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AN A PRIORI ERROR ANALYSIS
FOR THE COUPLING OF LOCAL DISCONTINUOUS GALERKIN
AND BOUNDARY ELEMENT METHODS

GABRIEL N. GATICA AND FRANCISCO-JAVIER SAYAS

ABSTRACT. In this paper we analyze the coupling of local discontinuous Ga-
lerkin (LDG) and boundary element methods as applied to linear exterior
boundary value problems in the plane. As a model problem we consider a Pois-
son equation in an annular polygonal domain coupled with a Laplace equation
in the surrounding unbounded exterior region. The technique resembles the
usual coupling of finite elements and boundary elements, but the correspond-
ing analysis becomes quite different. In particular, in order to deal with the
weak continuity of the traces at the interface boundary, we need to define a
mortar-type auxiliary unknown representing an interior approximation of the
normal derivative. We prove the stability of the resulting discrete scheme with
respect to a mesh-dependent norm and derive a Strang-type estimate for the
associated error. Finally, we apply local and global approximation properties
of the subspaces involved to obtain the a priori error estimate in the energy
norm.

1. INTRODUCTION

The local discontinuous Galerkin method is nowadays a very well-established
numerical tool to solve a large class of diffusion dominated and purely elliptic equa-
tions (see, e.g., [§], [10], [I1], and [28]). Moreover, as shown recently in [5] and
[6], the applicability of this approach also includes some nonlinear boundary value
problems in heat conduction and fluid mechanics. In fact, the results from [2§] are
extended in [5] to a class of nonlinear diffusion problems with mixed boundary con-
ditions, whereas a new mixed LDG method for certain nonlinear models appearing
in quasi-Newtonian Stokes fluids is studied in [6]. We also refer to [22] for related
results dealing with the extension of the interior penalty DG method to quasilinear
elliptic equations. As already emphasized by many authors, the main advantages of
the LDG methods are the high order of approximation provided, the high degree of
parallelism involved, and its suitability for h, p, and hp refinements. In particular,
the latter has motivated the development of associated a posteriori error estimators
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allowing the implementation of adaptive DG and LDG methods (see, e.g., [3], [,
[6], and [29]).

On the other hand, not much has been done in connection with the combina-
tion of LDG and other procedures for elliptic boundary value problems. To this
respect, we can only refer to [12], [I4], [I5], [16], [27], and [31], where the coupling
of either DG or LDG with continuous finite element methods (FEM) has been an-
alyzed. For instance, a coupled continuous-DG method is studied in [14] for the
numerical solution of linear convection-diffusion problems, and the coupling of the
LDG method with the Raviart-Thomas mixed-FEM is proposed in [12] for elliptic
equations modeling flow problems. Similarly, the coupling of continuous and DG
methods is utilized in [I6] to develop a new discrete scheme for two-dimensional
shallow water equations. Nevertheless, to the authors’ knowledge, the coupling
of LDG with another widely applicable procedure, such as the boundary element
method (BEM), has not been investigated yet. The suitability of BEM for homo-
geneous linear boundary value problems in bounded and unbounded domains is
well known. Furthermore, the coupling of BEM and FEM is already recognized
as a very powerful technique for solving a large class of transmission problems in
physics and engineering sciences (see, e.g., [7], [18], [19], [21], [23], [25], [26], [24],
[30], and the references therein). This procedure combines the advantage of BEM
for treating homogeneous domains with that of FEM for dealing with linear and
nonlinear materials. However, when the solution in the FEM region is known to
be rough, an LDG method is certainly more appropriate for its approximation. In
particular, LDG does not require any continuity condition across the interelement
boundaries, it is robust with respect to discontinuous coefficients, and it allows the
use of different polynomial degress in each element.

According to the above, and motivated by the need of further developments of
combined methods, we now propose to apply LDG instead of FEM, thus yielding
the coupling of LDG and BEM. It is important to point out in advance that the
coupling of BEM with any other DG methods could be obtained with essentially
the same approach to be developed here. As the starting point of the analysis
for the coupled approach, we concentrate here on linear exterior boundary value
problems arising in potential theory. In forthcoming works we will address nonlinear
behaviours and other areas of application. In order to describe our present model
problem, we first let £y be a simply connected and bounded domain in R? with
polygonal boundary I'y. Then, given f € L?(R? \ Q) with compact support, we
consider the exterior Dirichlet problem:

(1.1)
~Au=f in R*\Qp, uw=0 on Ty wux)=0(1) as |x|— +oo.

The Dirichlet boundary condition on I'y has been taken homogeneous only for
simplicity of the presentation. The analysis in this paper carries over, with minor
modifications, to the case u = g on I'y, with ¢ sufficiently smooth. We also remark
that the behavior of w at infinity can be described, equivalently, by demanding that
u € WHR?\ Qq) (see [I7] for a definition of this Beppo-Levi space). Next, let T’
be another simple closed polygonal curve such that the support of f falls inside the
annular domain 2 determined by I'y and I'. We further assume that this support

does not intersect I'. Then, (LI)) can be split, equivalently, as a Poisson equation
in Q:

(1.2) —Au=f in Q wu=0 on Iy,
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and Laplace equation in the unbounded region Q. := R?\ (Qy U Q):

(1.3) —Au=0 in Q, ukx)=0(1) as [x|— +oc0,

coupled with the transmission conditions:

(14) lim u(x) = lim u(x) and lim Vu(x)-v(xo) = lim Vu(x)-v(xo)
xeﬂo xEQS xeﬂo XGQS

for almost all x¢ € I', where v(x() denotes the unit outward normal to xg.

The main purpose of this work is to numerically solve (II]) by means of the
coupled LDG-BEM approach, which basically consists of applying LDG to (L2)
and BEM to (IL3). The rest of the paper is organized as follows. In Section 2] we
derive the resulting discrete scheme. This includes the boundary integral equation
formulation for the exterior problem (I3]), the LDG setting of the interior problem
(T2, the introduction of the auxiliary mortar-type unknown, and then the coupled
LDG-BEM scheme. In Section B] we define appropriate mesh-dependent norms
and prove the unique solvability and stability of the coupled method. Finally, in
Section Ml we deduce a Strang-type estimate and prove the corresponding a priori
error estimate, which is shown to be optimal with respect to all the meshsizes
involved, except for the one associated to the mortar-type unknown. Nevertheless,
we also show that the regularity of the solution in the exterior region allows us to
circumvent this lack of optimality.

Throughout this paper, ¢ and C, with or without subscripts, bars, tildes or hats,
denote positive constants, independent of the parameters and functions involved,
which may take different values at different occurrences. In addition, given any
linear space V, the corresponding vector-valued space V x V', endowed with the
product norm, will be denoted in boldface V. If O is an open set, its closure, or
a polygonal curve, and s € R, then |- |50 and || - ||s,0 denote the seminorm and
norm in the Sobolev space H*(0O). In particular, the norms of H*(I") are denoted
| - |ls.r- Also, (-,-) denotes both the L?(T') inner product and its extension to the
duality pairing of H—*(T") x H*(T).

2. THE cOUPLED LDG-BEM APPROACH

We first follow [10] (see also [5], [8], and [28]) and introduce the gradient o :=
Vu in  as an additional unknown. Hereafter, u is the exact solution of (L2)—(L3).
Also, we define the following auxiliary quantities that will later act as unknowns:

Alxo) = lim Vu(x)-v(xo), 7(x0):= lim Vu(x)-v(xo),
XEQD XGQS

and

X—X(

1
o(xp) := lim wu(x)—k with k:= —/u,
T
XEQ, r

for almost all xg € I'. In this way, (I2) can be reformulated as
(2.1) c=Vu in Q, —dive=f in Q, u=0 on Ty,
and the transmission conditions (4]) become

(2.2) len)}O u(x) = p(x0) + K V(a.e.) xo €T and A=~ on T.
xXEN
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2.1. The boundary integral formulation in the exterior domain. We begin
with Green’s representation formula for u in €., that is,

<m>mw:Amwmm¢wm—AE@wwmy Vx € Q.

where E(x,y) := —% log |x —y]| is the fundamental solution of the two-dimensional
Laplacian.
It follows from (Z3)) and the jump conditions of the layer potentials that
(24) We — — (I-K)y = -y on T,
24
AI-K)e + Vy + k = 0 on T,

where V, K, K’, and W denote the boundary integral operators associated to
the single, double, adjoint of the double, and hypersingular layer potentials, re-
spectively. We recall from [I3] that their main mapping properties are given by
V: HY2(T) — HY*T), K : HY/*(T) — HY*(T'), K’ : H~Y?(T) — H~'/2(I),
and W : H/2(I') — H~'/2(I'), and that they are defined as follows:

Vu(x) ::/F Ex,y)puly)dsy V(ae)x e I',\Vpu € H*1/2(F),
Ki(x) = /Fal,(y)E(x,y)w(y) dsy V(ae)x e T,V € Hl/Q(I‘),
K'u(x) = /F D) E(x,y)u(y)dsy V(ae)x € I',Vpu € H-YX(T),

Wih(x) := —8,,(,()/F Oy Ex,y)(y)dsy V(ae)x € I',V¢ € Hl/Q(F),

where 0, (x) stands for the normal derivative operator at x € T'.

Next, we observe from the definition of ¢ and x that the unknown ¢ belongs to
the space Hy/*(T') := {¢y € HY/>('):  (1,4) = 0}, and, according to the behaviour
of u at infinity, there holds vy € Ho_l/Q(I‘) ={pe HY*I): (u,1)=0}. Hence,
incorporating the transmission condition given by v = A on I' (continuity of the
normal derivative of u), the boundary integral equations (2.4 can be reformulated
as the system: find (p,7) € Hé/z(F) X Hal/z(F) such that

0y VRY - (GI-KNY) = () Ve Hy*(),
(L GI-K)e) + (V) =0 Ve Hy D),
together with the a posteriori computation of the constant :

k=g { LGT-009) + Ly ]

The analysis of (ZH]) and its discrete counterpart below will strongly depend on
the symmetry and ellipticity properties of V and W, which are given by

(VYY) = (v, V) Yy, y € H (),
We,¥) = (Wi, p) Vo, € HY/2(T),
(26) 2 —1/2
(V) = C||HH_1/2,F Ve Hy, (D),
Wi, ) > ClelR e Vo € HY*(D).
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2.2. The LDG formulation in the interior domain. We now let 7, be a shape-
regular triangulation of 2 (with possible hanging nodes) made up of straight trian-
gles K with diameter hg and unit outward normal to K given by vi. As usual,
the index h also denotes h := maxge7, hx. Then, the edges of 7}, are defined
as follows. An interior edge of Ty, is the (nonempty) interior of 0K N K’ where
K and K’ are two adjacent elements of 7. Similarly, a boundary edge of Tj is
the (nonempty) interior of 9K N Ty or K N T, where K is a boundary element
of 7. For each edge e, h, represents its length. In addition, we define £(K) :=
edges of K, &: list of interior edges (counted only once), £} list of edges on I,
5};0: list of edges on I'g, and I: interior grid generated by the triangulation, that
is, I, == Uf{e : e € &M} Also, we let I') and I', be the boundaries 'y and T,
respectively, divided into edges.

In what follows we assume that 7; is of bounded variation, which means that
there exists [ > 1, independent of the meshsize h, such that -1 < }}LL—; < [ for
each pair K, K’ € 7j, sharing an interior edge. We note that the hypotheses on the
triangulation imply that the cardinality of £(K) is uniformly bounded, and that
for each e € £(K) there holds hx < Clhe.

In order to introduce the LDG approach, we first multiply the partial differential
equations in (Z1]) by smooth test functions 7 and v, respectively, and integrate by
parts over each K € 7j. Then, the basic idea is to consider a discrete setting of the
resulting local conservation laws, but with the traces of ¢ and u on the boundary
0K of each K € 7} being replaced by suitable numerical approximations ¢ and 4,
respectively, which are named numerical fluzes.

To this end, given m € N, we define the finite element spaces

(2.7) Vii=[[ P(K) and =,:= [] P(X),
KeTy, KeTy,

where P(K) := P, (K) and P(K) := P.(K), with r = m or » = m — 1. Here-
after, given an integer k¥ > 0 and a domain S C R2, Py(S) denotes the space
of polynomials of degree at most k on S. Also, given v := {vk}xer, € Vi and
T :={Tk }KkeT, € Xh, the components v and Tk coincide with the restrictions v|g
and 7|k, when v and 7 are identified as elements in L?(2) and L?(Q), respectively.
Further, when no confusion arises, we omit the subscript K and just write v and 7.

Hence, we consider the following formulation: find (o, up) € X5 x V3, such that
for each K € 7j, there holds

/Uh-T+/uh(diVT)—/ a(r-vg) = 0 V7reX,,
K K 0K

/oh-Vv —/ (0-vi)v /fv VoveV,,
K 0K K

where the numerical fluxes u and &, usually depending on uy,, oy, and the boundary
conditions are chosen so that some compatibility conditions are satisfied.

(2.8)
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The explicit definitions of these fluxes require the introduction of further nota-
tion. Given s > 1/2, we now let

= H H*(K), 2(I) H L(e

KeT, eegmt
LY, UuTYuTy,) = H L%(e), Py(Ip) H Py(e
e€EIMUE, P UEL ecgjnt
Po(InuTh):= ] ‘Pole) and Po(Ty):= [] Pole
cEEMUELD e€El

An analogue remark to the one given before, concerning components and restric-
tions of the elements in V}, and 3, is valid here for each one of the above product
spaces. Also, we will not use any symbol for the trace on edges, provided it is
clear from which side of an interior edge we are taking the trace. Hence, given
v € HY(73,), we define the averages {v} € L?(I;) and jumps [v] € L%(I) on the
interior grid I, by

{v}e == $(vk +vk/) and [v]e == vkvK + Vv Ve € E(K)NEK).

Similarly, for vector valued functions 7 € H(7},), we define {7} € L2(I;) and
[7] € L*(1n) by

{T}GZ:%(TK+TK/) and HT]]G::TK~I/K+TK/~I/K/ Veeg(K)OE(K')

In addition, we let a € Py(I, UTY) and 8 € Po(I},) be given functions and assume
that there exist C, ¢y, ¢; > 0, independent of the grid, such that

(2.9) max || <C and 0<c¢y<hsa<e,
eeglnt

where hg € Py(I, UTY) is defined by hel. :=h. Ve € EMUE".

Then, using the approach in [§] and [28], the flux operators u : H(7;) —
L*(I,uTY UTy) and & : HY(7;,) x HY(7;,) x L*(T') — L2(I, UT9 UT},) are defined
componentwise as follows:

{vle + Be - [v]e if ee€ &M,
u(v)e:=4 0 if ecé&”,
Ve if ee 5,{,
for all v € H'(T3,), and
{7}e = [7]e Be — ac[v] if e€ &t
00, T,8)e = { Te — Qelele if ee 5;1:0,
Ve if eeép,

for all (v,7,€&) € HY(T;,) x HY(T},) x L3(T).

We now introduce a discrete approximation of A. To this end, we let I'; be
a second partition of I', independent of the partition I', inherited from 7T, and
denote by 55 the corresponding list of edges €. Then, given k € N, we define the
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subspaces:

X; = {g;leﬁ(r): &l € PL(R) Ve € 5{},
(2.10)
gh €X; /gh - o

and let \; € X% be an unknown approximating A. Hence, we consider (2.8])
with numerical fluxes @ := u(up) and & := & (un,on, A;), integrate by parts the
second term of its first equation, and obtain the formulatlon find (on,un, ;) €
3 x Vi x X% such that for each K € 7} there holds

(2.11)

/Uh-T—/Vuh-T—I—/ (up — ) 7 v =0 VT e,
K K oK

/Uh-Vv—/ (6-VK)U—/ Ao = /fv VveV,.
K dKN(QULy) OKNT K

Next, we sum up (ZI1) over all K € Tj, apply well-known algebraic identities,
and arrive at the global LDG formulation: find (op, us, Aj;) € p X Vi, x X% such
that
(2.12)

/CTh-T{/vhuh'TS(uh,T)} = 0 VTGE}I,

Q Q

{/ Vv - op —S(v,ah)}—l—a(uh,v)—/)\;lv = /fv Vv eV,
Q r Q

where V;, stands for the piecewise defined gradient, and S : H*(7;,) x H!(7;,) —

and o : HY(73,) x H'(7;,) — R are the bilinear forms defined by

(2.13)

Stw.r)i= [ [l (r}=[18) + [ w(rv) V) € H(T) x HI(T),
Iy Lo

and

(2.14) oa(w,v) ::/ a[w] - [v] +/ aww Y (w,v) € HY(T,) x HY(T;,),

In, To

with the traces of w, v, and 7 on I'y being certainly defined elementwise, not
globally.

We remark that if w € H'(Q), with ¢ > 1, then [w] = 0 on I;. Additionally, if
w = 0 on Iy, then S(w,7) = 0 for all 7 € H'(7},). Furthermore, if —Aw = f in
and t > 3/2, then simple computations show, with ¢ := Vw and \ := d,w, that
there holds
(2.15)

oo Vw7 — S(w,T) = 0 Ve HYT,),
LA, |

{/thv~a—5(v,a)}—l—a(w,v)—/r)\v _ /va Vo e H(T).

We end this section by observing that the definitions of averages, jumps, and
fluxes, as well as the bilinear forms S and «, can be extended to (v,w,7) €
HY/?%¢(T;,) x HY?%<(T;,) x HY/?*<(T,) for any € > 0.
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2.3. The coupled LDG-BEM scheme. We now let I'; be a third partition of
I', independent of the partition I'j, inherited from 7}, and denote by 55 the cor-

responding list of edges €. In addition, given keN , we introduce the boundary
element subspaces:

Y; ;:{ SeC(l): Wl € PL(@) Ve € 5,{},

YEO:{¢E€YE: A1/)ﬁ=0}
Zyi={u; € IAD): mle € Py, () VE € £L},

%:{MEGZ}:: /F;LE: }

Then, we substitute A by A; in the right-hand side of the boundary integral
equations (Z3) and define its discrete version as follows: find (¢5,7;) € YEO x Z}%
such that

(2.16)

<W<Pﬁa1/)> - <(%Iil€/)ﬁyﬁaw> = 7<)‘}va/¢)> v 1/) € Yfloa
(n, (3T = K)pp) + (1, V73) = 0 VueZ.

In addition, the transmission condition given by the first equation in (22)) is imposed
weakly, at the discrete level, as follows:

(2.18) (Cun) — (pp) =0 VEe X,

Therefore, 212)), 2I7), and ZI8)) lead to our coupled LDG-BEM formulation:
find (o, un, A;, 05,7;) € Bn X Vi X X}% X Y7? X Zg such that
(2.19)

(2.17)

Qoh~7—p(uh,7) =0
p(v,on) + alup,v) — (A5, v) = /va7

<§7uh> - <€’ (Pﬁ> =0

<>‘E7’¢)> + <W<pﬁa 17[}> - <(%I - ’C')“Ygﬂ/)> =0,

<Na (%I - ’C)QOE> + <,LL, V7ﬁ> =0,

for all (1,v,&, 9, 1) € Ty x Vj x X% X YEO X Z}%, where p : H(7;,) x HY(7;,) — R
is the bilinear form defined by

(2.20) p(u,T) == /thv -7 —S(v,7) Y (v,7) € HY(T) x HY(T,) .

It is important to remark here that A; plays the role of a mortar-type auxiliary
unknown gluing the LDG and BEM formulations in a suitable way, as we will see
below in Section 3] where the unique solvability and stability of (2.19) is proved. On
the contrary, the eventual replacement of A; in (2.19) by the exterior approximation
7;, of the normal derivative of u would yield an overdetermined coupled formulation
with 5 equations and 4 unknowns. This would certainly add further difficulties
for computing the solution (whenever it exists) of the resulting linear system. In
particular, determining the linearly independent equations could be expensive and
numerically unstable.
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On the other hand, we also note that an element-by-element formulation for
the LDG part, suitable for computational implementation, is straightforward from
@I9). In addition, the constant x needed to compute the behaviour at infinity of
the solution u can be approximated a posteriori either by

1 ) 1
th——m/r {(iI—IC)goh+V7h} or Kp = il /Fuh.

2.4. The reduced coupled LDG-BEM scheme. In order to study the solvabil-
ity and stability of (219), and following the usual analysis for LDG methods, we
derive in this section an equivalent reduced formulation. For this purpose, we now
let Sy, : Hl(’]}I) — 35, be the linear operator associated to the bilinear form S when
restricted to H'(7;) x 3. In other words, given w € H'(7}), Sp(w) is the unique
element in X satisfying

/Sh(w) -7 = S(w,T) VT1eX,.
Q

According to a remark given in the previous subsection, we observe that if w is
such that w € H'(Q), with ¢ > 1, and w = 0 on Ty, then Sj,(w) = 0.

Next, we let By, : H'(7;,) x H*(7;) — R be the bilinear form defined by
(2.21)

By (w,v) := a(w,v) + /Q(Vhw = Sh(w)) - (Vv — Sp(v)) Yw,v € HY(T},),

and denote by IIx, the L?(Q)-projection onto ¥j,. We have the following technical
result.

Lemma 2.1. Let w € H'(Q), with t > 3/2, such that w = 0 on Ty and Aw €
L2(Q). Then

Bp(w,v) = /Q(—Aw)v—l—S(u,Vw—th(Vw))—I—/Fv(Vw-V) Yo € HY(T).

Proof. Because of the hypotheses on w we easily find that [w] = 0 on I, Sp(w) = 0,
and a(w,v) =0 for all v € H(T}). It follows that

Bp(w,v) = /Vw th—/Vw Su(v)
Z/Vw Vv—/Hg,(Vw) Sy (v)

KeTy,

) {/K(—Aw)v—k/aK(Vw : VK)U} — S(v, I, (V).

KeTy,

In addition, since Aw € L?(Q), we have Vw € H(div;Q) and hence [Vw] = 0
Therefore, we deduce that

Z / (Vw - vk) v—/{v} [Vw] + /[[v {Vu)}—l—/Q (Vw -v)

— Zj[z]].{vw}+/rov(Vw-y)+/Fv(Vw~v) = S(v,Vw)+/Fv(Vw-V),

which, together with the previous expression for By (w, v), completes the proof. O

The equivalence between ([2I2]) and a reduced problem involving Bj is now
established.
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Lemma 2.2. Let (o4, un, \j;) € Zp x Vi, X X% be a solution of 2I2)). Then there
holds

(2.22) B;L(uh,v)z/fv—l—//\ﬁv Yo e V.
Q r

Conversely, if (up, A;) € Vi ¥ X% satisfies 222)) and oy, := Vypup — Sp(uyp,), then
(oh, un, A3;) is a solution of Z.I2).

Proof. Let (on,un, \;) € Zp x Vi X X% be a solution of (2I2). According to the

first equation of (ZI2)) and the definition of Sy, we can write

/0h~7—/(vhuh—sh(uh))~7:0 VTEEh,
Q Q

which, noting that Vyu, € Xy, yields o), = Vjup, — Sp(up). Then, replacing this
expression in the second equation of ([2I2)) we obtain (Z22). The converse result
follows readily. We omit details. O

At this point we observe that for all w,v € V}, we can write

Bp(w,v) = a(w,v) + /Q Viw - Vpv + /Q Sh(w) - Sp(v)
— S(w, Vi) — S(v, Vyw) = B (w,v),

where BY is a bilinear form defined in H?(7;,) x H?(7},). Because of the coincidence
in the discrete spaces, B also serves for a primal formulation of the LDG (see [2]).
Furthermore, we note that if w € H'(Q2), with ¢ > 3/2, is such that w = 0 on Ty
and Aw € L?*(Q), then

Bg(w,v):/g(—Aw)v—i—/FU(Vw-V) VYo € H(Tp).

In the forthcoming analysis we utilize the bilinear form By, which adds an in-
consistency term depending on S (see Lemma [ZT]) but is defined in the larger space
HY(T,) x HY(Ty).

We now let D and D : (HY2(I') x H~Y/2(T)) x (HY*(T') x H™'/2(I")) — R
be the bilinear forms obtained after adding and subtracting the equations in (2.3]),
that is,

D((,7), (¥, 1)) = W, o) = (3T =K'y, 9) + (G —K)gp) + (1, V)

and
D((¢,7), (¥, 1)) := We,¥) = (3T = K')v,¢) — (1, (3T —K)p) — (1, V)

for all (p,7), (¥, ) € HY?*(T) x H-/(T).

According to the mapping properties of the boundary integral operators we ob-
serve that D and D are bounded. In addition, as a consequence of (2.6, we deduce
that D is symmetric and that D is strongly elliptic on HS/Q (T) x H(;I/Z (T). In par-
ticular, the ellipticity of D allows us to define the linear operator g; : H —1/2 T —
Y}A? X Zg, where, given ¢ € H~/2(I), g;(§) = (g}%(f), g%(f)) is the unique element
in YEO X Zg such that

(2.23) D(g; (6), (b)) = (6.0)  V(b,p) € YO x 22,
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or, equivalently, with D instead of D,
(2.24) Dig; (), () = (E,0) V(o) € VO x 20

Thanks to the lifting operator g7, we can now establish the following equivalence
result.

Lemma 2.3. Let (o4, un, \;, ¢7,7;) € Bn X Vi X Xg X YEO X Z% be a solution of
@I9). Then there holds

By (un,v) — (Aj,0) = /fv Vv eV,
Q
Eun)  + (68O = 0 VE e XD,
Conversely, if (un, ;) € Vi x X—g satisfies (220) and o := Vyup — Sp(un),
(©5,73) = 83 (=A;), then (on,un, A;, ¢5,7;) is a solution of (ZIJ).
Proof. Let (on,un, Ny, 07,7;) € Zn X Vi X XEO X Y}A? X Z}% be a solution of (Z19).
It is easy to realize that the last two equations in (2I9) imply that
(2.26) (0n7) = 8:(=X) = (g (-2). &2 (=27)-
Therefore, replacing ¢, by g}ll(f)\;b) in the third equation of (ZI9), and applying

Lemma [Z2] we arrive at ([225). The converse result follows from the definition of
g; and Lemma Further details are omitted. O

(2.25)

3. UNIQUE SOLVABILITY AND STABILITY

In this section we prove the unique solvability and stability of (2I9) through the
corresponding analysis of the equivalent reduced formulation (Z28)). To this end,
we follow [§] and first introduce the seminorms

—1/2 —1/2
Wl = IViolda, o2 = hg PRlIR L, + lhe P02y, Yo € HY(T),

and the norm

ol = o, +10lf Vv e HY(Th).
In addition, in order to deal with the mortar-type unknown A;, we need to define
the seminorm:

(3.1) = s VR

> hl e e HYA(D),
o4, ev; 197120

which clearly satisfies ||z < [|€]|-1o,r for all ¢ € H~'/3(I"). Moreover, through-
out the rest of the paper we assume that |- | is a norm in X3, which is equivalent
to || . H*I/Q,F in X’NL

In particular, we will show in Lemma [3.1] that the lower bound

1€l > Cliéll=1/2,r
holds for all § € Xj, if a technical condition on the mesh sizes is satisfied. Indeed,
let us now assume that the partition I'; is uniformly regular, which means that there

exists ¢ > 0, independent of E, such that |e| > chforale e Sg . This assumption

yields the inverse inequality for Xj, which says that for any real numbers s and ¢
with —1/2 < s < ¢ < 0, there exists C' > 0 such that

(3.2) IEller < CRTEllsr V€ € X5
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Also, we recall here the approximation property of the space Y7, which establishes
that for any 1/2 < t < 3/2 and for any ¢y € H'(T'), there exists 12;3 € Y; such that
(3.3) 1o = dillijor < CRTV2 @]l

Then, we can prove the following result.

Lemma 3.1. There exist positive constants Co, C, independent of the meshsizes,
such that for each h < Cyh there holds

€l = éH&H*l/Q,F Ve X;.

Proof. Given § € X;, we let 2z € H'(Q) be the unique weak solution of the
boundary value problem

—Az+2=0 in Q, z=0 on Iy, 0z=¢& on T.

Since ¢ € H~Y/2T(T) for some § > 1/2, we have z € H'™(Q) and ||z||1350 <

clléll—1/24sr- In addition, there also holds [|z][1,0 < cl[{||-1/2,r- Then, we let
Y= z|lp € HY?*9(T) and apply the approximation property (B3) to deduce the
existence of ¢; € Y; such that
1Y = ¥zllijor < CR |[¥]l1j246r -
Next, using trace theorem and inverse inequality (3:2)), we find that
14 = illjzr < CR [[Glljarsr < Ch ||z]14s0
~N 6

(3.4) . h
<Ch €l -1j246r < C z 1€l =1/2,r -

Similarly, applying triangle inequality, estimate ([B3.4]), and trace theorem, and
then assuming that A < h, we obtain

[¥illi2r <Y = dgllizr + 19020

(3.5) 2’
<C z I€ll=1/2r + Nzl < Cléll-1/2r-

On the other hand, it is easy to see that
(3.6) (€¥) = (Bv2,2) = |lzlTq = Clovzl2y)or = ClEIZ 1 2r-
Consequently, employing (3.4)), (3.5]), and (3.6]), we can write

€l == sup

orvieyy [Willar = 10slljer —  lEl-r2r
i ~\0
o)l Hedi-wl (7
- > ¢léll—rjer — C 4 = o
— €ll-1/2r IEll=1j2r  — I€ll-1/2.0 . €l =1/2,0

which completes the proof with constants Cy and C depending on ¢, C, and §. O

We now concentrate on the analysis of the reduced coupled LDG-BEM scheme
[225). We begin with the necessary estimates for the bilinear form By,.
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Lemma 3.2. There exist positive constants ¢, C, independent of h, such that

(3.7) |Br(w,v)| < clwlln ol Vw, v e H ()
and
(3.8) Bu(w,v) = Clol; Vv e H'(T,).

Proof. We refer to Proposition 3.1 in [28] (see also Lemmas 4.1 and 4.2 in [5] for
the corresponding nonlinear case). We only recall here, for further use, that

1/2
(3.9) [S(w, )| < Clwl*{ > hK||T|(2),c')K} V(w,m) € H'(T;)xH (Ty),
KeTy,

which, according to a discrete trace inequality and a simple inverse estimate, yields
(3.10) ISn(w)lloe < Clwl,  Yw e HY(T).
O

The boundedness of the operator g; with respect to the seminorm | - |; is now
established.

Lemma 3.3. There exists a positive constant C, independent of the meshsizes,
such that for all ¢ € H=Y/2(T)

lgs @1l == llgg (2 + 1821720 < CIEl;-
Proof. Since D is elliptic on H3/2(F) X H51/2(I‘), there exists C' > 0 such that
CllW, wI? < D), (W, ) ¥ () € Hy*(D) x Hy V*(D).
In particular, given & € H~'/2(T"), it follows that

Cllgs (O < D(g;(€),85(6)) = (€85 () < €l lgg ©lhyar < I€l7 g @Il
which yields the required estimate. O
A symmetry property and further estimates for the first component of g; are
shown next.
Lemma 3.4. There holds
(3.11) (€ gi(w) = (n.gi(€) V& ue H VD).

In addition, there exist positive constants ¢, C, independent of the meshsizes, such
that

(3.12) (& gr ()] < clélyluly V& p e HTVA(I)
and
(3.13) (€.gh€) > Cle? Ve e HYAI).

Proof. Let &, u € H™'/2(T'). Using the definition of g; (cf. (224)) and the sym-
metry of D, we obtain
(6,25 (1) = D(g;(6),2;(1) = D(g;(n),8;(8) = (1,25 (6))
which proves (BI1]). Now, noting that g%(u) € Y}A? C Y; and applying the definition
of | - |; and Lemma 3.3, we can write
(€ g5 ()| < 1€l g (W12 < 1€l g (0l < eléls el
which is B12]).
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On the other hand, we note that each ¢; € Y; can be decomposed as ¢; = ¢%+c,
with ¢2 = (’(/};\L - ﬁ Jr 1%) € YEO and ¢ := ﬁ Jr 3 € Po(T). This decomposition
is stable, and there exists C' > 0 such that ||1/)701||1/2’1" < ClYgllij2,r for all ¢y € Y;.
In addition, given £ € H0_1/2(I‘), it is clear that (£, ;) = <f,1/)}%> for all ¢ € Y;.

Therefore, applying the definition of g; (cf. (223)), and the boundedness and
ellipticity of D, it follows that

I€l; = sup M < C sup 7@’1/}?‘)
otvrev; [1¥5ll/2,r ozvrev? 1¥zlly2r
D(g;(£), (¢3,0
~ 0 s PEOERD) o)
045, €YY V5111 /2,0

< OD(g;(6), ;,()? = C (&, ()7,

which yields (313). O

We now define the bilinear form A, - : (H'(7;,) x L*(T')) x (H*(7;) x L*(T")) —
R by

(3'14) Ah,ﬁ((wau)’(vag)) = Bh(wvv> - <:U’7v> + <§’w> + <€,g%(ﬂ)>,

for all (w,u), (v,&) € HY(T,) x L3(T'). Then, the main result of this section is
established as follows.

Theorem 3.1. The coupled LDG-BEM scheme (Z19), and hence the equivalent
formulation ([2.23)), is uniquely solvable, and there holds the stability estimate:

lurlln + 12505 + llowlloo + lezllier + val-12r < Cllfllog-

Proof. We first observe, by virtue of Lemma 23] that the unique solvability of
[219) is equivalent to that of problem (Z2h]), which can be reformulated as: find
(un, Aj;) € Vi, x X% such that

(3.15) A, ((uns Az), (0,6)) = /va V(v,€) € Vi x X7

It follows from (Z.8) and (B.13) that A, ; is elliptic on the product space Vj, x X%
endowed with the norm (|| - || + | - |}%)1/2, and hence the discrete scheme (B.I5) is

uniquely solvable. Then, applying the estimate ||[v|lo.o < C|v|ln Yv € Vj, (see
[1]) and the ellipticity of A, ; again, we deduce that

/vah

The remaining unknowns are written in terms of uj, and A; (see Lemma 2.3)),
and therefore they can be bounded using (310) and Lemma B3l We omit further
details. (]

lunlln + Xl < € sup o

1
< < O flloe-
o£vnevy llvnlln
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4. A PRIORI ERROR ANALYSIS

In order to perform the a priori error analysis for the solution of our discrete
scheme (Z19), we need further notation. We let

6(%,%):: sup €5 llo
ot ex; [&l7

define the boundary function hr € Py(I'y) by hrle := h. Ve € £}, and introduce
two new norms,

ol 5 = Mol + e(h,h)? olls e Yo € HY(Th)

and
~1/2
112 5 = 16 + Az %63 vé e LX(D),
where the term ||v||or refers to the L?(T') norm of the piecewisely defined trace of
v e HYT).

Assuming that | - |; is equivalent to || - ||_1/2,0 on X3, which is guaranteed by
Lemma B and applying the inverse inequality ([B2]), it follows that E(/ﬁ,h) <
C h=1/2. This upper bound will be used below in Lemma FZl

We now prove a boundedness property of A, ; with respect to the mesh-depen-
dent norms.

Lemma 4.1. There exists C > 0 such that
1A (w2, @, )] < C (Il g+ lellz) (Bl + €17 ) -

Jor all (w, ) € HY(Tp) x L*() and (v,§) € Vi x Xj,.

Proof. Tt is easy to see, according to the definitions of || - ||, ; 5 and e(h, h), that
(4.1)
(w, &) < e(h,h) [wlor €l < Nwll, 55 l€l;  Yw € HY(T), VYEeX;.
On the other hand, by using a discrete trace inequality (see equation (2.4) in

[1]), a local inverse inequality, and the estimate ||v|lo.o < C|v|ln Yv € V (see
[1), we find that for arbitrary v € Vj,

1/2
I %olde = 3 hellolfe < €D {Ilol ke + Hklonl? i}
eeg}, KeTnr
< C Y oldk < Clhlg < CIoR,
KGThwr

where 7p, 1 denotes the triangles of 7}, with sides on I'. It follows, using Cauchy—
Schwarz’s inequality in L?(T'), that
(4.2)
—~1/2 1/2 2
(o) < e pllo.r I %0llor < Cllall, 5 0oln Ve I3(T), Yo e V.

The result is then a straightforward consequence of ([B3.7), (312), (&1)), and (Z2)).
(I

The following theorem provides a Strang-type error estimate for the solution of
our discrete scheme (2.19).
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Theorem 4.1. There exists C > 0, independent of the meshsizes, such that
lu=unlln + 1A= A5l5 + llo = onllog + lle = ezllizr + v =l-1/20

REA

< . . B . . ST
(4.3) <C {Rh7h7h(u) =+ vslel%h llu Uh|||h7h,h =+ &lg)f(() A §h||h7h

+ inf — + inf — - ,
w,;eY,{)”(p Villy2,r u;lez,%'h |l 1/27r}

where R, ; 5 (u) is a consistency term given by

Ay (w00, 00, 5) — [ Fon
(4.4) R, z:(u) == sup .
oholt (0,007 (vn &5, ) EVi X X2 llorlln + |§z\ﬁ

Proof. Applying the ellipticity of A, 7, adding and subtracting (u, d,u) in the first
component of A, ~, and then using [B.I5) and Lemma Il we deduce that for
arbitrary (vp,&;) € Vi X X% there holds

Fon = ol + 1% = €l < € { Ruii) + = wnll g + 1A= Gl f
which, employing triangle inequality, yields
lu —wunlln + A= X;05

(4.5)
< O3 Ry + inf flu—onll, 5 + gﬁlgffg IA=&llng -

This bounds the first and second term of the error. Now, since 0 = Vu =
Vu — Sp(u) and o, = Viaup — Sp(up) (cf. Lemma 22), we easily obtain, using
(310), that

(4.6) lo —onlloe < Cllu—unln,

which, thanks to ([@3]), bounds the third term.

Next, we note that (¢;,7;) := g;(—A;) is a nonconforming Galerkin approxi-
mation with a modified right-hand side (); instead of A) of the solution (¢, ) of
the elliptic problem (Z3H]). Therefore, by the first Strang Lemma we have

e = @illij20 + 17 =73 ll=1/2,r

<C inf — Py + inf — sl = +IA=X]= 5,
= {zp,;eY;? o = ¥zlli2,r u ez v = pall=1/2,0 + | ilh
since the seminorm | - |; measures the approximation error in the right-hand side.
The above estimate together with (€3] and (4.0) complete the proof. O

The Strang-type estimate (£3)) will be used to derive the explicit a priori error
estimate. To this end, we now observe, according to the C*-regularity of the
harmonic function v in the exterior of the support of f, that ¢ = ulp € H*(T)
and A =~y =0,u € H*(T) for any s € R. In addition, a usual regularity result on
Lipschitz domains guarantees that u € H'T9(Q), for some ¢ > 1/2.
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On the other hand, the following lemma establishing well-known approxima-
tion properties of piecewise polynomials (see, e.g., [9], [20]) is needed for the local
estimates.

Lemma 4.2. Given a nonnegative integer k, let 1%, : L*(K) — Py(K) be the
linear and bounded operator given by the L?(K)-orthogonal projection, which satis-
fies TI%.(p) = p for all p € Pi(K), and let I be a generic identity operator. Then
there exists C > 0, independent of the meshsizes, such that for each s, t satisfying
0<s<k+1and0<s<t, there holds

(4.7) (L= 1) (w) s < CREM D5 ||, ¢ Vw e HY(K),
and for each t > 1/2 there holds
(4.8) | (T =T ) (w) oo < CREMERFU=2 01 Y € HY(K).

In order to now estimate the consistency term R, 7 ;(u), we recall from (2.7
that the orthogonal projector Ils;, reduces locally to I} on each K € 7, where
r=morr=m—1, withm & N.

Lemma 4.3. There exists C > 0, independent of the meshsizes, such that

2 min{d,r+1
i) < 0f 3

KeT,

R,

)

h h

1/2
+ inf o —vgliar+ inf Iy —pll2i0r o
YreYy ' ’ ;€22 ’
Proof. Tt follows easily from the definition of A, » (cf. (8.14)) and Lemma 2. that

Ay, 0,0), (v, &) = / fon + S(on, Vu— T, (Va)) + (6,0 + gL (V)

for all (vp,&5) € Vi x X}%. Then, replacing the above in ([{4]), using the first
estimate in (8.9), and employing the equivalence of |- |; and || - ||=1/2,p in X7, we
find

1/2
R, 5a(u) < C{ > hK||VU—H2h(VU)||(2),aK} + Cllo+g; Mz
KeTy,

Next, applying 8] to w = Vu|x € H?(K), we deduce that

> h|Vu—Ts, (Vu)[§ox = Y hac|(T=T5) (V) [§ ok
KeTy, KeTy,

< C S RO )3
KeT,

Finally, since g;(—A) := (g} (~A),82(—A)) is the Galerkin approximation of the
solution (¢, ~) of the elliptic problem (Z8]), we obtain from the Cea lemma that

h h

+gi(\ < C{ inf — s + inf |y — pe|— ,
e+ & (Mllijzr < {wﬁeygw Yilliy2r %eZQH’Y 145l 1/2,F}

which completes the proof. (I
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We now let Iy, be the L?(Q)-projection onto V}, and observe from (Z.7)) that Iy,
reduces locally to I} on each K € 7;, with m € N. Then, we have the following
result.

Lemma 4.4. Assume that h = O(h). Then, there exists C > 0, independent of the
meshsizes, such that

1/2
. 2 min{g,
inf Ju—onll g < C QD0 B Nl
v €Vh " Ket,
Proof. We clearly have

(4.9) s

. 2 2 2 2 2
Jnf fu— ol s < =Tyl 7 = Ju =Tl + 2G5, B2 o Ty, uli

Then, the upper bound for || - ||, given by Lemma 5.3 in [5], establishes that

llu = Ty, ulli, < C { (L= TR (w)[f i + hi [T =T (w)F o } :
KeT,

which, applying (@7) and ({8 with s =1 and t =1+ 4, yields

2 min{s,
(4.10) bu—Tyully < € 37 B0 fulf
KeT,
On the other hand, using a discrete trace inequality (see equation (2.4) in [I]),
we can write

lu =Ty ulgr < C {hf(l I =R (W)l 5 + P [T =TI (w)]f x }
KeT, r

which, now applying (£1) with s = 0 and s = 1, and using that E(ﬁ,%)z < Ch™!
and that h = O(h), gives

7 2 min{d,m
(A1) (R Ju-Tyuldy < € >0 RO ul
KET;,”[‘
Thus, the required upper bound follows from [@3)), (ZI0), and (ZII)). O

We now estimate the distance to XEO with respect to the mesh-dependent norm
(RIS

Lemma 4.5. Assume that h = O(h). Then, for each t > 1/2 there exists C' > 0,
independent of the meshsizes, such that

€= &l 5 < CRMMETE gl Ve e HY(T) N Hy (1),
RS

Proof. Let ¢ € HY(T)NHy “/*(T') with ¢t > 1/2. Then, there exists w € H**1/2(Q)
such that w = £ on I' and [[w|li41/2,0 < C||€]ls,r- Next, we observe from the

definition of || - ||, 7 that ||+ ||, 7 < Ch™Y?| -[lo,r on L*(T), and hence, using that

h = O(h), we find that

(4.12) inf 6= &l < Ch7Y2 S =g,

h —
- 0
§reXy REAR

lo,r-
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Now, to each € € 55 we associate a regular triangle K C Q such that 9K NT = ¢,
and set 7; . for the list of all of them. Then, we define the function p; € X; by
pile = H%(w)lg for all € € 8}1:, and denote by M% its component in Xg. It follows
easily that

€ — N%“(%,F <|€- M;}H(z),r = [Jw — Nﬁ”(%,r
=3 o=l < > IIw—H’“( w)llf 7 -
EES{ ?ETE,F

which, applying @X) to k =k and w € H'1/2(Q), yields

2 min{t,k+1/2 72 min{t,k
l6—mler < ¢ 3o W 2w < oY g2
KeT;,
and hence
(4.13) Jnf llE = &llge < Cn? T gy
REA
In this way, ({12]) and ([@I3]) complete the proof. O

We now recall general approximation properties of the spaces Y}A? and Zg. Note
that (3.3) is a particular case of (4I4]) with Y; instead of YAO.

(AP(Y* )) For each s > 1/2 there exists C' > 0, independent of h, such that
(4.14)

S = Uz < CRPRERRIU g v e HA@) 0 D).

(AP(Z}%)) For each ¢ > —1/2 there exists C' > 0, independent of 1, such
that
(4.15)

: Tmin{t,k t —-1/2
inf [l — gzl <1jzr < CHRERTV2 Ve HYQ)N HyA(T).

[

Consequently, we summarize the a priori error estimate of our coupled LDG-
BEM scheme ([219) in the following theorem.

Theorem 4.2. Assume that h = O(~) that the partition I'; is uniformly regular,
and 1 that h < C’o h where Cy > 0 is the constant given by Lemma B Also, let r,
k k: and k& — 1 be the polynomial degrees defining locally the subspaces Xy, Vi,
X0 YAO, and Z0 (cf. @7), @I0), @I6)), respectively, and let (o, un, X;, ¢7,7;,) €
Eh X Vh X Xg X YEO X Zg be the unique solution of our coupled formulation (2.19).
In addition, let § > 1/2 be such that the exact solution u of (L2)—(L3) belongs to
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H'(Q). Then there exists C > 0, independent of the meshsizes, such that
(4.16)

b= wnlls + 1A= X505 + o = onllon + lle = @ilhjer + Iy =%l -1/er
<C (hmin{é’T+1} + hmin{&,m}) HU||1+6,Q + Emin{t—l/lg} ||)\||t,F

4 pmin{sk+1}—1/2 lollsr + Amin{t,k}+1/2 17llz

b

forallt >1/2, s >1/2, and t > —1/2.

Proof. If follows straightforward from Theorem E.1l Lemmas (3] £4] [£5 and the
approximation properties (AP(Y}A?)) and (AP(Z%)). O

As announced in the Introduction, here we observe that the estimate ([I6) is
optimal with respect to the meshsizes h and E, and suboptimal with respect to
h. However, because of the regularity of the exact solution u in the exterior of
the support of f, the above can be circumvented by assuming A sufficiently regular,
whence the optimal rate of convergence is recovered. In particular, we can establish
the following corollary.

Theorem 4.3. There exists C' > 0, independent of the meshsizes, such that

(4.17)
lu —unlln + A =2;15 + llo —anlloa + o —zlli2r + v —ll-1/20

< C (hmin{é,m} +Emin{572+1/2}) ||u||1+5,9 + Fflmin{l,‘l;} ||>\||3/2,F

Proof. Tt suffices to take s = 1/2 + 48, t = —1/2 + 6, and t = 3/2. Then, we
observe that hmin{or+1} < pmin{dm} gince r + 1 > m, and use that |||/ 2150 +
[Yl-1/2451 < Cllulli1s0- 0

It is also clear from ({I0) and (£I7) that m, k, and k must all be > 1.

We end this paper by remarking that further developments, including nonlinear
boundary value problems, a posteriori error analysis, adaptivity, and corresponding
numerical experiments, will be reported in forthcoming works.
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