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NUMERICAL APPROXIMATIONS
OF THE 10-MOMENT GAUSSIAN CLOSURE

CHRISTOPHE BERTHON

Abstract. We propose a numerical scheme to approximate the weak solu-
tions of the 10-moment Gaussian closure. The moment Gaussian closure for
gas dynamics is governed by a conservative hyperbolic system supplemented
by entropy inequalities whose solutions satisfy positiveness of density and ten-
sorial pressure. We consider a Suliciu-type relaxation numerical scheme to
approximate the solutions. These methods are proved to satisfy all the ex-
pected positiveness properties and all the discrete entropy inequalities. The
scheme is illustrated by several numerical experiments.

1. Introduction

Currently, many of the numerical simulations for compressible flows are proposed
within the framework of Euler equations. This system, related to velocity moments
of the Boltzmann equation, is based on the assumption that the gas is in local
thermodynamic equilibrium. Several recent applications consider a gas which moves
away from equilibrium. Since the main assumption is not satisfied, the classical
Euler equations cannot be used.

The computations of extremely low pressure rarefied gas flows from the reentry
of space vehicles enter the present framework where the local thermodynamic equi-
librium cannot necessarily be assumed. Also, we note several applications related
to the inertial confinement fusion where under-dense plasma is considered and the
effects of an anisotropic laser heating are studied [12].

When nonlocal thermodynamic equilibrium is assumed, several alternative ap-
proaches have been proposed. The first one, developed by Grad [15], considered a
13 moment closure but led to a system of equations which were not always hyper-
bolic. More recently, a new procedure was developed by Levermore [19] to generate
a hierarchy of moment closure systems. The simplest model is the Euler equations
with five equations. The second derived model, investigated by Levermore and
Morokoff [20], admits 10 equations: the 10-moment Gaussian closure model.

The recent work of Dubroca et al. [12] uses this model to study the effect of the
anisotropic phenomenon. Actually, the HLLE scheme [16] is used to approximate
the weak solutions of the model. Since the numerical simulation of flows governed
by this model are known to be difficult, the authors recommend a very robust
scheme. The accuracy of the approximate solutions is lost with a large numerical
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diffusion. In order to associate robustness and accuracy, we propose to develop a
relaxation procedure.

Motivated by the work of Liu [22] and Chen, Levermore and Liu [9], the weak
solutions of the 10-moment Gaussian closure are approximated by the weak solu-
tions of a system which aims at restoring not only the initial model but also all
its entropy inequalities. The main difference from the first relaxation scheme pro-
posed by Jin and Xin [17] and studied by Natalini [23] and Aregba and Natalini
[1] is that only the nonlinearities related to the pressure law are relaxed. These
partial relaxation procedures have been introduced in distinct settings by Coquel
and Perthame [11] and Coquel et al. [10]. More recently, several extensions of the
procedures have been developed by Baudin et al. [2] and Berthon et al. [4, 5] in
distinct framework but for very difficult numerical simulations.

In the present work, we pay particular attention to the stability properties. In
the framework of the usual 3 × 3 Euler equations, Bouchut [7] and Chalons and
Coquel [8] study the discrete entropy inequalities using two distinct approaches.
Related to the work of Chalons and Coquel [8], Berthon [3] proposes a third proof
which finds a direct extension in the present framework of the 10-moment Gaussian
closure model.

The derivation of the model and its main properties are presented in the next
section. The third section is devoted to the numerical procedure. In the first step,
we derive the relaxation model and establish its main properties. Next, we detail the
numerical method. In the following section, we prove all the stability properties.
Namely, we establish the positiveness of density and pressure, a set of discrete
entropy inequalities, and also a maximum principle for the specific entropies. In
the last section, the work is concluded by a numerical illustration of the scheme.

2. The mathematical model

The flow under consideration is assumed to be governed by the 10-moment
Gaussian closure for gas dynamics. This gas is characterized by its density ρ > 0,
its velocity u ∈ R

3, and its anisotropic total energy tensor E ∈ R
3 × R

3. The
system of PDE which governs such a flow is given by [20]:

(2.1)

⎧⎪⎨
⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu ∨ u + p) = 0,

∂tE + ∇ · ((E + p) ∨ u) = Ξ(ρ,p),

where ∨ denotes the symmetric tensor outer product. The anisotropic pressure
p ∈ R

3 × R
3 satisfies the following tensorial state law:

(2.2) E =
1
2
ρu ∨ u +

1
2
p.

The pressure tensor is assumed to be a symmetric positive definite tensor.
The collisional term Ξ will be systematically omitted in the sequel. Indeed, the

present work concerns the numerical approximations of the weak solutions of the
first order extracted system from (2.1); i.e., with a vanishing collisional term. This
approach enters the usual strategy where an operator splitting is considered (for
instance, see Dubroca et al. [12]). The present work is devoted to the first step of
the splitting.

For the sake of simplicity in the forthcoming statements, we consider a bi-
dimensional flow. As a consequence, we do not resolve the unknowns associated to



NUMERICAL APPROXIMATIONS OF 10-MOMENT GAUSSIAN CLOSURE 1811

the third direction and the system (2.1) reduces from 10 unknowns to 6 unknowns.
Of course, all the results stated in the present paper easily extend to the full 3D
model. In addition, arguing the rotational invariance of the system (2.1), we focus
our attention on the single dimension problem which rewrites after a straightfor-
ward expansion of (2.1):

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu1) = 0, t > 0, x ∈ R,

∂t(ρu1) + ∂x(ρu2
1 + p11) = 0,

∂t(ρu2) + ∂x(ρu1u2 + p12) = 0,

∂tE11 + ∂x((E11 + p11)u1) = 0,

∂tE22 + ∂x(E22u1 + p12u2) = 0,

∂tE12 + ∂x(E12u1 +
1
2
(p11u2 + p12u1)) = 0,

where the state law (2.2) reads:

(2.4) Eij =
1
2
ρuiuj +

1
2
pij , 1 ≤ i ≤ j ≤ 2.

With clear notation, it will be convenient to write (2.3) under the following abstract
form:

∂tw + ∂xf(w) = 0,

w = t(ρ, ρu1, ρu2, E11, E22, E12).

We have w : R×R+ → Ω, where the state space Ω denotes the following open set:

(2.5) Ω =
{
w ∈ R

6; ρ > 0, (u1, u2) ∈ R
2, p11 > 0, p11p22 − p2

12 > 0
}

.

First, we state the following easy result, the proof of which is left to the reader
(see also Gombosi et al. [13]):

Lemma 2.1. The system (2.3)–(2.4) is hyperbolic over Ω and admits the eigenval-
ues

u1, u1 ±
√

3p11

ρ
, u1 ±

√
p11

ρ
.

The eigenvalue u1 has two orders of multiplicity, and it is associated with a linearly
degenerated field. The other eigenvalues have one order of multiplicity. The eigen-
values u1 ±

√
3p11

ρ are associated with a genuinely nonlinear field while the last two
are associated to a linearly degenerated field.

In addition to the above result, we establish several conservation equations sat-
isfied by the smooth solutions of (2.3). These additional laws yield to entropy
inequalities needed to rule out unphysical solutions.

Lemma 2.2. The smooth solutions w ∈ Ω of (2.3) satisfy

∂tρF(s) + ∂xρF(s)u1 = 0, s := s(w) =
p11

ρ3
,(2.6)

∂tρG(σ) + ∂xρG(σ)u1 = 0, σ := σ(w) =
p11p22 − p2

12

ρ4
,(2.7)

where F ,G : R → R denote smooth functions.
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Assume

F = F̃ ◦ ln, F̃ ′(y) < 0,
F̃ ′′(y)
F̃ ′(y)

<
1
3
, ∀y ∈ R,(2.8)

G = G̃ ◦ ln, G̃′(y) < 0,
G̃′′(y)
G̃′(y)

<
1
4
, ∀y ∈ R.(2.9)

Then both functions w → ρF(s(w)) and w → ρG(σ(w)) are convex. As a conse-
quence, the pairs (ρF(s), ρF(s)u1) and (ρG(σ), ρG(σ)u1) define Lax entropy pairs
for the system (2.3):

(2.10) ∂tρF(s) + ∂xρF(s)u1 ≤ 0 and ∂tρG(σ) + ∂xρG(σ)u1 ≤ 0.

Proof. As soon as the solution of (2.3) is smooth enough, both momentum equations
can be developed to obtain

∂tu1 + u1∂xu1 +
1
ρ
∂xp11 = 0,

∂tu2 + u1∂xu2 +
1
ρ
∂xp12 = 0,

so that we deduce

∂tρ
u2

1

2
+ ∂xρ

u2
1

2
u1 + u1∂xp11 = 0,(2.11)

∂tρ
u2

2

2
+ ∂xρ

u2
2

2
u1 + u2∂xp12 = 0,(2.12)

∂tρ
u1u2

2
+ ∂xρ

u1u2

2
u1 +

1
2

(u2∂xp11 + u1∂xp12) = 0.(2.13)

Now, we subtract each kinetic energy ρ
uiuj

2 for 1 ≤ i ≤ j ≤ 2 from the associated
total energy Eij to obtain after computations:

∂tp11 + u1∂xp11 + 3p11∂xu1 = 0,

∂tp22 + u1∂xp22 + p22∂xu1 + 2p12∂xu2 = 0,

∂tp12 + u1∂xp12 + p11∂xu2 + 2p12∂xu1 = 0.

Since

∂tρ + u1∂xρ + ρ∂xu1 = 0,

we have

1
ρ3

(∂tp11 + u1∂xp11 + 3p11∂xu1) −
3p11

ρ4
(∂tρ + u1∂xρ + ρ∂xu1) = 0,

which reads

∂ts + u1∂xs = 0 with s =
p11

ρ3
.

Now, for all F ∈ C1(R) we write

∂tF(s) + u1∂xF(s) = 0.
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Since we have

ρ (∂tF(s) + u1∂xF(s)) + s (∂tρ + ∂xρu1) = ∂tρF(s) + ∂xρF(s)u1,

the relation (2.6) is established. Concerning the identity (2.7), a straightforward
computation gives

∂t(p11p22 − p2
12) + u1∂x(p11p22 − p2

12) + 4(p11p22 − p2
12)∂xu1 = 0.

Then we easily deduce

∂t
p11p22 − p2

12

ρ4
+ u1∂x

p11p22 − p2
12

ρ4
= 0,

and the proof of (2.7) is concluded similarly to the proof of (2.6).
Concerning the convexity result, as usual the proof is obtained when studying

the Hessian matrix of the functions w → ρF(s(w)) and w → ρG(σ(w)) (see also
Godlewski and Raviart [14]). �

To summarize our problem, we consider a conservative hyperbolic system (2.3)
completed by the entropy inequalities (2.10). Moreover, the solutions of this prob-
lem belong to the admissible state space Ω. Our goal is to propose a numerical
procedure to approximate the solutions defined in Ω of (2.3)–(2.4) supplemented
by (2.10). To access such an issue, we will develop a relaxation scheme.

3. A relaxation method

We propose to approximate the weak solutions of the system (2.3)–(2.10) by
the weak solutions of a relevant first order system with singular perturbations:
the relaxation model. Several works are devoted to such approaches (for instance,
see Liu [22] or Chen, Levermore and Liu [9]), where the relaxation model aims to
restore the initial model completed by the entropy inequalities within the limit of
an infinite relaxation parameter.

Motivated by the work of Coquel and Perthame [11], Chalons and Coquel [8],
and Baudin et al. [2], we propose a relaxation model which preserves most of
the nonlinearities of the initial system. These nonlinearities are kept in order to
enforce the contact waves associated to the eigenvalue u1 of (2.3) to be solutions of
our relaxation model. In this sense, the present paper differs from the pioneering
work of Jin and Xin [17], where all the nonlinearities are relaxed.

3.1. The relaxation model. Following the work of Suliciu [25] (see also [2, 8, 11]),
we propose a relevant modification of the pressure law. We suggest substituting
the pressures p11 and p12 by the approximation π11 and π12, where these two new
variables are governed by⎧⎪⎪⎨

⎪⎪⎩
∂tπ11 + u1∂xπ11 +

a2

ρ
∂xu1 = λ(p11 − π11),

∂tπ12 + u1∂xπ12 +
a2

ρ
∂xu2 = λ(p12 − π12).

The relaxation parameter a must satisfy an additional stability condition, the well-
known sub-characteristic Whitham condition [26], detailed later on.
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Thus, we approximate the entropy weak solutions of (2.3)-(2.4)-(2.10) by those
of the following first order system with singular perturbations:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu1) = 0, t > 0, x ∈ R,

∂t(ρu1) + ∂x(ρu2
1 + π11) = 0,

∂t(ρu2) + ∂x(ρu1u2 + π12) = 0,

∂tE11 + ∂x((E11 + π11)u1) = 0,

∂tE22 + ∂x(E22u1 + π12u2) = 0,

∂tE12 + ∂x(E12u1 +
1
2
(π11u2 + π12u1)) = 0,

∂tρπ11 + ∂x(ρπ11u1 + a2u1) = λρ(p11 − π11),

∂tρπ12 + ∂x(ρπ12u1 + a2u2) = λρ(p12 − π12).

As soon as the relaxation parameter λ goes to infinity, from (3.1) we formally
recover the initial system (2.3). Indeed, in this limit referred to as the equilibrium
limit, we have π11 = p11 and π12 = p12, and thus the conservation of the momentum
(ρu1 and ρu2) and the total energy (E11, E22 and E12) in (3.1) gives those of (2.3).

Let us note from now on that according to the work of Liu [22] and Chen, and
Levermore and Liu [9], both systems (2.3) and (3.1) must satisfy compatibility
conditions to prevent instabilities in the regime of infinite λ. These so-called sub-
characteristic Whitham conditions read as follows:

(3.2)
a2

ρ
> 3p11.

We will see that this condition enters in the analysis of the discrete entropy in-
equalities.

With clear notation, let us introduce the following abstract form of the relaxation
system (3.1):

(3.3)

{
∂tW + ∂xFa(W) = λR(W),

W = t(ρ, ρu1, ρu2, E11, E22, E12, ρπ11, ρπ12),

associated with the phase space

V =
{
W ∈ R

8; ρ > 0
}

.

In the flux function notation, we have introduced the subscript a to emphasize the
dependence on the relaxation parameter a.

In fact, the derivation of the relaxation model (3.1) is dictated by a linear de-
generacy of all the fields, which makes it an easily solvable Riemann problem. The
first statement we give is devoted to the linear degeneracy property of the fields.

Lemma 3.1. Let be given a > 0 and assume λ = 0. The first order system (3.1)
is hyperbolic for all W ∈ V. It admits µ1 = u1 − a/ρ and µ3 = u1 + a/ρ as
double eigenvalues and µ2 = u1 with a multiplicity four. All the fields are linearly
degenerated.

We do not give the proof of this result which turns out to be easy and usual
(see Godlewski and Raviart [14]). In the next statement, we give the solution of
the Riemann problem for the relaxation system (3.1) with λ = 0. Since all the
fields are linearly degenerate, the Riemann solution is made of four constant states
separated by three contact discontinuities.
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Lemma 3.2. Let WL and WR be constant states in V and define

(3.4) W0(x) =
{

WL if x < 0,
WR if x > 0,

the initial data for the system (3.1) with λ = 0. Assume that the relaxation constant
a satisfies

µ1(WL) = (u1)L − a

ρL
< u�

1 < µ3(WR) = (u1)R +
a

ρR
,

u�
1 =

(u1)L + (u1)R

2
+

(π11)L − (π11)R

2a
.

(3.5)

Then the weak solution of the system (3.1) with λ = 0 and for the initial data (3.4)
is given by

W(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

WL if x
t < µ1(WL),

W1 if µ1(WL) < x
t < µ2(W1),

W2 if µ2(W2) < x
t < µ3(WR),

WR if µ3(WR) < x
t ,

where µ2(W1) = µ2(W2) = u�
1. Let us set for all 1 ≤ i ≤ j ≤ 2

u�
i =

(ui)L + (ui)R

2
+

(π1i)L − (π1i)R

2a
,

π�
1i =

(π1i)L + (π1i)R

2
+

a

2
((ui)L − (ui)R),

1
ρ1

=
1
ρL

+
u�

1 − (u1)L

a
,

1
ρ2

=
1

ρR
+

(u1)R − u�
1

a
,

e1
ij =

(
(Eij)L

ρL
− (ui)L(uj)L

2

)
− 1

2a2

(
(π1i)L(π1j)L − π�

1iπ
�
1j

)
,

e2
ij =

(
(Eij)R

ρR
− (ui)R(uj)R

2

)
− 1

2a2

(
(π1i)R(π1j)R − π�

1iπ
�
1j

)
,

E1
ij = ρ1

u�
i u

�
j

2
+ ρ1e1

ij , E2
ij = ρ2

u�
i u

�
j

2
+ ρ2e2

ij .

Then the constant states W1 and W2 in V are defined as follows:

Wi = t(ρi, ρiu�
1, ρ

iu�
2, E

i
11, E

i
22, E

i
12, ρ

iπ�
11, ρ

iπ�
12), 1 ≤ i ≤ 2.

Proof. Since all the fields are linearly degenerate, the Riemann solution is made
of contact discontinuities. The ith discontinuity propagates the velocity µi. These
discontinuities separate constant states: W0 = WL, W1, W2, W3 = WR. Two
consecutive states satisfy the Rankine-Hugoniot jump conditions associated with
the system (3.3) with λ = 0:

(3.6) −µi(Wi) (Wi − Wi−1) + (Fa(Wi) − Fa(Wi−1)) = 0,

with 1 ≤ i ≤ 3. Since the coefficient a satisfies (3.5), which coincides with the
ordering of the three waves, the relations (3.6) easily yield the definition of the
intermediate states W1 and W2.

To conclude the proof, we establish the positiveness of ρ1 and ρ2 which is a
direct consequence of (3.5). Indeed, the linear degeneracy of each field implies
µ1(WL) = µ1(W1) and µ3(WR) = µ3(W2). Then, the condition (3.5) rewrites
ρ1 > 0 and ρ2 > 0. �



1816 CHRISTOPHE BERTHON

To conclude the presentation of the relaxation model, we propose to perform a
small perturbation analysis to give the first-order asymptotic system. This deriva-
tion is obtained by the Chapman-Enskog procedure (for instance, see Chen, Lever-
more and Liu [9], Coquel and Perthame [11], or Liu [22]). To access such an issue,
let us consider the formal expansion of π11 and π12 in the form

π11 = p11 +
1
λ

π1
11 + O(

1
λ2

),

π12 = p12 +
1
λ

π1
12 + O(

1
λ2

).

From the evolution laws of ρπ11 and ρπ12 in (3.1), we obtain the following first-order
correction:

π1
11 = −

(
a2

ρ
− 3p11

)
∂xu1,

π1
12 = −2p12∂xu1 −

(
a2

ρ
− p11

)
∂xu2.

Equipped with these expansions, we deduce that the first-order asymptotic equilib-
rium system reads:
(3.7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu1) = 0,

∂t(ρu1) + ∂x(ρu2
1 + p11) =

1
λ

∂x(ν1∂xu1),

∂t(ρu2) + ∂x(ρu1u2 + p12) =
1
λ

∂x(2p12∂xu1 + ν2∂xu2),

∂tE11 + ∂x((E11 + p11)u1) =
1
λ

∂x(ν1u1∂xu1),

∂tE22 + ∂x(E22u1 + p12u2) =
1
λ

∂x(2p12u1∂xu1 + ν2u2∂xu2),

∂tE12 + ∂x(E12u1 +
1
2
(p11u2 + p12u1))

=
1
2λ

∂x(ν1u2∂xu1 + ν2u1∂xu2 + 2p12u1∂xu1),

where we have set

ν1 =
a2

ρ
− 3p11 and ν2 =

a2

ρ
− p11.

To complete the first-order asymptotic behaviors, we have to consider the full
system with the collisional terms Ξ. In [20], Levermore and Morokoff prescribe the
following closure:

Ξ = λ(pI− p), p = αp11 + (1 − α)p22,

where α ∈ (0, 1). In fact, the collisional term is nothing but a relaxation source
term which relaxes p11 to p and p12 to zero. For the sake of clarity in this brief pre-
sentation, we consider the 1D problem: the velocity u2 in the orthogonal direction
is set to zero. We introduce the following total energy:

E = E11 +
1 − α

α
E22.
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Using the Chapman-Enskog expansion, the relaxation model (3.1) with the colli-
sional term gives the following formal first-order asymptotic equilibrium system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + ∂x(ρu1) = 0,

∂t(ρu1) + ∂x(ρu2
1 + p) =

1
λ

∂x(µ1∂xu1),

∂tE + ∂x((E + p)u1) =
1
λ

∂x(µ1u1∂xu1).

(3.8)

The state law satisfied by the pressure reads

p = (γ − 1)
(

E − ρ
u2

1

2

)
, γ ∈ (1, 3),

where we have set γ = 1 + 2α.
In the system (3.8), we recognize the Navier-Stokes equations where the viscosity

function is given by

µ1 =
a2

ρ
− γp,

which defines a positive function as soon as the Whitham condition (3.2) is assumed.

3.2. The relaxation scheme. On the basis of the above relaxation model (3.1),
we propose to describe the numerical procedure which turns out to be usual in the
frame work of the relaxation scheme (see Jin and Xin [17], Coquel and Perthame
[11], Baudin et al. [2]).

We consider a structured mesh in space and time defined by the cells Ii =
[xi− 1

2
, xi+ 1

2
) and the time intervals [tn, tn+1):

tn = n∆t and xi+ 1
2

=
(

i +
1
2

)
∆x with i ∈ Z, n ∈ N,

where ∆t is the time increment and ∆x the spatial cell width.
As usual, we assume that a piecewise constant approximate equilibrium solution

wh(x, tn) ∈ Ω is known at time tn, defined by

wh(x, tn) = wn
i = t (ρn

i , (ρu1)n
i , (ρu2)n

i , (E11)n
i , (E22)n

i , (E12)n
i ) , x ∈ Ii.

At the initial time, we set

w0
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

w(x, 0)dx.

The approximate equilibrium solution is then evolved to the next time level tn+1 =
tn + ∆t by taking into account two steps.

First step: Evolution in time. We introduce Wh ∈ V such that for all 0 < t < ∆t,
the function Wh(x, tn + t) is the weak solution of the Cauchy problem for the
relaxation system (3.1) with λ = 0:

(3.9) ∂tW + ∂xFa(W) = 0,

for the following initial equilibrium data:

Wh(x, tn) = Wn
i

= t (ρn
i , (ρu1)n

i , (ρu2)n
i , (E11)n

i , (E22)n
i , (E12)n

i , (ρπ11)n
i , (ρπ12)n

i ) , x ∈ Ii,
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where (π11)n
i = (p11)n

i and (π12)n
i = (p12)n

i . With some abuse in the notation, we
have set

(plk)n
i = 2

(
(Elk)n

i − (ρuk)n
i (ρul)n

i

2ρn
i

)
.

Under the CFL-like condition

(3.10)
∆t

∆x
max
i∈Z

(|µ1(Wn
i )|, |µ3(Wn

i )|) ≤ 1
2
,

the solution Wh at the time tn + ∆t is made of the juxtaposition of the non-
interacting Riemann problem solution set at the cell interfaces xi+ 1

2
for i ∈ Z.

Next, the projection of this solution on the piecewise constant functions gives

Wn+1,−
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

Wh(x, tn + ∆t)dx.

In fact, a local definition of the parameter a at each interface xi+ 1
2

can be consid-
ered (for instance, see Coquel and Perthame [11] or Baudin et al. [2]). At each
interface xi+ 1

2
, we choose WL = Wn

i and WR = Wn
i+1 to define the parameter

ai+ 1
2

according to the Whitham condition (3.2) and the ordering condition (3.5).
Assuming the CFL restriction (3.10), the relaxation parameter a may vary from
one interface to another. For convenience in the sequel and to emphasize the ad-
missible local choice of the parameter a, we rewrite Wn+1,−

i arguing the formalism
introduced by Harten, Lax, and van Leer [16]:

(3.11) Wn+1,−
i =

1
2

(
W̄R(Wn

i−1,W
n
i ) + W̄L(Wn

i ,Wn
i+1)

)
,

where

W̄L(WL,WR) =
2∆t

∆x

∫ 0

− ∆x
2∆t

Wa(ξ; WL,WR) dξ

= WL − 2∆t

∆x
(Fa(Wa(0; WL,WR)) − Fa(WL))

(3.12)

and

W̄R(WL,WR) =
2∆t

∆x

∫ ∆x
2∆t

0

Wa(ξ; WL,WR) dξ

= WR − 2∆t

∆x
(Fa(WR) − Fa(Wa(0; WL,WR))) .

(3.13)

The function Wa(.; WL,WR) denotes the solution of the Riemann problem for
(3.9) where the initial data is prescribed by (3.4). The index a has been introduced
to emphasize the dependence on the relaxation coefficient a.

As soon as WL and WR are defined from the equilibrium states wL and wR, it
is crucial to note from now on the following identities:

Fa(WL)|[ρ,ρu1,ρu2,E11,E22,E12] = f(wL),
Fa(WR)|[ρ,ρu1,ρu2,E11,E22,E12] = f(wR),

where the notation Fa(.)|[ρ,ρu1,ρu2,E11,E22,E12] denotes the restriction of Fa to the
component (ρ, ρu1, ρu2, E11, E22, E12).
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Second step: The relaxation. At time t = tn + ∆t, we define the updated approxi-
mate equilibrium solution wn+1(x) as follows:

wn+1(x) = t
(
ρn+1,−

i , (ρu1)
n+1,−
i , (ρu2)

n+1,−
i ,

(E11)
n+1,−
i , (E22)

n+1,−
i , (E12)

n+1,−
i

)
, x ∈ Ii,

(3.14)

and we set (π11)n+1
i = (p11)n+1

i and (π12)n+1
i = (p12)n+1

i .
In fact, this second step amounts to solving the system

∂tW = λR(W)

with the piecewise constant approximation Wn+1,−
i as initial data while λ tends to

infinity.

A summary of the scheme. To summarize, the numerical procedure we just de-
scribed enters the classical framework of the usual finite volume methods exactly:

(3.15) wn+1
i = wn

i − ∆t

∆x

(
fn
i+ 1

2
− fn

i− 1
2

)
,

where the numerical flux function is defined by

fn
i+ 1

2
= f(wn

i ,wn
i+1)

= Fa
i+ 1

2

(
Wa

i+ 1
2
(0; W(wn

i ),W(wn
i+1))

)
|[ρ,ρu1,ρu2,E11,E22,E12],

(3.16)

with Wn
i = W(wn

i ) defined according to the equilibrium, i.e., (π11)n
i = (p11)n

i and
(π12)n

i = (p12)n
i .

4. The entropy inequalities

The present section is devoted to establishing all the required stability properties
satisfied by the scheme (3.15)–(3.16). Namely, we establish the discrete formulation
of all the entropy inequalities (2.10). In addition, we prove that the updated ap-
proximate solution wn+1

i belongs to the admissible state space Ω as soon as wn
i ∈ Ω.

All these expected properties are obtained when assuming the CFL-like condition
(3.10), the Whitham condition (3.2), and the ordering condition (3.5). No addition
restrictions are assumed to establish the stability result. Now, we state our main
result:

Theorem 4.1. Consider the relaxation scheme (3.15)–(3.16) and assume the CFL-
like restriction (3.10), the Whitham sub-characteristic condition (3.2), and the or-
dering condition (3.5). Assume that wn

i ∈ Ω for all i ∈ Z. Then the updated
approximation wn+1

i belongs to Ω for all i ∈ Z:

(4.1) ρn+1
i > 0, (p11)n+1

i > 0, (p11)n+1
i (p22)n+1

i −
(
(p12)n+1

i

)2
> 0.

In addition, the following discrete entropy inequalities are satisfied for all i ∈ Z:

ρn+1
i F(sn+1

i ) − ρn
i F(sn

i ) +
∆t

∆x

(
{ρF(s)u1}n

i+ 1
2
− {ρF(s)u1}n

i− 1
2

)
≤ 0,(4.2)

ρn+1
i G(σn+1

i ) − ρn
i G(σn

i ) +
∆t

∆x

(
{ρG(σ)u1}n

i+ 1
2
− {ρG(σ)u1}n

i− 1
2

)
≤ 0,(4.3)
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where

sn
i =

(p11)n
i

(ρn
i )3

, σn
i =

(p11)n
i (p22)n

i − ((p12)n
i )2

(ρn
i )4

.

The functions F and G satisfy the convexity assumptions (2.8) and (2.9), respec-
tively. The discrete entropy numerical flux functions are defined as follows:

{ρF(s)u1}n
i+ 1

2
= (fρ)n

i+ 1
2
×

{
F(sn

i ) if (fρ)n
i+ 1

2
> 0,

F(sn
i+1) otherwise,

(4.4)

{ρG(σ)u1}n
i+ 1

2
= (fρ)n

i+ 1
2
×

{
G(σn

i ) if (fρ)n
i+ 1

2
> 0,

G(σn
i+1) otherwise,

(4.5)

where (fρ)n
i+ 1

2
is the first component of the numerical flux function (3.16).

Moreover, the following maximum principles are satisfied:

(4.6) sn+1
i ≥ min

(
sn

i−1, s
n
i , sn

i+1

)
, σn+1

i ≥ min
(
σn

i−1, σ
n
i , σn

i+1

)
,

and

F(sn+1
i ) ≤ max

(
F(sn

i−1),F(sn
i ),F(sn

i+1)
)
,

G(σn+1
i ) ≤ max

(
G(σn

i−1),G(σn
i ),G(σn

i+1)
)
.

(4.7)

To prove the above theorem, we need the following three results where we es-
tablish, as soon as the Whitham condition (3.2) is satisfied, that the relaxation
entropies decrease in L1-norm in the relaxation procedure. Its minimum will be
seen to coincide with the equilibrium entropies. The relaxation entropies are thus
compatible with the relaxation procedure in the sense of Chen, Levermore, and Liu
[9].

The first result is devoted to the characteristic variables for the system (3.9). For
the sake of clarity in the notation, we introduce the internal energy per direction:

ρeij = Eij − ρ
uiuj

2
, 1 ≤ i ≤ j ≤ 2,

to rewrite the pressure laws as follows:

pij := pij(τ, eij) = 2
eij

τ
, 1 ≤ i ≤ j ≤ 2,

with τ = 1/ρ.

Lemma 4.2. Let us set

I = π11 + a2τ,

X = e11 −
π2

11

2a2
, Y = e22 −

π2
12

2a2
, Z = e12 −

π11π12

2a2
.

(4.8)

The weak solutions of (3.9) satisfy with no restrictive condition:

(4.9) ∂tρϕ(I, X, Y, Z) + ∂xρϕ(I, X, Y, Z)u1 = 0,

where ϕ : R
4 → R denotes an arbitrary smooth function.

In the next statement, we propose entropies for the system (3.9) compatible
with the equilibrium entropies (2.6) and (2.7). These relaxation entropies will be
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a function of the characteristic variables (I, X, Y, Z) and defined over the following
open subset of R

4:

ω =
{

(I, X, Y, Z) ∈ R
4;

∀(τ, e11, e22, e12) ∈ R
4
+, a2τ − 3p11(τ, e11) > 0,

I = p11(τ, e11) + a2τ, X = e11 −
1

2a2
p11(τ, e11)2,

Y = e22 −
1

2a2
p12(τ, e12)2, Z = e12 −

1
2a2

p11(τ, e11)p12(τ, e12)
}

.

(4.10)

In fact, all points in ω coincide with an equilibrium state and satisfy the Whitham
condition (3.2). Specifically, let us assume that the Riemann initial data (3.4) for
the system (3.9) coincide with an equilibrium, i.e., (π11)LR = (p11)LR and (π12)LR =
(p12)LR. Then for all points of the Riemann solution, the point (I, X, Y, Z) defined
by (4.8) belongs to ω. Indeed, since the left and right states of the initial data
are defined by equilibrium states, then (I, X, Y, Z)LR belongs to ω. Now, since
(I, X, Y, Z) satisfies (4.9), it takes solely the values (I, X, Y, Z)L or (I, X, Y, Z)R

and thus belongs to ω. It is crucial to recall that, for the Riemann problem of
(3.9), the relaxation procedure considers initial data which are at the equilibrium
systematically. As a consequence, the above remark can be applied systematically.
Across the relaxation procedure, always we consider points (I, X, Y, Z) in ω.

Lemma 4.3. Let I, X, Y , and Z, functions of (τ, e11, e22, e12, π11, π12), be defined
by (4.8). There exist unique functions τ̄(I, X, Y, Z) : ω → R and ēij(I, X, Y, Z) :
ω → R, with 1 ≤ i ≤ j ≤ 2, such that

τ̄(I, X, Y, Z)|{π11=p11(τ,e11),π12=p12(τ,e12)} = τ,(4.11)
ēij(I, X, Y, Z)|{π11=p11(τ,e11),π12=p12(τ,e12)} = eij .(4.12)

Let us set

(4.13) s̄ = p11(τ̄ , ē11)τ̄3, σ̄ =
(
p11(τ̄ , ē11)p22(τ̄ , ē2) − p12(τ̄ , ē12)2

)
τ̄4.

Then the weak solutions of (3.9) satisfy

∂tρF(s̄) + ∂xρF(s̄)u1 = 0,(4.14)
∂tρG(σ̄) + ∂xρG(σ̄)u1 = 0.(4.15)

Let us note from now on that the linear degeneracy of the system (3.9) and the
transport equations satisfied by F(s̄) and G(σ̄) imply that the Riemann solution of
(3.9), detailed in Lemma 3.2, satisfies

F(s̄)(x, t) =
{

F(s̄L), if x
t < u�

1,
F(s̄R), otherwise,

G(σ̄)(x, t) =
{

G(σ̄L), if x
t < u�

1,
G(σ̄R), otherwise.

In addition, if we assume that the left and right states are equilibrium states, then
we have (s̄L, s̄R) = (sL, sR) and (σ̄L, σ̄R) = (σL, σR).

The last result concerns the minimum principle on the relaxation entropies:
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Lemma 4.4. Let I, X, Y , and Z, functions of (τ, e11, e22, e12, π11, π12), be defined
by (4.8) and let s̄ and σ̄ be defined by (4.13). Then

max
(π11,π12)∈R2

s̄ = s̄|{π11=p11(τ,e11),π12=p12(τ,e12)} = s,

max
(π11,π12)∈R2

σ̄ = σ̄|{π11=p11(τ,e11),π12=p12(τ,e12)} = σ.
(4.16)

As a consequence, for all F and G which satisfy (2.8) and (2.9) respectively, the
following minimum principles hold:

(4.17) min
(π11,π12)∈R2

F(s̄) = F(s) and min
(π11,π12)∈R2

G(σ̄) = G(σ).

Equipped with these three lemmas, we establish our main result.

Proof of Theorem 4.1. First, from the identities (3.11), (3.12), (3.13), and (3.14),
the updated density ρn+1

i reads:

ρn+1
i =

∆t

∆x

∫ ∆x
2∆t

0

ρa
i− 1

2
(ξ;Wn

i−1,W
n
i ) dξ +

∆t

∆x

∫ 0

− ∆x
2∆t

ρa
i+ 1

2
(ξ;Wn

i ,Wn
i+1) dξ.

Under the ordering condition (3.5), we have ρa(ξ;WL,WR) > 0. Then immediately
we obtain the positiveness of ρn+1

i for all i ∈ Z. To conclude the proof of the first
statement, (4.1), we have to establish the maximum principle, (4.7). Indeed, since
the functions F and G satisfy (2.8) and (2.9), directly we deduce (4.6) from (4.7).
Now, we have wn

i ∈ Ω which implies

min(sn
i−1, s

n
i , sn

i+1) > 0 and min(σn
i−1, σ

n
i , σn

i+1) > 0.

As a consequence of (4.6), we obtain sn+1
i > 0 and σn+1

i > 0, but for

sn+1
i =

(p11)n+1
i

(ρn+1
i )3

and σn+1
i =

(p11)n+1
i (p22)n+1

i −
(
(p12)n+1

i

)2

(ρn+1
i )4

.

Arguing the positiveness of ρn+1
i , property (4.1) is proved.

To establish (4.7), we recall that, under the CFL restriction (3.10), the function
Wh(x, tn+∆t) denotes the solution at time tn+∆t of the Cauchy problem (3.9) for
the piecewise constant initial data: the equilibrium state Wn

i . With clear notation,
we introduce Ih, Xh, Y h, and Zh to define s̄h according to the notation introduced
in Lemma 4.3. We assume (2.8) and (2.9) to enforce the functions w → ρF(s) and
w → ρG(σ) to be convex. We focus our attention on the function ρF(s), while the
maximum principle (4.7) for the function ρG(σ) is obtained by similar arguments.

Arguing (3.14), a direct application of the well-known Jensen lemma gives

(4.18) ρn+1
i F(sn+1

i ) ≤ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

{ρhF(sh)}(x, tn + ∆t) dx, i ∈ Z.

Now, the minimum principle (4.17) gives

ρn+1
i F(sn+1

i ) ≤ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

ρh min
(π11,π12)∈R2

F(s̄h)(x, tn + ∆t) dx(4.19)

≤ 1
∆x

∫ x
i+ 1

2

x
i− 1

2

{ρhF(s̄h)}(x, tn + ∆t) dx, i ∈ Z.(4.20)
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In addition, over each interval Ii = [xi− 1
2
, xi+ 1

2
) the functions Ih, Xh, Y h, and Zh

admit at most three values: ((I, X, Y, Z)n
i−1, (I, X, Y, Z)n

i , (I, X, Y, Z)n
i+1), respec-

tively. As a consequence, the function s̄h over the interval Ii admits at most three
values: sn

i−1, sn
i and sn

i+1, which completes the proof of (4.7).
Next, we prove the discrete entropy inequality (4.2), while the second one, (4.3),

is obtained by an easy adaptation. From Lemma 4.3, we know that the solution
Wh of (3.9) satisfies

∂tρ
hF(s̄h) + ∂xρhF(s̄h)uh

1 = 0.

By integration over (xi− 1
2
, xi+ 1

2
)×(tn, tn+∆t), after a straightforward computation

we obtain

1
∆x

∫ x
i+ 1

2

x
i− 1

2

{
ρhF(s̄h)

}
(x, tn+1) dx − ρn

i F(sn
i )

+
∆t

∆x

(
{ρF(s)u1}n

i+ 1
2
− {ρF(s)u1}n

i− 1
2

)
= 0,

where the numerical flux function {ρF(s)u1}n
i+ 1

2
is defined by (4.4). The sequence of

inequalities (4.18)–(4.20) immediately gives the expected discrete entropy inequality
(4.2). The proof of the theorem is thus concluded. �

To conclude the present section, successively we prove the three intermediate
lemmas.

Proof of Lemma 4.2. First, we assume that the solutions of system (3.9) is smooth
enough. From the relaxation equations which govern ρu1 and ρu2, we deduce that

∂tρ
u2

1

2
+ ∂xρ

u2
1

2
u1 + u1∂xπ11 = 0,

∂tρ
u2

2

2
+ ∂xρ

u2
2

2
u1 + u2∂xπ12 = 0,

∂tρ
u1u2

2
+ ∂xρ

u1u2

2
u1 +

1
2

(u2∂xπ11 + u1∂xπ12) = 0.

We subtract each relaxation kinetic energy ρ
uiuj

2 from the associated relaxation
total energy to obtain

∂tρe11 + ∂xρe11u1 + π11∂xu1 = 0,

∂tρe22 + ∂xρe22u1 + π12∂xu1 = 0,

∂tρe12 + ∂xρe12u1 +
1
2

(π11∂xu2 + π12∂xu1) = 0.

Arguing the continuity equation ∂tρ + ∂xρu1 = 0, we rewrite these three equations
above as

∂te11 + u1∂xe11 +
π11

ρ
∂xu1 = 0,

∂te22 + u1∂xe22 +
π12

ρ
∂xu1 = 0,

∂te12 + u1∂xe12 +
1
2

(
π11

ρ
∂xu2 +

π12

ρ
∂xu1

)
= 0.
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In addition, the approximate relaxation pressures π11 and π12 satisfy

∂tπ11 + u1∂xπ11 +
a2

ρ
∂xu1 = 0,

∂tπ12 + u1∂xπ12 +
a2

ρ
∂xu2 = 0,

which gives, after multiplied by π11/a2 and π12/a2, respectively,

∂t
π2

11

2a2
+ u1∂x

π2
11

2a2
+

π11

ρ
∂xu1 = 0,

∂t
π2

12

2a2
+ u1∂x

π2
12

2a2
+

π12

ρ
∂xu2 = 0,

∂t
π11π12

2a2
+ u1∂x

π11π12

2a2
+

1
2

(
π11

ρ
∂xu2 +

π12

ρ
∂xu1

)
= 0.

We immediately have

(4.21) ∂tX + u1∂xX = 0, ∂tY + u1∂xY = 0, ∂tZ + u1∂xZ = 0.

Moreover, from the relaxation continuity equation, we deduce

∂tτ + u1∂xτ − 1
ρ
∂xu1 = 0, τ =

1
ρ
,

to easily obtain

(4.22) ∂tI + u1∂xI = 0.

Now, let us consider a smooth function ϕ : R
4 → R. We deduce from (4.21) and

(4.22) the transport equation

∂tϕ(I, X, Y, Z) + u1∂xϕ(I, X, Y, Z) = 0,

to obtain the expected conservation equation (4.9). Since the system (3.9) only
admits linearly degenerate fields, the weak solutions of (3.9) also satisfy (4.9). �
Proof of Lemma 4.3. For the sake of simplicity in the notation, we set M =
(I, X, Y, Z). For all M ∈ ω, we search functions τ̄ : ω → R and ēij : ω → R

which satisfy

(4.23)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I = p11(τ̄(M), ē11(M)) + a2τ̄(M),

X = ē11(M) − 1
2a2

p11(τ̄(M), ē11(M))2,

Y = ē22(M) − 1
2a2

p12(τ̄(M), ē12(M))2,

Z = ē12(M) − 1
2a2

p11(τ̄(M), ē11(M))p12(τ̄(M), ē12(M)).

By definition of ω ⊂ R
4, for all M ∈ ω the above system admits a solution which

satisfies the Whitham condition (3.2). Now, this solution is shown to define a
unique function. To simplify the notation, we omit the dependence on M .

First, we focus on τ̄ and ē11. We write

p11(τ̄ , ē11) = I − a2τ̄ ,

and then

(4.24) ē11 = X +
1

2a2
(I − a2τ̄)2,



NUMERICAL APPROXIMATIONS OF 10-MOMENT GAUSSIAN CLOSURE 1825

to obtain

I = a2τ̄ + p11(τ̄ , X +
1

2a2
(I − a2τ̄)2) := Θτ (τ̄).

Moreover, the function Θτ is increasing:

Θ′
τ (τ̄) =

1
τ̄

(
a2τ̄ − 3p11(τ̄ , ē11)

)
> 0,

which concludes the existence and uniqueness of τ̄ but also ē11 by (4.24). In addi-
tion, we note that τ̄ and ē11 only depend on (I, X) and not on (Y, Z).

Concerning ē22 and ē12, we have

ē22(M) = Y +
1

2a2
p12(τ̄(I, X), ē12(M))2,(4.25)

Z : = Θe12(ē12)

= ē12(M) − 1
2a2

p11(τ̄(I, X), ē11(I, X))p12(τ̄(I, X), ē12(M)),
(4.26)

where the function Θe12 is increasing:

Θ′
e12

(ē12) =
1

a2τ̄

(
a2τ̄ − p11(τ̄ , ē11)

)
> 0,

and then we have the existence and uniqueness of ē12 but also ē22.
Now, with (τ, e11, e22, e12) fixed, we show that τ̄ = τ and ēij = eij , 1 ≤ i ≤ j ≤ 2,

as soon as the equilibrium is reached: π11 = p11(τ, e11) and π12 = p12(τ, e12).
Arguing the definition of X and I, given by (4.8), the equation Θτ (τ̄) − I = 0 is
rewritten as

Θeq
τ (τ̄) = 0,

with

Θeq
τ (τ̄) = a2(τ̄ − τ ) + p11(τ̄ , e +

a2

2
(τ̄ − τ )2 + p11(τ, e11)(τ − τ̄)) − p11(τ, e11),

where τ is the unique solution since the function Θeq
τ is increasing:

(Θeq
τ )′(τ̄) = Θ′

τ (τ̄).

Moreover, since at the equilibrium we have τ̄ = τ , from the identities (4.24), (4.25),
and (4.26) we immediately deduce ēij = eij with 1 ≤ i ≤ j ≤ 2.

To conclude the proof, we recall that all functions of M satisfy (4.9). We
note that s̄ and σ̄ are functions of the variable M and defined by (4.13). As
a consequence, we immediately deduce that the functions M → F(s̄(M)) and
M → G(σ̄(M)) satisfy the expected equations (4.14) and (4.15), respectively. �

Proof of Lemma 4.4. The proof is obtained after the computation of the derivatives
of the function s̄ and σ̄ understood as the function of (τ, e11, e22, e12, π11, π12) when
I, X, Y , and Z are defined by (4.8). We skip this easy but long computation, and
we give the following result:

∂s̄

∂π11
= 2

p11(τ̄ , ē11) − π11

a2(a2τ̄ − 3p11(τ̄ , ē11))
τ̄3,

∂s̄

∂π12
= 0,

∂σ̄

∂π11
=

2τ̄3

a2
(p22(τ̄ , ē22)(p11(τ̄ , ē11) − π11) + p12(τ̄ , ē12)(p12(τ̄ , ē12) − π12)) ,

∂σ̄

∂π12
=

2τ̄3

a2
(p12(τ̄ , ē12)π11 − p11(τ̄ , ē11)π12) .
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We immediately obtain that the equilibrium manifold {π11 = p11(τ, e11), π12 =
p12(τ, e12)} defines the unique extrema of the functions s̄ and σ̄. By computing the
second order derivatives of s̄ and σ̄, we establish that these extrema are, in fact,
maximum. �

5. Numerical results

In this section, we perform numerical experiments obtained with the relaxation
scheme (3.15)–(3.16). We propose to consider several Riemann problems over the
interval (−0.5, 0.5), the initial discontinuity being located at x = 0. We use a
uniform mesh made of 500 cells. The CFL number fixed to 0.5 according to the
CFL condition (3.10). All the results we display are systematically compared with
the exact Riemann solution and the approximate solution performed with the HLLE
scheme (see [16]) and the Lax-Friedrichs scheme (see [14, 18]), except for the last
test.

The first test is characterized by the following initial data:
ρ u1 u2 p11 p12 p22

left state 1 0 0 2 0.05 0.6
right state 0.125 0 0 0.2 0.1 0.2

This test is the classical Sod shock tube. The numerical results for t = 0.125 are
displayed in Figure 1. The numerical solutions obtained with the HLLE scheme
and the relaxation scheme have the same accuracy, while the Lax-Friedrichs scheme
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Figure 1. Sod tube problem: exact solution (fill line), relaxation
scheme (◦ symbol), HLLE scheme (� symbol), and Lax-Friedrichs
scheme (
 symbol).
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gives a very diffusive approximation. We note a better accuracy for the relaxation
scheme when approximating the contact wave. This is emphasized by the following
table where, we give the l1-norm of the error in %:

ρ u1 u2 p11 p12 p22

Relaxation 0.75 0.73 1.01 0.89 0.38 0.60
HLLE 1.08 0.70 1.23 0.86 0.45 0.78

Lax-Friedrichs 1.70 1.66 1.65 1.98 0.66 1.14

In the second test, we consider the following initialization:

ρ u1 u2 p11 p12 p22

left state 1 1 1 1 0 1
right state 1 -1 -1 1 0 1

The exact solution is made of two shock waves separated by a contact discontinuity.
The numerical approximations for t = 0.125 are displayed in Figure 2. Both HLLE
and relaxation schemes give accurate solutions. However, we observe a larger spike
for the relaxation approximation in the 2-contact discontinuity for the density and
the pressure p22. Let us note that these spikes are standard in the framework
of the classical Euler equations. Indeed, not only the relaxation scheme but also
the Roe scheme or the Osher scheme (for instance) involve the same spikes when
approximating shocks resulting from two opposing hypersonic flows (see Liska and
Wendroff [21] or Noh [24]). This difficulty is preserved in the present framework.
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Figure 2. Two shock waves problem: exact solution (fill line),
relaxation scheme (◦ symbol), HLLE scheme (� symbol), and Lax-
Friedrichs scheme (
 symbol).
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The next test is obtained with the following left and right states:

ρ u1 u2 p11 p12 p22

left state 2 -0.5 -0.5 1.5 0.5 1.5
right state 1 1 1 1 0 1

In contrast with the previous test, at this time the exact solution is made of two
rarefaction waves. The numerical approximations for t = 0.15 are displayed in
Figure 3. Once again, HLLE and relaxation schemes give approximate solutions
in good agreement with the exact solution. However, both schemes do not predict
accurate intermediate states for the pressure p22 with this level of mesh refinement.
Of course, good prediction of p22 is obtained as soon as the mesh is fine enough.

The last numerical test is devoted to improve the robustness of the relaxation
scheme. Indeed, the initial data is not assumed to belong to the hyperbolic domain
Ω. However, the numerical results displayed in Figure 4 show that the approximate
solutions obtained by the relaxation scheme seem to converge to a solution of the
initial system. We consider the following left and right states:

ρ u1 u2 p11 p12 p22

left state 2 1.05 0 -0.205 0.05 0.6
right state 0.125 0 0 0.2 0.1 0.2

where we note that the left pressure p11 is negative. Actually, severe numerical sim-
ulations (for instance, see Berthon and Dubroca [6]) involve physics which impose
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Figure 3. Two rarefaction waves problem: exact solution (fill
line), relaxation scheme (◦ symbol), HLLE scheme (� symbol),
and Lax-Friedrichs scheme (
 symbol).
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Figure 4. Nonhyperbolic problem: approximate solutions ob-
tained with the relaxation scheme for a mesh made of 500 cells
(◦ symbol) and 5000 cells (fill line).

that the trace of the pressure tensor is positive but do not impose a positive pres-
sure tensor. In Figure 5, we observe that the trace of the pressure tensor remains
positive during the simulation. Of course, since the pressure p11 is negative, both
HLLE and Lax-Friedrichs schemes do not iterate. In Figure 4, we just display at
time t = 0.1 the numerical solution obtained with the relaxation scheme where two
levels of mesh refinement are considered; respectively 500 and 5000 cells.
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Figure 5. Trace of the pressure tensor in the case of the nonhy-
perbolic problem.



1830 CHRISTOPHE BERTHON

Acknowledgments

The author is thankful for helpful discussions with P. Charrier and B. Dubroca.

References

1. D. Aregba-Driollet and R. Natalini, Convergence of relaxation schemes for conservation laws,
Appl. Anal., 61 (1996), Nos. 1-2, 163–190. MR1625520

2. M. Baudin, C. Berthon, F. Coquel, R. Masson, and Q. H. Tran, A relaxation method for two-
phase flow models with hydrodynamic closure law, Num. Math., 99 (2005), No.3, 411–440.
MR2117734 (2005h:76079)
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