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INTEGRAL FORMULAS FOR CHEBYSHEV POLYNOMIALS
AND THE ERROR TERM

OF INTERPOLATORY QUADRATURE FORMULAE
FOR ANALYTIC FUNCTIONS

SOTIRIOS E. NOTARIS

Abstract. We evaluate explicitly the integrals
∫ 1
−1 πn(t)/(r ∓ t)dt, |r| �= 1,

with the πn being any one of the four Chebyshev polynomials of degree n.
These integrals are subsequently used in order to obtain error bounds for in-
terpolatory quadrature formulae with Chebyshev abscissae, when the function
to be integrated is analytic in a domain containing [−1, 1] in its interior.

1. Introduction

The usefulness of Chebyshev polynomials in numerical analysis is undisputed.
This is largely due to their nice properties, many of which follow from the trigono-
metric representations these polynomials satisfy on the interval [−1, 1]. An immedi-
ate consequence of these representations is that the zeros of Chebyshev polynomials
can be given by explicit formulas, and this makes them attractive choices for nodes
of interpolatory quadrature formulae. Notable examples of the latter are the well-
known Fejér and Clenshaw–Curtis rules.

In the following, we enlarge the list of properties of Chebyshev polynomials by
showing that the integrals

(1.1)
∫ 1

−1

πn(t)
r ∓ t

dt, |r| �= 1,

with the πn being any one of the four Chebyshev polynomials of degree n, can be
computed explicitly. This finds immediate application in estimating the error of
certain interpolatory formulae with Chebyshev abscissae, by means of Hilbert space
or contour integration methods, when the function to be integrated is analytic in
a domain containing [−1, 1] in its interior. The quality of these estimates, and a
comparison with already existing ones, is illustrated with a numerical example.
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1218 S. E. NOTARIS

2. Integral formulas for Chebyshev polynomials

The nth degree Chebyshev polynomials Tn, Un, Vn, and Wn of the first, second,
third, and fourth kind, respectively, are characterized by the well-known represen-
tations

Tn(cos θ) = cosnθ, Un(cos θ) =
sin (n + 1)θ

sin θ
,(2.1)

Vn(cos θ) =
cos (n + 1/2)θ

cos (θ/2)
, Wn(cos θ) =

sin (n + 1/2)θ
sin (θ/2)

.(2.2)

We first give some simple relations among these polynomials, which will be useful
in the subsequent development.

Lemma 2.1. Let U−1(t) = 0. Then

Tn(t) =
1
2
{Un(t) − Un−2(t)}, n = 1, 2, . . . ,(2.3)

Vn(t) = Un(t) − Un−1(t), n = 0, 1, 2, . . . ,(2.4)

Wn(t) = Un(t) + Un−1(t), n = 0, 1, 2, . . . .(2.5)

Proof. Formulas (2.3) and (2.4) follow from the corresponding formulas for the
difference of sines

sin (n + 1)θ − sin (n − 1)θ = 2 cosnθ sin θ,

sin (n + 1)θ − sin nθ = 2 cos (n + 1/2)θ sin (θ/2),

and (2.1)–(2.2).
Also, replacing θ by π + θ in the second equation in (2.1) and (2.2) gives

Un(t) = (−1)nUn(−t), n = 0, 1, 2, . . . ,(2.6)

Wn(t) = (−1)nVn(−t), n = 0, 1, 2, . . . ,(2.7)

which, together with (2.4), implies (2.5). �

We can now present the announced explicit forms for the integrals (1.1). The
pattern was discovered by computing, analytically, enough of these integrals for the
first few values of n. We examine separately the cases |r| > 1 and |r| < 1.

Proposition 2.2. Let r ∈ R with |r| > 1.
(i) If πn = Tn, then

(2.8)
∫ 1

−1

πn(t)
r − t

dt = πn(r) ln
(

r + 1
r − 1

)
− 4

[(n+1)/2]∑′

k=1

πn−2k+1(r)
2k − 1

,

while, if πn = Un, πn = Vn, or πn = Wn, then

(2.9)
∫ 1

−1

πn(t)
r − t

dt = πn(r) ln
(

r + 1
r − 1

)
− 4

[(n+1)/2]∑
k=1

πn−2k+1(r)
2k − 1

.

(ii) If πn = Tn, then

(2.10)
∫ 1

−1

πn(t)
r + t

dt = πn(−r) ln
(

r + 1
r − 1

)
+ 4

[(n+1)/2]∑′

k=1

πn−2k+1(−r)
2k − 1

,
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while, if πn = Un, πn = Vn, or πn = Wn, then

(2.11)
∫ 1

−1

πn(t)
r + t

dt = πn(−r) ln
(

r + 1
r − 1

)
+ 4

[(n+1)/2]∑
k=1

πn−2k+1(−r)
2k − 1

.

By [·] we denote the integer part of a real number, while the notation
∑′ means

that the last term in the sum must be halved when n is odd.

Proof. (i) We first prove (2.9) with πn = Un. To this end, we apply induction on
n. For n = 1, an easy computation, using the second equation in (2.1), gives∫ 1

−1

U1(t)
r − t

dt = U1(r) ln
(

r + 1
r − 1

)
− 4.

Assume now that the formula is true for the indices n − 1 and n, and we want to
prove it for the index n + 1. It is well known that the Chebyshev polynomials of
the second kind satisfy the three-term recurrence relation

(2.12)
Um+1(t) = 2tUm(t) − Um−1(t), m = 0, 1, 2, . . . ,

U−1(t) = 0, U0(t) = 1.

Applying (2.12) with m = n, dividing by r−t and taking the integral on both sides,
we have

(2.13)
∫ 1

−1

Un+1(t)
r − t

dt = 2
∫ 1

−1

tUn(t)
r − t

dt −
∫ 1

−1

Un−1(t)
r − t

dt.

Furthermore, adding and subtracting the term rUn(t) in the numerator of the first
integral on the right side of (2.13), we get

(2.14)
∫ 1

−1

Un+1(t)
r − t

dt = −2
∫ 1

−1

Un(t)dt + 2r

∫ 1

−1

Un(t)
r − t

dt −
∫ 1

−1

Un−1(t)
r − t

dt.

We now consider two cases for n. When n is even, (2.14), by virtue of the induction
hypothesis and ∫ 1

−1

Um(t)dt =

⎧⎨
⎩

2
m + 1

if m is even,

0 if m is odd,

yields∫ 1

−1

Un+1(t)
r − t

dt = {2rUn(r) − Un−1(r)} ln
(

r + 1
r − 1

)

− 4
{
{2rUn−1(r) − Un−2(r)} +

1
3
{2rUn−3(r) − Un−4(r)}

+ · · · + 1
n − 1

{2rU1(r) − U0(r)} +
1

n + 1

}
,

which, in view of (2.12), gives∫ 1

−1

Un+1(t)
r − t

dt = Un+1(r) ln
(

r + 1
r − 1

)

− 4
{

Un(r) +
1
3
Un−2(r) + · · · + 1

n − 1
U2(r) +

1
n + 1

}
.

(2.15)
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Also, for n odd, we obtain in a like manner,∫ 1

−1

Un+1(t)
r − t

dt = Un+1(r) ln
(

r + 1
r − 1

)

− 4
{

Un(r) +
1
3
Un−2(r) + · · · + 1

n − 2
U3(r) +

1
n

U1(r)
}

,

which, together with (2.15), combines to

∫ 1

−1

Un+1(t)
r − t

dt = Un+1(r) ln
(

r + 1
r − 1

)
− 4

[((n+1)+1)/2]∑
k=1

Un+1−2k+1(r)
2k − 1

,

proving the induction claim, and concluding the induction.
Also, from (2.3),∫ 1

−1

Tn(t)
r − t

dt =
1
2

{∫ 1

−1

Un(t)
r − t

dt −
∫ 1

−1

Un−2(t)
r − t

dt

}
,

and inserting (2.9) with πn = Un and πn−2 = Un−2, we find, taking into account
that U−1(t) = 0,∫ 1

−1

Tn(t)

r − t
dt

=
1

2
{Un(r) − Un−2(r)} ln

(
r + 1

r − 1

)

− 4

{
1

2
{Un−1(r) − Un−3(r)} +

1

3

1

2
{Un−3(r) − Un−5(r)}

+ · · · +
{

1
n−3

1
2
{U3(r) − U1(r)} + 1

n−1
1
2
{U1(r) − U−1(r)} if n is even

1
n−2

1
2
{U2(r) − U0(r)} + 1

2
1
n

if n is odd

}
,

which, by (2.3), shows (2.8).
The proof of (2.9) with πn = Vn or πn = Wn is similar to that of (2.8), if we use

(2.4) and (2.5) in place of (2.3).
(ii) Replacing θ by π + θ in (2.1) and (2.2) gives

Tn(t) = (−1)nTn(−t), n = 0, 1, 2, . . . ,

Vn(t) = (−1)nWn(−t), n = 0, 1, 2, . . . ,

which, inserted, together with (2.6) and (2.7), into (2.8) and (2.9), and changing
variables from −t to t in the integrals involved there, yield (2.10) and (2.11). �

We now turn to the integrals (1.1) with |r| < 1, which, in view of the singularity
at r or −r, will be computed in the Cauchy principal value sense.

We recall that if p is an interior point of an interval [a, b] in R and f is a function
defined at every point of [a, b] except perhaps p, then the Cauchy principal value
of the integral of f over [a, b], denoted by

∫
−b

a
f(t)dt, is given by

(2.16)
∫
−

b

a

f(t)dt = lim
ε→0+

{∫ p−ε

a

f(t)dt +
∫ b

p+ε

f(t)dt

}
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(cf. [2, Section 32]). An interesting case of a Cauchy principal value integral is the
so-called Hilbert transform of a function f ,∫

−
b

a

f(t)
x − t

dt, x ∈ (a, b)

(cf. [4, Section 1.6]). The integrals (1.1) with |r| < 1 are precisely of this type.

Proposition 2.3. Let r ∈ R with |r| < 1.
(i) If πn = Tn, then

(2.17)
∫
−

1

−1

πn(t)
r − t

dt = πn(r) ln
(

1 + r

1 − r

)
− 4

[(n+1)/2]∑′

k=1

πn−2k+1(r)
2k − 1

,

while, if πn = Un, πn = Vn, or πn = Wn, then

(2.18)
∫
−

1

−1

πn(t)
r − t

dt = πn(r) ln
(

1 + r

1 − r

)
− 4

[(n+1)/2]∑
k=1

πn−2k+1(r)
2k − 1

.

(ii) If πn = Tn, then

(2.19)
∫
−

1

−1

πn(t)
r + t

dt = πn(−r) ln
(

1 + r

1 − r

)
+ 4

[(n+1)/2]∑′

k=1

πn−2k+1(−r)
2k − 1

,

while, if πn = Un, πn = Vn, or πn = Wn, then

(2.20)
∫
−

1

−1

πn(t)
r + t

dt = πn(−r) ln
(

1 + r

1 − r

)
+ 4

[(n+1)/2]∑
k=1

πn−2k+1(−r)
2k − 1

.

By [·] we denote the integer part of a real number, while the notation
∑′ means

that the last term in the sum must be halved when n is odd.

Proof. The proof follows the steps of the proof in Proposition 2.2.
(i) We first prove (2.18) with πn = Un by applying induction on n. For n = 1,

utilizing (2.16), we find∫
−

1

−1

U1(t)
r − t

dt = U1(r) ln
(

1 + r

1 − r

)
− 4.

Then, assuming that (2.18) is true for the indices n − 1 and n, and proceeding
precisely as in the case |r| > 1, we show that it is also true for the index n + 1,
concluding that way the induction.

The proof of (2.17) and (2.18) with πn = Vn or πn = Wn is almost identical to
the proof of the corresponding cases in Proposition 2.2.

(ii) Formulas (2.19) and (2.20) can be derived most easily if we note that∫
−

1

−1

πn(t)
r + t

dt = −
∫
−

1

−1

πn(t)
(−r) − t

dt,

and then apply formulas (2.17) and (2.18), respectively, with r replaced by −r. �
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3. Error bounds for interpolatory quadrature formulae

An interpolatory quadrature formula for approximating the integral
∫ 1

−1
f(t)dt

based on the n distinct points τ1, τ2, . . . , τn, ordered decreasingly, in the
interval (−1, 1) is that constructed by integrating the inteprolating polynomial
pn−1(f ; τ1, τ2, . . . , τn; t), which leads to

(3.1)
∫ 1

−1

f(t)dt =
n∑

ν=1

wνf(τν) + Rn(f).

By definition (3.1) has degree of exactness at least n − 1; i.e., Rn(f) = 0 for all
f ∈ Pn−1.

One way to obtain an estimate for the error term of (3.1) is by using a Hilbert
space method proposed by Hämmerlin in [6]. If f is a single-valued holomorphic
function in the disc Cr = {z ∈ C : |z| < r}, r > 1, then it can be written as

f(z) =
∞∑

k=0

akzk, z ∈ Cr.

Define

(3.2) |f |r = sup {|ak|rk : k ∈ N0 and Rn(tk) �= 0},
which is a seminorm in the space

Xr = {f : f holomorphic in Cr and |f |r < ∞}.

Then the error term Rn in (3.1) is a continuous linear functional in (Xr, | · |r), and
its error norm is given by

‖Rn‖ =
∞∑

k=d+1

|Rn(tk)|
rk

,

where d is precise degree of exactness of (3.1) (cf. [1, Section 1.1]). If, in addition,

(3.3i) Rn(tk) ≥ 0, k = 0, 1, 2, . . . ,

or

(3.3ii) (−1)kRn(tk) ≥ 0, k = 0, 1, 2, . . . ,

then, letting

πn(t) =
n∏

ν=1

(t − τν),

we can derive the representations

(3.4i) ‖Rn‖ =
r

πn(r)

∫ 1

−1

πn(t)
r − t

dt,

or

(3.4ii) ‖Rn‖ =
r

πn(−r)

∫ 1

−1

πn(t)
r + t

dt,

respectively (see [1, Section 1.2]). Consequently, if f ∈ XR,

(3.5) |Rn(f)| ≤ ‖Rn‖|f |r, 1 < r ≤ R,
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and optimizing the bound on the right of (3.5) as a function of r, we get

(3.6) |Rn(f)| ≤ inf
1<r≤R

(‖Rn‖|f |r).

An alternate way to obtain an estimate for the error term of (3.1) is by using
a contour integration method. If f is a single-valued holomorphic function in a
domain D containing [−1, 1] in its interior, and C̄r = {z ∈ C : |z| = r}, r > 1, is a
contour in D surrounding [−1, 1], then the Rn(·) can be represented as

(3.7) Rn(f) =
1

2πi

∫
C̄r

Kn(z)f(z)dz,

where the kernel Kn is given by

(3.8) Kn(z) = Rn

(
1

z − ·

)
=

1
πn(z)

∫ 1

−1

πn(t)
z − t

dt,

with

πn(z) =
n∏

ν=1

(z − τν).

From (3.7), there immediately follows

(3.9) |Rn(f)| ≤ r max
z∈C̄r

|Kn(z)|max
z∈C̄r

|f(z)|.

Now,

(3.10) max
z∈C̄r

|Kn(z)| =
{

Kn(r) if Rn satisfies (3.3i),
|Kn(−r)| if Rn satisfies (3.3ii)

(see [5, Sections 2, 3, and 4]), hence, in this case, (3.9) gives, in view of (3.8), (3.10)
and (3.4i)–(3.4ii),

(3.11) |Rn(f)| ≤ ‖Rn‖max
|z|=r

|f(z)|,

with the ‖Rn‖ given by (3.4i) or (3.4ii) accordingly as Rn satisfies (3.3i) or (3.3ii),
respectively. Incidentally, (3.11) can also be derived from (3.5), if |f |r is estimated
by max|z|=r |f(z)|, which, for f ∈ XR, exists at least for r < R. Consequently, the
bound on the right of (3.11) can be optimized as a function of r giving

(3.12) |Rn(f)| ≤ inf
1<r<R

(
‖Rn‖max

|z|=r
|f(z)|

)
.

Among all interpolatory formulae, of particular interest are those based on the
zeros of Chebyshev polynomials of any one of the four kinds, primarily, because
their nodes and weights can be expressed in explicit form. Formulae of this kind
were introduced by Fejér in 1933; however, their practical importance was shown by
Clenshaw and Curtis in 1960 who used them in automatic computing. A detailed
description of all interpolatory formulae with Chebyshev abscissae is given in [7].

Here we consider formulae of type (3.1) with the τν being zeros of the nth degree
Chebyshev polynomial of the second, third, or fourth kind. The nodes and weights
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of these formulae are given by

τ (2)
ν = cos θ(2)

ν , θ(2)
ν =

ν

n + 1
π, ν = 1, 2, . . . , n,(3.13)

τ (3)
ν = cos θ(3)

ν , θ(3)
ν =

2ν − 1
2n + 1

π, ν = 1, 2, . . . , n,(3.14)

τ (4)
ν = cos θ(4)

ν , θ(4)
ν =

2ν

2n + 1
π, ν = 1, 2, . . . , n(3.15)

(see [7, Equations (2.4)–(2.6)]), and

w(i)
ν =

2
n + α

{
1 − 2

[(n−1)/2]∑
k=1

cos 2kθ
(i)
ν

4k2 − 1
− cos 2[(n + 1)/2]θ(i)

ν

2[(n + 1)/2] − 1

}
,

ν = 1, 2, . . . , n, i = 2, 3, 4,

or, alternatively,

w(i)
ν =

4 sin θ
(i)
ν

n + α

[(n+1)/2]∑
k=1

sin (2k − 1)θ(i)
ν

2k − 1
, ν = 1, 2, . . . , n, i = 2, 3, 4,

where

α =
{

1 if i = 2,
1/2 if i = 3, 4,

and [·] denotes the integer part of a real number. Furthermore, the w
(i)
ν , ν =

1, 2, . . . , n, i = 2, 3, 4, are all positive (see [7, Section 2.1]).
Formula (3.1) with τν = τ

(2)
ν , known as the Fejér rule of the second kind or the

Filippi rule, has precise degree of exactness 2[(n + 1)/2] − 1 (cf. [7, Section 2.2]),
and it is positive definite, satisfying

(3.16e) R(2)
n (f) =

1
2n−1(n + 1)

f (n)(ξe)
n!

, ξe ∈ [−1, 1],

for n even and f ∈ Cn[−1, 1], and

(3.16o) R(2)
n (f) =

n + 1
2n−1n(n + 2)

f (n+1)(ξo)
(n + 1)!

, ξo ∈ [−1, 1],

for n odd and f ∈ Cn+1[−1, 1] (see [1, Section 1.7]). From (3.16e) and (3.16o), one
can immediately deduce that

(3.17e) R(2)
n (t2k) ≥ 0 for all k ≥ [(n + 1)/2],

while, by symmetry,

(3.17o) R(2)
n (t2k+1) = 0 for all k ≥ 0.

On the other hand, formula (3.1) with τν = τ
(3)
ν or τν = τ

(4)
ν has precise degree

of exactness n − 1, and it is nondefinite (cf. [7, Sections 2.2 and 2.4]). However, as
the next lemma shows, the error term of this formula follows a pattern analogous
to that of (3.17e).

Lemma 3.1. Consider the interpolatory quadrature formula (3.1).
(i) If τν = τ

(3)
ν , then the error term Rn = R

(3)
n satisfies

(3.18) (−1)kR(3)
n (tk) > 0 for all k ≥ Kn.
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(ii) If τν = τ
(4)
ν , then the error term Rn = R

(4)
n satisfies

(3.19) R(4)
n (tk) > 0 for all k ≥ Kn.

In both cases, Kn is a constant, Kn ≥ n.

Proof. (i) Assume first that k = 2l is even. From (3.1), taking into account that
wν = w

(3)
ν > 0, ν = 1, 2, . . . , n, we get

(3.20) R(3)
n (t2l) =

n∑
ν=1

{
2

n(2l + 1)
− w(3)

ν (τ (3)
ν )2l

}
.

Since 0 < |τ (3)
ν | < 1, ν = 1, 2, . . . , n, we have

lim
l→∞

(2l + 1)(τ (3)
ν )2l = 0, ν = 1, 2, . . . , n,

which implies

(3.21)
2

n(2l + 1)
− w(3)

ν (τ (3)
ν )2l > 0 for all l ≥ Ke

n,ν , ν = 1, 2, . . . , n.

Now, taking Ke
n = max1≤ν≤n{Ke

n,ν}, we obtain, from (3.20), in view of (3.21),

(3.22) R(3)
n (t2l) > 0 for all l ≥ Ke

n.

If, on the other hand, k = 2l + 1 is odd, then (3.1) gives

(3.23) R(3)
n (t2l+1) = −

n∑
ν=1

w(3)
ν (τ (3)

ν )2l+1.

We consider two cases for n. First, n = 2m is even. Then (3.23) takes the form

R(3)
n (t2l+1) = −

m∑
ν=1

{
w(3)

ν (τ (3)
ν )2l+1 + w

(3)
n−ν+1(τ

(3)
n−ν+1)

2l+1
}

= −
m∑

ν=1

w(3)
ν (τ (3)

ν )2l+1

⎧⎨
⎩1 −

w
(3)
n−ν+1

w
(3)
ν

(
−τ

(3)
n−ν+1

τ
(3)
ν

)2l+1
⎫⎬
⎭ ,

(3.24)

with the τ
(3)
ν satisfying

τ (3)
ν > 0, ν = 1, 2, . . . , m,(3.25)

τ
(3)
n−ν+1 < 0, ν = 1, 2, . . . , m,(3.26)

|τ (3)
ν | > |τ (3)

n−ν+1|, ν = 1, 2, . . . , m.(3.27)

Hence,

lim
l→∞

(
−τ

(3)
n−ν+1

τ
(3)
ν

)2l+1

= 0, ν = 1, 2, . . . , m,

implying

(3.28) 1 −
w

(3)
n−ν+1

w
(3)
ν

(
−τ

(3)
n−ν+1

τ
(3)
ν

)2l+1

> 0 for all l ≥ Ko
n,ν , ν = 1, 2, . . . , m,

and taking Ko
n = max1≤ν≤m{Ko

n,ν}, we obtain, from (3.24), in view of the positivity

of w
(3)
ν , (3.25), and (3.28),

(3.29) R(3)
n (t2l+1) < 0 for all l ≥ Ko

n.
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Table 3.1. Values of Kn, 1 ≤ n ≤ 20

n Kn n Kn

1 2 11 480
2 8 12 572
3 28 13 692
4 48 33 804
5 84 15 948
6 122 16 1080
7 178 17 1246
8 232 18 1398
9 308 19 1590
10 382 20 1764

If, on the other hand, n = 2m + 1 is odd, then (3.1) gives

R(3)
n (t2l+1) = −

m∑
ν=1

{
w(3)

ν (τ (3)
ν )2l+1 + w

(3)
n−ν+1(τ

(3)
n−ν+1)

2l+1
}
− w

(3)
m+1(τ

(3)
m+1)

2l+1,

with the τ
(3)
ν satisfying (3.25)–(3.27) and in addition τ

(3)
m+1 > 0, thus, in a like

manner as in the case of n even, we get (3.29).
Now, taking Kn = max{2Ke

n, 2Ko
n + 1}, (3.22) and (3.29) are merged to (3.18).

(ii) Replacing ν by n − ν + 1 in (3.14), and using (3.15), gives

τ (4)
ν = −τ

(3)
n−ν+1, ν = 1, 2, . . . , n,

which, inserted into (3.1), yields

w(4)
ν = w

(3)
n−ν+1, ν = 1, 2, . . . , n,

R(4)
n (f(·)) = R(3)

n (f(−·)).
The latter, together with (3.18), implies (3.19). �

The proof of Lemma 3.1 presents a method for computing the constants Kn in
(3.18)–(3.19). Their values for 1 ≤ n ≤ 20 are shown in Table 3.1.

Also, having examined (3.18)–(3.19) for the remaining values of k, we have found
that, for 1 ≤ n ≤ 20, both of them hold true when n ≤ k ≤ Kn−1. So, summarizing

(−1)kR(3)
n (tk) > 0 for all k ≥ n, 1 ≤ n ≤ 20,(3.30)

R(4)
n (tk) > 0 for all k ≥ n, 1 ≤ n ≤ 20.(3.31)

In addition, our numerical results suggest the following.

Conjecture 3.2. Consider the interpolatory quadrature formula (3.1).
(i) If τν = τ

(3)
ν , then the error term Rn = R

(3)
n satisfies

(−1)kR(3)
n (tk) > 0 for all k ≥ n.

(ii) If τν = τ
(4)
ν , then the error term Rn = R

(4)
n satisfies

R(4)
n (tk) > 0 for all k ≥ n.
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Now, in view of (3.17e)–(3.17o) and (3.30)–(3.31), representation (3.4i) with
Rn = R

(2)
n or Rn = R

(4)
n , by means of (2.9) with πn = Un or πn = Wn, and

representation (3.4ii) with Rn = R
(3)
n , by means of (2.11) with πn = Vn, lead to

the following.

Proposition 3.3. Consider the interpolatory quadrature formula (3.1).
(i) If τν = τ

(2)
ν , then the norm of the error functional Rn = R

(2)
n is given by

(3.32) ‖R(2)
n ‖ = r ln

(
r + 1
r − 1

)
− 4r

Un(r)

[(n+1)/2]∑
k=1

Un−2k+1(r)
2k − 1

.

(ii) If τν = τ
(3)
ν , then, for 1 ≤ n ≤ 20, the norm of the error functional Rn = R

(3)
n

is given by

(3.33) ‖R(3)
n ‖ = r ln

(
r + 1
r − 1

)
+

4r

Vn(−r)

[(n+1)/2]∑
k=1

Vn−2k+1(−r)
2k − 1

.

(iii) If τν = τ
(4)
ν , then, for 1 ≤ n ≤ 20, the norm of the error functional Rn =

R
(4)
n is given by

(3.34) ‖R(4)
n ‖ = r ln

(
r + 1
r − 1

)
− 4r

Wn(r)

[(n+1)/2]∑
k=1

Wn−2k+1(r)
2k − 1

.

In [1, Equations (1.7.5)–(1.7.6)], Akrivis has shown that

‖R(2)
n ‖≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8(n + 1)rτn+1

1 − τ2n+2

{
1

2(n + 1)2
+

τ2

n2 + 2n − 3
+

τ4

n2 + 2n − 15
+

1

2n + 1

τ6 − τn+2

1 − τ2

}
for n(even) ≥ 4,

8(n + 1)rτn+2

1 − τ2n+2

{
1

n(n + 2)
+

τ2

n2 + 2n − 8
+

τ4

n2 + 2n − 24
+

1

2n + 1

τ6 − τn+1

1 − τ2

}
for n(odd) ≥ 5,

‖R(2)
1 ‖ ≤ 16rτ3

3(1 − τ4)
,

‖R(2)
2 ‖ ≤ 24rτ3

1 − τ6

(
1
18

+
τ2

5

)
,

‖R(2)
3 ‖ ≤ 32rτ5

1 − τ8

(
1
15

+
τ2

7

)
,

where τ = r−
√

r2 − 1. This bound for ‖R(2)
n ‖ is very close to its exact value, given

in (3.32), so, in that sense, our result for ‖R(2)
n ‖ is a refinement of Akrivis’s result.

The explicit forms (3.32)–(3.34) for the norm of the error functionals lead to
bounds of type (3.6) and (3.12) for the error term of formula (3.1) with the τν

given by (3.13)–(3.15). The quality of these bounds is illustrated in the following
section.

Remark 1. Besides formula (3.1) with the τν given by (3.13)–(3.15), there are no
other interpolatory formulae with Chebyshev abscissae, including the well-known
Fejér rule of the first kind, or Pólya rule, and the Clenshaw–Curtis rule, whose error
term satisfies either (3.3i) or (3.3ii), which are essential in deriving representations
(3.4i) and (3.4ii).
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4. A numerical example

We want to approximate the integral

(4.1)
∫ 1

−1

eωtdt =
eω − e−ω

ω
, ω > 0,

by using formula (3.1) with τν = τ
(2)
ν or τν = τ

(3)
ν .

The function f(z) = eωz =
∑∞

k=0
ωkzk

k! is entire and, in view of (3.2) and (3.17o),
(4.2)

|f |(2)r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω2[(n+1)/2]r2[(n+1)/2]

(2[(n + 1)/2])!
, 1<r≤

√
(2[(n+1)/2]+1)(2[(n+1)/2]+2)

ω
,

ω2([(n+1)/2]+k)r2([(n+1)/2]+k)

(2([(n + 1)/2] + k))!
,

√
(2[(n+1)/2]+2k−1)(2[(n+1)/2]+2k)

ω
<r

≤
√

(2[(n+1)/2]+2k+1)(2[(n+1)/2]+2k+2)

ω
,

k = 1, 2, . . . ,

with [·] denoting the integer part of a real number. The above formula holds as it
stands if √

(2[(n + 1)/2] + 1)(2[(n + 1)/2] + 2) > ω;

in case that √
(2[(n + 1)/2] + 1)(2[(n + 1)/2] + 2) ≤ ω,

the formula for |f |(2)r starts at the branch of (4.2) for which√
(2[(n + 1)/2] + 2k + 1)(2[(n + 1)/2] + 2k + 2) > ω.

Similarly,

(4.3) |f |(3)r =

⎧⎪⎪⎨
⎪⎪⎩

ωnrn

n!
, 1 < r ≤ n + 1

ω
,

ωn+krn+k

(n + k)!
,

n + k

ω
< r ≤ n + k + 1

ω
, k = 1, 2, . . . ,

assuming that n + 1 > ω; otherwise, the formula for |f |(3)r starts at the branch of
(4.3) for which n + k + 1 > ω. Therefore, in both cases, f ∈ X∞. In addition,

max
|z|=r

|f(z)| = eωr.

Hence, the error functionals R
(2)
n (f) and R

(3)
n (f) can be estimated by means of (3.6)

and (3.12), i.e.,

|R(2)
n (f)| ≤ inf

1<r<∞

(
‖R(2)

n ‖|f |(2)r

)
,(4.4)

|R(3)
n (f)| ≤ inf

1<r<∞

(
‖R(3)

n ‖|f |(3)r

)
,(4.5)

and

|R(2)
n (f)| ≤ inf

1<r<∞

(
‖R(2)

n ‖eωr
)

,(4.6)

|R(3)
n (f)| ≤ inf

1<r<∞

(
‖R(3)

n ‖eωr
)

,(4.7)

with the ‖R(2)
n ‖ and ‖R(3)

n ‖ given by (3.32) and (3.33).
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Also, it is interesting to see how estimates (4.4) and (4.6) compare with already
existing ones. We chose two such estimates. The first is a traditional one, obtained
from (3.16e) and (3.16o),

(4.8) |R(2)
n (f)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωneω

2n−1(n + 1)!
if n is even,

(n + 1)ωn+1eω

2n−1n(n + 2)!
if n is odd.

The second estimate, given by Basu in [3], was obtained by the contour integration
method of the previous section applied on the ellipse

Eρ = {z ∈ C : z =
1
2
(u + u−1), u = ρeiθ, 0 ≤ θ ≤ 2π}

with foci at z = ±1 and sum of semiaxes equal to ρ, ρ > 1,

|R(2)
n (f)| ≤

{
σn,n+3

ρ2 − 1
+

1
ρn+1

4(n + 1)
2n + 3

}
(ρ + ρ−1)2

ρn+1 − ρ−(n+1)
max
z∈Eρ

|f(z)|, n odd,

where

σn,n+3 = 2
n+1∑
k=1

1
2k + 1

.

Since in our case
max
z∈Eρ

|f(z)| = e
1
2ω(ρ+ρ−1),

we get

|R(2)
n (f)| ≤

{
σn,n+3

ρ2 − 1
+

1
ρn+1

4(n + 1)
2n + 3

}
(ρ + ρ−1)2

ρn+1 − ρ−(n+1)
e

1
2ω(ρ+ρ−1), n odd,

which can be optimized as a function of ρ giving
(4.9)

|R(2)
n (f)| ≤ inf

1<ρ<∞

({
σn,n+3

ρ2 − 1
+

1

ρn+1

4(n + 1)

2n + 3

}
(ρ + ρ−1)2

ρn+1 − ρ−(n+1)
e

1
2 ω(ρ+ρ−1)

)
, n odd.

Our results are summarized in Tables 4.1 and 4.2 for the case τν = τ
(2)
ν and

in Table 4.3 for the case τν = τ
(3)
ν . (Numbers in parentheses indicate decimal

exponents.) All computations were performed on a SUN Ultra 5 computer in quad
precision (machine precision 1.93 ·10−34). The value of r or ρ, at which the infimum
in each of bounds (4.4)–(4.7) and (4.9) was attained, is given in the column headed
ropt and ρopt, respectively, which is placed immediately before the column of the
corresponding bound. As n and r increase, ‖R(2)

n ‖ and ‖R(3)
n ‖ decrease and close

to machine precision they can even take a negative value. This actually happens,
for τν = τ

(2)
ν when ω = 0.5, n ≥ 15 and ω = 1.0, n ≥ 19, and for τν = τ

(3)
ν when

ω = 0.5, n ≥ 16 and ω = 1.0, n ≥ 19. The reason is that, in all these cases, the
infimums in bounds (4.4)–(4.7) are attained at values of r > 20.

Bounds (4.4)–(4.5) provide an excellent estimate of the actual error, and are al-
ways somewhat better than bounds (4.6)–(4.7), respectively. This is to be expected,
since (4.6)–(4.7) can be derived from (4.4)–(4.5) if |f |(2)r and |f |(3)r are estimated
by max|z|=r |f(z)|. In addition, bounds (4.4) and (4.6) are consistently better than
bounds (4.8) and (4.9). Bound (4.8), for formula (3.1) with τν = τ

(2)
ν , is the best

among the error bounds that use higher order derivatives of the function f . Bound
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Table 4.1. Error bounds and actual error in approximating the
integral (4.1) using formula (3.1) with τν = τ

(2)
ν .

ω n ropt Bound (4.4) ropt Bound (4.6) Error
0.5 5 14.966 2.347(-7) 12.057 1.469(-6) 2.347(-7)

10 22.978 4.808(-14) 20.033 3.851(-13) 4.808(-14)
1.0 5 7.483 1.545(-5) 6.114 9.810(-5) 1.544(-5)

10 11.489 5.016(-11) 10.065 4.040(-10) 5.015(-11)
15 17.492 1.858(-19) 16.035 1.878(-18) 1.858(-19)

2.0 5 3.741 1.110(-3) 3.220 7.425(-3) 1.103(-3)
10 5.744 5.539(-8) 5.128 4.558(-7) 5.529(-8)
15 8.746 1.273(-14) 8.070 1.297(-13) 1.272(-14)
20 10.747 4.115(-20) 10.057 4.667(-19) 4.114(-20)

4.0 5 1.871 1.210(-1) 1.889 8.818(-1) 1.084(-1)
10 2.872 7.783(-5) 2.743 6.785(-4) 7.568(-5)
15 4.373 1.000(-9) 4.138 1.047(-8) 9.936(-10)
20 5.373 5.024(-14) 5.113 5.807(-13) 5.005(-14)

8.0 5 1.383 4.984(+1) 1.329 4.111(+2) 3.266(+1)
10 1.686 2.806(-1) 1.668 2.668(0) 2.309(-1)
15 2.302 1.434(-4) 2.261 1.534(-3) 1.292(-4)
20 2.687 1.001(-7) 2.718 1.186(-6) 9.407(-8)

Table 4.2. Error bounds and actual error in approximating the
integral (4.1) using formula (3.1) with τν = τ

(2)
ν .

ω n Bound (4.8) ρopt Bound (4.9) Error
0.5 5 3.834(-7) 24.081 4.096(-6) 2.347(-7)

10 7.878(-14) - - 4.808(-14)
1.0 5 4.045(-5) 12.163 2.746(-4) 1.544(-5)

10 1.330(-10) - - 5.015(-11)
15 4.975(-19) 32.042 2.094(-17) 1.858(-19)

2.0 5 7.037(-3) 6.310 2.104(-2) 1.103(-3)
10 3.702(-7) - - 5.529(-8)
15 8.864(-14) 16.085 1.451(-12) 1.272(-14)
20 2.893(-19) - - 4.114(-20)

4.0 5 3.328(0) 3.530 2.585(0) 1.084(-1)
10 2.801(-3) - - 7.568(-5)
15 4.292(-8) 8.167 1.184(-7) 9.936(-10)
20 2.241(-12) - - 5.005(-14)

8.0 5 1.163(+4) 2.256 1.300(+3) 3.266(+1)
10 1.566(+2) - - 2.309(-1)
15 1.536(-1) 4.311 1.798(-2) 1.292(-4)
20 1.283(-4) - - 9.407(-8)

(4.9) was obtained by the same method as that used in order to derive bound (4.6),
except that in the case of (4.9) the method was applied on an elliptic, instead of
a circular, contour. Ellipses have the advantage of shrinking around the interval
[−1, 1] as the sum of the semiaxes ρ → 1, and that way give better results than
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Table 4.3. Error bounds and actual error in approximating the
integral (4.1) using formula (3.1) with τν = τ

(3)
ν .

ω n ropt Bound (4.5) ropt Bound (4.7) Error
0.5 5 12.000 3.397(-6) 10.143 1.958(-5) 3.195(-6)

10 22.000 4.941(-14) 20.089 3.965(-13) 4.672(-14)
15 31.990 9.667(-23) 30.042 9.451(-22) 9.402(-23)

1.0 5 6.000 1.165(-4) 5.211 6.847(-4) 1.026(-4)
10 11.000 5.294(-11) 10.116 4.273(-10) 4.726(-11)
15 16.000 3.252(-18) 15.066 3.187(-17) 3.074(-18)

2.0 5 3.000 4.676(-3) 2.829 2.876(-2) 3.539(-3)
10 5.500 6.155(-8) 5.169 5.047(-7) 4.873(-8)
15 8.000 1.151(-13) 7.603 1.137(-12) 1.026(-13)
20 10.500 4.332(-20) 10.083 4.911(-19) 3.889(-20)

4.0 5 1.750 3.172(-1) 1.745 2.129(0) 1.719(-1)
10 2.865 9.557(-5) 2.768 8.017(-4) 5.713(-5)
15 4.000 4.889(-9) 3.923 4.912(-8) 3.827(-9)
20 5.250 5.556(-14) 5.132 6.372(-13) 4.440(-14)

8.0 5 1.295 8.876(+1) 1.280 7.125(+2) 3.056(+1)
10 1.750 3.616(-1) 1.675 3.339(0) 1.192(-1)
15 2.250 3.946(-4) 2.172 4.157(-3) 2.319(-4)
20 2.750 1.171(-7) 2.729 1.381(-6) 7.218(-8)

circles. However, bound (4.9) uses an estimate for the kernel Kn (cf. (3.7)–(3.8)),
which is poor for ρ close to 1 and reasonably good for large ρ (when the ellipse
looks more and more like a circle), and this apparently accounts for (4.9) giving
results substantially less sharp than bound (4.6).
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