assuming |σ| to be so small that ‖y′‖L2 |σ| can be neglected
compared to ε.

Several regularization methods can be applied to numerical differentiation treated
as an ill-posed problem (3.4), (3.5). For example, it has been observed in [22] that
the operator A from (3.4) acts in the Hilbert space L2(0, 1) as a monotone operator,
i.e., ∀x ∈ L2(0, 1), 〈Ax, x〉 ≥ 0, where 〈·, ·〉 is the standard inner product in L2(0, 1).
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This observation allows us to use Lavrentiev regularization, as has been suggested
in [12, 24] for ill-posed operator equations with monotone operators. Moreover,
in [22] a regularization method for solving (3.4) as a special case of a nonlinear
ill-posed problem with monotone operators has been proposed, and its convergence
for δ → 0 has been proved. But these methods as well as any other regularization
techniques are only numerically feasible after appropriate discretization. On the
other hand, a general discretization strategy for linear ill-posed problems has been
recently discussed in [16]. In the next subsection we apply the results from [16] to
the numerical differentiation problem (3.4), (3.5). It will allow us to construct a
simple numerical scheme which automatically adapts to any unknown smoothness
of the function to be differentiated.

3.2. Discretized Tikhonov regularization for numerical differentiation.
Tikhonov regularization and its iterated version are probably the most widely
known regularization techniques. Therefore, we restrict ourselves to the analysis of
these methods.

The Tikhonov method for a noisy linear equation (3.4) consists, it will be re-
called, in determining the regularized approximation xδ

α as a unique solution of the
equation

αxδ
α + A∗Axδ

α = A∗yδ,(3.6)

where α is a positive regularization parameter.
Within the framework of the iterated Tikhonov method of order p the regularized

approximation xδ
α,p is determined by the recursion

αxδ
α,l + A∗Axδ

α,l = αxδ
α,l−1 + A∗yδ,(3.7)

l = 1, 2, . . . , p , xδ
α,0 = 0, xδ

α,1 = xδ
α,

i.e., the equation of the form (3.6) should be solved p times.
To discretize the equations (3.6), (3.7) one can use a Galerkin method based,

for example, on the trial space of piecewise linear functions Vm+1 = span{bm
i }m

i=0,
where

bm
i (t) = bσm

i (t), i = 1, 2, . . . , m, σm =
{

i

m

}m

i=0

, bm
0 (t) = bm

m(1 − t),

and bσ
i are defined above. Then the Galerkin approximation xδ

α,l,m of xδ
α,l has the

form

xδ
α,l,m(t) =

m∑
i=0

zl
i bm

i (t),(3.8)

and should solve the variational problem

〈v, αxδ
α,l,m + A∗Axδ

α,l,m − αxδ
α,l−1,m − A∗yδ〉 = 0(3.9)
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for all v ∈ Vm+1. It is convenient to rewrite (3.9) as the following system of linear
algebraic equations with respect to unknown coefficients zl

i from (3.8):

α
m∑

i=0

zl
i〈bm

i , bm
j 〉 +

m∑
i=0

zl
i〈Abm

i , Abm
j 〉

= α
m∑

i=0

zl−1
i 〈bm

i , bm
j 〉 + 〈Abm

j , yδ〉,

j = 0, 1, . . . , m, l = 1, 2, . . . , p, z0
i = 0, i = 0, 1, . . . , m.

(3.10)

Keeping in mind that bm
i and yδ are piecewise linear functions, the primitives Abm

j

as well as the entries of the associated stiffness matrix and of the right-hand side
of (3.10) can be computed exactly. Moreover, Abm

i , 〈Abm
i , Abm

j 〉, 〈bm
i , bm

j 〉 can be
precomputed in advance.

Thus, the numerical scheme (3.8), (3.10) can be easily realized, and the main
question now is connected with the choice of the discretization parameter m and
the regularization parameter α.

In principle, one could choose the regularization parameter α following the ap-
proach described in Section 2, provided the error ‖y′−xδ

α,l,m‖ has the bias-variance
structure given in (2.5). The difference is that ‖y′−xδ

α,l,m‖ is driven by two param-
eters α and m, while |y′−Dl

hyδ| depends only on one parameter h. One possibility
is to choose m in such a way that the error caused by the discretization will be
dominated by the regularization error. To choose such m one should estimate the
contribution of the discretization to the total error, and this requires special as-
sumptions concerning the smoothness of x = y′. This distinguishes discretized reg-
ularization of numerical differentiation (3.2) from finite-difference methods, which
can be regularized without any additional smoothness assumptions.

When studying numerical differentiation (3.2), one usually assumes that the
function y belongs to an appropriate Sobolev or Besov space. The most convenient
way, however, constructs the smoothness class directly from the underlying operator
A, and thus measures the smoothness in terms of general source conditions

x = y′ = ϕ(A∗A)v, v ∈ L2(0, 1),(3.11)

an approach which recently has become attractive (see [9], [23], [3], [15]-[18]). The
function ϕ here is continuous, increasing and satisfies ϕ(0) = 0. It is more flexi-
ble to describe smoothness than just the usual scales of Sobolev or Besov spaces.
For example, (3.11) with ϕ(λ) = λk, k = 1, 2, . . . , means that y′ has a Sobolev
smoothness described as y′ ∈ W 2k

2 (0, 1).
In [16] the authors argue that in dealing with discretized regularization methods

it is convenient to assume that the smoothness index function ϕ in (3.11) can be
represented as a product

ϕ(λ) = θ(λ)ψ(λ), λ ∈ [0, 1], θ(0) = 0,(3.12)

of some nondecreasing Lipschitz continuous function ψ(λ) and operator monotone
function θ(λ). Recall that the function θ(λ) is operator monotone on [0, 1] if, for
any pair of self-adjoint operators U , V with spectra in [0, 1] such that U ≤ V , we
have θ(U) ≤ θ(V ) (i.e., ∀x, 〈θ(U)x, x〉 ≤ 〈θ(V )x, x〉).

For the sake of simplicity we assume, more specifically, either θ2(λ) to be concave,
or θ(λ) ≤ c

√
λ, where c is some positive constant. The classes of such operator
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monotone functions will be denoted by M+ and M−, respectively. Observe that up
to a certain extent these classes complement each other, because for any θ ∈ M+,
θ(0) = 0, θ2(λ) ≥ θ2(1)λ, and thus θ(λ) > c

√
λ for c <

√
θ(1).

Let (M+ ∪M−)×Lip be the class of all functions represented in the form (3.12)
with θ ∈ M+ ∪ M−, ψ ∈ Lip. Examples 1-4 of [14] show that the general source
conditions (3.11) with ϕ ∈ (M+ ∪M−)× Lip cover all types of smoothness studied
so far in the theory of ill-posed problems.

Let Qm be an orthogonal projector onto the trial space Vm+1 defined above. It
is easy to see that the numerical scheme (3.8), (3.10) is a combination of iterated
Tikhonov method (3.7) using a projection method based on Qm, Vm+1, because
xδ

α,l,m solves an equation

αx + QmA∗AQmx = αQmxδ
α,l−1,m + QmA∗yδ,

which is just a projection of (3.7) onto Vm+1.
A general discretization strategy for solving linear ill-posed problems by pro-

jection methods has been proposed recently in [16]. In the considered case this
strategy suggests choosing m to be the smallest integer such that

‖A − AQm‖L2→L2 ≤ min{
√

α,
δ√
α
}.(3.13)

Observe that

‖A − AQm‖L2→L2 = ‖(I − Qm)A∗‖L2→L2 ,

where

A∗x(t) =
∫ 1

t

x(τ )dτ, t ∈ [0, 1],

acts as a linear continuous operator from L2 to the Sobolev space W 1
2 , ‖A∗‖L2→W 1

2

< 2. Moveover, it is well known that the accuracy of the piecewise linear approxi-
mation can be estimated as

‖I − Qm‖W 1
2 →L2

= sup
g:‖g‖

W1
2
≤1

inf
gm∈Vm+1

‖g − gm‖L2 ≤ c0m
−1,

where c0 is some absolute constant. Then

‖A − AQm‖L2→L2 ≤ ‖I − Qm‖W 1
2 →L2

‖A∗‖L2→W 1
2

< 2c0m
−1,

and the discretization parameter m can be chosen as

m = 2c0 max{α− 1
2 , α

1
2 δ−1}.(3.14)

It has been observed in [16] that such discretization strategy is the most efficient
among all known ones in the sense of the size of the corresponding linear system
(3.10). If this size is not a crucial point of the computational procedure, then the
discretization parameter can be chosen independently of α in such a way that the
error caused by the data noise (inevitable error) would not be dominated by the
discretization error. Such a value of m can also be extracted from (3.13), (3.14)
using the well-known fact that the value of regularization parameter α should be
larger than δ2. Then max{α− 1

2 , α
1
2 δ−1} ≤ δ−1 and

m = 2c0δ
−1(3.15)

also meet (3.13).



NUMERICAL DIFFERENTIATION 1865

Proposition 3.1. Assume that y′ satisfies (3.11) with ϕ ∈ (M+ ∪M−)×Lip, and
p is such that λp

ϕ(λ) is nondecreasing for λ ∈ [0, 1]. Then for m chosen as (3.14) or
(3.15)

‖y′ − xδ
α,p,m‖L2 ≤ c1ϕ(α) +

2(2 +
√

p)δ√
α

,

where δ is given by (3.5), and the constant c1 does not depend on α,δ,m.

This proposition follows immediately from Corollary 1 of [16].
Thus, under the assumptions of Proposition 3.1 the estimation for the error

‖y′ − xδ
α,p,m‖ has the bias-variance structure just as in (2.5), and the approach

described in Section 2 can be applied for choosing the regularization parameter α.
In practical applications the value of the regularization parameter α is often

selected from some geometric sequence

∆N = {αi = δ2qi, i = 0, 1, . . . , N}, q > 1, qN ∼ δ−2.

Then by analogy with the adaptive strategy described in Section 2 we choose α+ ∈
∆N as

α+ = max{αi ∈ ∆N : ‖xδ
αi,p,m − xδ

αj ,p,m‖L2 ≤
8(2 +

√
p)δ

√
αj

,(3.16)

j = 0, 1, . . . , i}.

Theorem 3.1. Under the assumption of Proposition 3.1 for m chosen as (3.14)
or (3.15)

‖y′ − xδ
α+,p,m‖L2 ≤ cϕ(θ−1

ϕ (δ)),

where θϕ(λ) =
√

λϕ(λ), and the constant c depends only on ϕ,c1,q.

Proof (Sketch). We apply the same arguments as in the proof of Theorem 2.1, but
this time hj = √

αj , j = 0, 1, . . . , N , ρ =
√

q, l = p, dp = 2(2 +
√

p), and we deal
only with one admissible function ψ(hj) = c1ϕ(h2

j), where c1 is the constant from
Proposition 3.1. Let h be a solution of equation ψ(h) = dp

δ
h , i.e., h = (θ−1

ϕ (dp
δ
c1

))
1
2 .

In the same way as in the proof of Theorem 2.1 one can show that

hj0 ≤ h+ =
√

α+, hj0 ≤ h ≤ ρhj0 ,

and

‖y′ − xδ
α+,p,m‖ ≤ 6dpδ

hj0

≤ 6ρdpδ

h
= 6ρψ(h) = 6ρϕ(θ−1

ϕ (
dpδ

c1
)).

To complete the proof we need to show that there exists a constant cp (depending
only on p and c1) such that

ϕ(θ−1
ϕ (

dpδ

c1
)) ≤ cpϕ

(
θ−1

ϕ (δ)
)
.

If dp ≤ c1, then in view of the monotony of ϕ and θ−1
ϕ this inequality holds true

with any cp ≥ 1.
Consider the case dp > c1. Since λP

ϕ(λ) is nondecreasing we have

λp

ϕ(λ)
≤ (2λ)p

ϕ(2λ)
⇒ ϕ(2λ) ≤ 2pϕ(λ).
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It means that ϕ(λ) satisfies the so-called ∆2-condition: ϕ(2λ) ≤ cϕ(λ) with
c = 2p.

For any γ > 1 iterating this ∆2-condition one can find the integer number
i ≤ log2 2γ such that 2i−1 ≤ γ ≤ 2i, and for any λ ∈ [0, 1]

ϕ(γλ) ≤ 2pϕ
(γ

2
λ
)
≤ 22pϕ

( γ

22
λ
)
≤ · · · ≤ 2piϕ

( γ

2i
λ
)
≤ (2γ)pϕ(λ).

Moreover, in view of monotony of ϕ and θ−1
ϕ for any β > 1

β =
θϕ(θ−1

ϕ (βλ))

θϕ(θ−1
ϕ (λ))

=
ϕ(θ−1

ϕ (βλ))
√

θ−1
ϕ (βλ)

ϕ(θ−1
ϕ (λ))

√
θ−1

ϕ (λ)
≥

√
θ−1

ϕ (βλ)
θ−1

ϕ (λ)
,

i.e.,

θ−1
ϕ (βλ) ≤ β2θ−1

ϕ (λ).

Then,

ϕ

(
θ−1

ϕ (
dp

c1
δ)

)
≤ ϕ

(
d2

p

c2
1

θ−1
ϕ (δ)

)
≤

(
2
d2

p

c2
1

)p

ϕ(θ−1
ϕ (δ)),

which allows us to complete the proof. �

Note that smoothness index function ϕ from (3.11) is not involved in the process
of the choice of α+. Moreover, from Corollary 1 of [15] it follows that under the
assumptions (3.4) and (3.11) the order of accuracy ϕ(θ−1

ϕ (δ)) cannot be improved
in general.

3.3. Numerical examples. A program to test the numerical viability of the
schemes (3.8), (3.10) with parameter choice rule (3.16) was written in MATLAB.
In the following numerical tests we choose α from ∆30 = {αi = 0.00008 · (1.1)i, i =
0, 1, . . . , 30}. The number of grid points is m = 200. The number of observation
points is n = 200, and these points are randomly distributed in [0, 1]. The per-
turbations y(ti) − yε

i were produced by a uniform random number generator with
ε = 0.001. The parameter d0 in (3.5) was taken as d0 = 10−1, i.e., δ ∼ ε. Moreover,
we used a simple Tikhonov regularization method, i.e., p = 1.

For the above-mentioned values of parameters, four tests of the scheme (3.8),
(3.10), (3.16) were conducted. The results are shown in Figures 1–4, where the
dotted curve represents y′ and the solid curve is xα+,1,200.

First, we ran the algorithm using (2.8) as the function to be differentiated (see
Figure 1). In this case α+ = α3 = 0.0001065.

Tests 2–4 show that by our adaptive scheme we can find the discontinuous points
of y(t) or y′(t). Since the values of y(t) are only given at finite points, we still can
run our algorithm. Tests 2–4 are inspired by the paper [26].

We use the functions

y2(t) =
{

1 − t, t ∈ [0, 0.5],
t, t ∈ (0.5, 1], y3(t) =

{
1 + t, t ∈ [0, 0.5],
t, t ∈ (0.5, 1],

y4(t) =
{

−t, t ∈ [0, 0.5],
t, t ∈ (0.5, 1].

The results are shown in Figures 2 and 4, respectively, where t = 0.5 can be
easily detected as the discontinuity point for y3(t), y4(t), and y′

2(t), y′
3(t), y′

4(t).
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Figure 1. Numerical example for (2.8). Figure 2. Numerical example for y2.
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Figure 3. Numerical example for y3. Figure 4. Numerical example for y4.

In all these cases α+ = α2 = 0.000088.
Note that the leap near t = 0 in Figures 1–3 is caused by the fact that the

functions (2.8), y2(t), y3(t) do not satisfy (3.3). So, this circumstance can also be
detected by our adaptive scheme.

As to the leap near t = 1, in all figures, it is because of our temptation to find
the derivative y′(1) using only the values y(t) at the points from one side of t = 1.
If the values y(t) for t > 1 are used, this leap disappears.

It is interesting to note that in the numerical tests from [26] the second derivative
y′′(t) was used to localize the discontinuity points of y′(t), y(t). Our adaptive reg-
ularization procedure allows us to do it with the same accuracy using only current
approximation of y′(t).

To show the tightness of the bound from Theorem 3.1, we test the scheme (3.8)–
(3.10) in the situation when the index function ϕ is known.

Consider the function

y(t) =

⎧⎨
⎩

t5

120 − t3

16 + 57
384 t, t ∈ [0, 0.5],

t4

48 − t3

12 + t2

96 + 7
48 t − 1

3840 , t ∈ (0.5, 1],

chosen in such a way that the solution of (3.2) is given as

x(t) =

⎧⎨
⎩

t4

24 − 3
16 t2 + 57

384 , t ∈ [0, 0.5],

t3

12 − t2

4 + t
48 + 7

48 , t ∈ (0.5, 1].
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It is easy to check that this function can be represented in the form (3.11) with
ϕ(λ) = λ2 and

v(t) =
{

1, t ∈ [0, 0.5],
0, t ∈ (0.5, 1],

i.e., x(t) = (A∗A)2v(t), where A is a Volterra integral operator (3.2). Using y(t) =
Ax(t) we simulate noisy data yδ(t) in the same way as above. But this time δ ∼
ε = 10−4.

For ϕ(λ) = λ2, Theorem 3.1 guarantees the accuracy of order δ4/5 ∼ 10−16/5 ≈
0.6·10−3, and this order can be reached within the framework of scheme (3.8)–(3.10)
if p ≥ 2, since λp/ϕ(λ) should be a nondecreasing function.

Taking p = 2 we ran our algorithm with the same values of other parameters
as above. It corresponds to the 2-times iterated Tikhonov method (3.7). In the
considered case an adaptive strategy (3.16) gives the value of the regularization
parameter α+ = 0.013. The corresponding value of the L2-error is 2.2319 · 10−3,
that is in good agreement with the estimation given by Theorem 3.1.

4. Conclusion

As has been already mentioned, the representation of a numerical differentiation
problem in the form of linear operator equation (3.2) allows us to use a whole
arsenal of methods developed in general regularization theory. Discretized Tikhonov
regularization discussed in Section 3 is only one of such methods. In principle, any
discretized realization of a general regularization scheme (see, for example Ch.4 [4])
can be used as well. It can be analyzed on the basis of the results [15], [16] in the
same way as it has been done in Section 3.

At the same time, it should be noted that the general regularization scheme, and
the Tikhonov regularization in particular, does not retain the Volterra structure of
the numerical differentiation problem (3.2). Typical numerical realizations of the
Volterra operator A lead to a lower-triangular matrix, so that the solution of the
discretized problem may be handled by efficient, sequential methods. In contrast,
the system (3.10), for example, has a full matrix. Several regularization methods
which specifically preserve the Volterra structure can be found in a survey [10]. The
Lavrentiev regularization is one of them. But the adaptive strategies for choosing
regularization and discretization parameters without knowledge of solution smooth-
ness are not developed as much as they are for the general regularization scheme.
For example, as far as we know, convergence rate results have been obtained only
for the case of a priori known solution smoothness.

From this viewpoint, the results of Sections 2 and 3 can be considered as com-
plementary, because finite-difference methods are not covered by a general regular-
ization scheme. At the same time, the numerical realization of these methods is
very simple, and does not require us to solve a system of linear algebraic equations.
There is, unfortunately, a price associated with a local nature of the approximation
produced by any finite-difference method (it allows us to estimate a point value of
the derivative only). Nevertheless these methods are widely used, and to the best of
our knowledge, Theorem 2.1, which establishes an order-optimal adaptive strategy
for the stepsize choice, is the first such result of its kind.
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