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WAVELETS WITH PATCHWISE CANCELLATION PROPERTIES

HELMUT HARBRECHT AND ROB STEVENSON

Abstract. We construct wavelets on general n-dimensional domains or man-
ifolds via a domain decomposition technique, resulting in so-called composite
wavelets. With this construction, wavelets with supports that extend to more
than one patch are only continuous over the patch interfaces. Normally, this
limited smoothness restricts the possibility for matrix compression, and with
that the application of these wavelets in (adaptive) methods for solving oper-
ator equations. By modifying the scaling functions on the interval, and with
that on the n-cube that serves as parameter domain, we obtain composite
wavelets that have patchwise cancellation properties of any required order,
meaning that the restriction of any wavelet to each patch is again a wavelet.

This is also true when the wavelets are required to satisfy zeroth order ho-
mogeneous Dirichlet boundary conditions on (part of) the boundary. As a
result, compression estimates now depend only on the patchwise smoothness
of the wavelets that one may choose. Also taking stability into account, our
composite wavelets have all the properties for the application to the (adaptive)

solution of well-posed operator equations of orders 2t for t ∈ (− 1
2
, 3
2
).

1. Motivation and background

For some n′ ≥ n ≥ 1, let Ω be an n-dimensional manifold in R
n′

. We are
interested in approximating the solution of an equation Lu = f , where for some
Hilbert space H of functions on Ω, typically being a Sobolev space, with dual H ′,
L : H → H ′ is boundedly invertible, and f ∈ H ′. When Ω is a domain in R

n, we
think of the equation as being the result of a variational formulation of a boundary
value problem, and when it is a true manifold, we have in mind an integral equation
formulated on the boundary of an (n + 1)-dimensional domain.

Now let us assume that we have available a Riesz basis Ψ for H of wavelet type,
where each wavelet is assumed to have the cancellation property of a certain order,
meaning that, possibly after making some smooth transformation of coordinates,
it is orthogonal to all polynomials of that order.

Thinking of strongly elliptic problems, for any V ⊂ H spanned by some finite
subset of the wavelets, we can approximate u by the Galerkin solution from V .
This approach has two attractive features. First, since Ψ is a Riesz basis, the
stiffness matrix with respect to the wavelet basis is well conditioned uniformly in
V , allowing an efficient iterative solution. Second, for L being a singular integral
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operator, the cancellation property of a sufficiently high order of the wavelets allows
us to compress the stiffness matrix, which in this case is dense, to a sparse one
without qualitatively affecting the discretization error. The compression, i.e., the
dropping of certain entries, applies, in different forms, to two types of entries. The
so-called first compression applies to pairs of wavelets that have supports with a
sufficiently large mutual distance, whereas, thinking of piecewise smooth wavelets,
the second compression applies to pairs of wavelets that have overlapping supports,
but for which the support of one wavelet living on the higher level is sufficiently
far away from the singular support of the other one living on a lower level (see
[Sch98, DHS02]). Together, the well conditionedness of the stiffness matrix and,
for singular integral operators, the compression of this matrix allow us to find an
approximate solution of the Galerkin system in O(#V ) operations with an error
that, up to some absolute constant factor, is as good as that of the exact solution
of this system.

Instead of computing Galerkin approximations from fixed, finite-dimensional
subspaces V , as exposed in [CDD01, CDD02], the availability of a wavelet basis
Ψ opens a way to approximate the solution u using an adaptive scheme. Since
Ψ is a Riesz basis for H, the equation Lu = f has an equivalent formulation as
an infinite, well-posed (in �2-metric) matrix-vector system, which is formally the
Galerkin system with “V ” equal to H, equipped with the wavelet basis. Now,
coarsely speaking, the idea is to apply a simple iterative scheme, like Richardson
iteration, directly to this infinite system, where in each iteration the application
of the matrix is replaced by that of an adaptively compressed matrix. Apart from
the second compression, and for integral operators, the first compression, it is now
necessary to consider a third compression that applies to pairs of wavelets for which
the support of the wavelet on the higher level intersects the singular support of the
wavelet on the lower level. Indeed, note that, even for differential operators, with-
out either the second or third compression one is left with infinitely many nonzero
entries in each column. The decay of the entries, as meant in the third compres-
sion, as a function of the difference in levels of the wavelets involved, relies not
only on the cancellation property of the wavelet on the higher level, but also on a
sufficient global smoothness of the wavelet on the lower level. Essentially only for
spline wavelets, which have maximal smoothness in relation to their approximation
orders, the compression error can be shown to be sufficiently small so that the adap-
tive wavelet method has optimal computational complexity, in the sense that the
approximations yielded by this algorithm converge with the same rate as that of so-
called best N-term approximations, taking only a number of arithmetic operations
that is proportional to the vector length (see [Ste04b], and, for the computation of
the required entries using quadrature, see [GS04, GS05]).

In view of the above applications, it is by now well known how to construct
wavelets on the line ([CDF92]) and with additional efforts on the interval ([DKU99]),
and so using tensor products on n-cubes that, properly scaled, generate Riesz bases
for a range of Sobolev spaces, have the cancellation property of any required or-
der, and are sufficiently smooth in relation to their approximation order. The
challenge is to construct such wavelets on more general domains or manifolds
Ω. The most well-known method is via a domain decomposition approach (see
[DS99a], and [CTU99, CM00] for related techniques). With this approach, Ω is
written as Ω =

⋃M
q=1 Ωq, where Ωq ∩ Ωq′ = ∅ for q �= q′, Ωq = κq(�), where the
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κq : R
n → R

n′
are smooth, regular parametrizations, and � = (0, 1)n. Primal and

dual scaling functions constructed on � are lifted to the Ωq, and are continuously
connected over the interfaces. With respect to the modified L2(Ω)-scalar product
〈〈u, v〉〉 =

∑
q

∫
�(u◦κq)(x)(v◦κq)(x)dx, the resulting global primal and dual scaling

functions are biorthogonal. The “composite” wavelets are now obtained by sub-
tracting the biorthogonal projection from collections of functions spanning “initial”
complement spaces between any two successive spaces in the primal multiresolu-
tion analysis. These collections are simply obtained by lifting such collections on
�. Although this construction realizes wavelets on general domains or manifolds
that, properly scaled, generate Riesz bases for a range of Sobolev spaces, it also has
some limitations:

• wavelets with supports that extend to more than one patch generally have
no cancellation property with respect to the canonical L2-scalar product,

• the wavelets generate Riesz bases for Sobolev spaces Hs generally only for
s > −1

2 (and s < 3
2 ),

• wavelets with supports that extend to more than one patch are only con-
tinuous,

where the first two limitations are a consequence of the fact that biorthogonality is
realized with respect to the modified L2-scalar product.

These limitations were already recognized in [DS99a], and in [DS99b] the same
authors developed an elegant approach to construct wavelets on general domains
or manifolds that, properly scaled, generate Riesz bases for Hs for in principal any
s, if not restricted by the regularity of the manifold, and that have the cancellation
property of any desired order. Unfortunately, so far with this approach it does
not seem easy to construct wavelets that have competitive quantitative properties.
However, new results in this direction have been recently reported in [KS04].

By an adaptation of the construction from [DS99a], in [Ste04a] we constructed
composite wavelets that generate Riesz bases for the Sobolev spaces Hs for the
full range of s that is allowed by the continuous gluing of functions over the patch
interfaces (i.e., |s| < 3

2 ), if not restricted by the regularity of the manifold, and
that all have the cancellation property of any desired order. These wavelets have
all properties required for the earlier mentioned application of solving Galerkin
systems resulting from differential or singular integral operators with orders 2t
when |t| < 3

2 . For the application in the adaptive wavelet method, however, the
limited smoothness of wavelets over patch interfaces has an adverse affect on the
third compression, and optimality of that scheme can only be shown for wavelets
with relatively small approximations orders d < 3n/2−t

n−1 ([Ste04b, Remark 2.4]).
In the present paper, we construct composite wavelets that have the stronger

patchwise cancellation property of any desired order, meaning that the restriction
of any wavelet to any patch Ωq has the cancellation property of that order. This
property will also hold when, in case the manifold has a boundary, at the primal side
a zeroth order homogeneous Dirichlet boundary condition is prescribed on (part of)
this boundary. We will enforce the patchwise cancellation property, say of order
d̃, by modifying the dual scaling functions on the interval (0, 1) such that already
the interior ones, i.e., those that will not be glued over patch interfaces, span the
full space Pd̃−1(0, 1). Obviously, the patchwise cancellation property implies the
cancellation property with respect to the canonical L2-scalar product. What is
more, although also with this construction wavelets with supports that intersect
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patch interfaces are only continuous, in any case for differential operators, thanks
to the patchwise cancellation property, this limited smoothness does not affect
the third compression. Indeed, for such an operator, say of order 2t with t < 3

2 ,
an entry in the infinite stiffness matrix corresponding to wavelets ψλ, ψµ is of
the form

∫
Ω

∑
|α|,|β|≤t aα,β∂αψλ∂βψµ =

∑
q

∫
Ωq

∑
|α|,|β|≤t aα,β∂αψλ∂βψµ. Now,

in principal for any order of the wavelets, the above right-hand side shows that
with only a sufficient patchwise smoothness, as with (lifted) splines, and with a
patchwise cancellation property of a sufficiently high order, the appropriate decay
of the entry is ensured as a function of the difference ||λ| − |µ|| in levels and, with
that, the optimality of the adaptive wavelet scheme.

The patchwise cancellation property also induces a limitation. Thinking of a
domain Ω being simply the union of n-cubes Ωq, this property means that any
wavelet ψλ, as always except those with level |λ| = 0 which are scaling functions,
restricted to each Ωq is orthogonal to all polynomials of degree d̃ − 1. Assuming,
as will be ensured, that the collection Ψ = {ψλ : λ ∈ Λ} is a Riesz basis for
L2(Ω), with dual basis Ψ̃, then for any v ∈

∏
q Pd̃−1(Ωq) ⊂ L2(Ω) we have that

v =
∑

λ∈Λ〈v, ψλ〉ψ̃λ =
∑

λ∈Λ,|λ|=0〈v, ψλ〉ψ̃λ, so that apparently
∏

q Pd̃−1(Ωq) is in
the span of the dual scaling functions on the lowest level. So necessarily, all dual
spaces contain functions that have jumps across interfaces between patches, from
which we infer, regardless of whether biorthogonality is realized with respect to
the canonical or the modified L2-scalar product, that the (primal) wavelets cannot
generate Riesz bases for Hs when s ≤ −1

2 . We will ensure, however, that, properly
scaled, our wavelets generated Riesz bases for Hs for s ∈ (−1

2 , 3
2 ), which, apart

from the application in the adaptive wavelet scheme, makes them suitable for the
solution of Galerkin systems resulting from differential or singular integral operators
of orders 2t, with t ∈ (−1

2 , 3
2 ).

This paper is organized as follows. In Section 2, we collect the assumptions on
the primal and dual multiresolution analyses on the interval. We propose two con-
structions of modified scaling functions that will both eventually lead to composite
wavelets with patchwise cancellation properties. In Section 3, we construct mul-
tiresolution analyses on the n-cube simply by means of tensor products. Following
the approach from [DS99a], in Section 4 we construct composite wavelets on gen-
eral domains or manifolds that, thanks to the modification of the scaling functions,
have patchwise cancellation properties. Finally, in Section 5, we illustrate our ap-
proach by constructing on a simple L-shaped domain, wavelets of order 2 that have
patchwise cancellation properties of order 2.

In order to avoid the repeated use of generic but unspecified constants, in this
paper by C � D we mean that C can be bounded by a multiple of D, independent
of parameters on which C and D may depend. Obviously, C � D is defined as
D � C, and C � D as C � D and C � D.

For H being a separable Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖,
and for a countable collection Σ of functions in H, which we formally view as a
(column) vector, and for c = [cσ]σ∈Σ a vector of scalars, by cT Σ we will mean
the expansion

∑
σ∈Σ cσσ. The span of Σ will be denoted as S(Σ). For x ∈ H,

with 〈Σ, x〉 and 〈x, Σ〉 we will mean the column- and row-vectors with coefficients
〈σ, x〉 and 〈x, σ〉, σ ∈ Σ. When Σ̃ is another countable collection in H, with 〈Σ, Σ̃〉
we denote the matrix (〈σ, σ̃〉)σ∈Σ,σ̃∈Σ̃. For V ⊂ H being a dense, continuously
embedded Banach space, as usual we will sometimes also use 〈·, ·〉 to denote the
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duality pairing 〈·, ·〉V ×V ′ , which, with the aforementioned meaning, can also be
applied to collections from V and/or V ′.

On the spaces of (possibly infinite) scalar vectors or matrices, we will exclusively
use the �2-scalar product, �2-norm, or the resulting operator norm, that we therefore
simply denote by 〈·, ·〉 or ‖ · ‖, respectively. A collection Σ is called a Riesz system
when ‖cT Σ‖ � ‖c‖, i.e., when 〈Σ, Σ〉 is boundedly invertible, and Σ is called a
Riesz basis when it is in addition a basis for H. When Σ depends on a parameter,
we will speak about uniform Riesz systems (or bases) when the above equivalence
holds uniformly over the values this parameter may attain.

2. Biorthogonal multiresolution on (0, 1)

2.1. Assumptions. Throughout this section, let 〈·, ·〉 = 〈·, ·〉L2(0,1) and ‖ · ‖ =
‖ · ‖L2(0,1). For some fixed m ∈ Z and all j ∈ Zm := Z ∩ [m,∞), we assume
an index set {0, 1} ⊂ Ij ⊂ [0, 1] with x ∈ Ij if and only if 1 − x ∈ Ij , and
supk∈N0

#(Ij ∩ [k2−j , (k + 1)2−j ]) � 1. For j ∈ Zm, we assume collections of
uniformly L2(0, 1)-bounded primal and dual scaling functions Φj = [φj,x]x∈Ij

and
Φ̃j = [φ̃j,x]x∈Ij

that satisfy

φj,x(y) = 0 if not |x − y| � 2−j ,(L)

φj,x(·) = φj,1−x(1 − ·),(S)

for some d ∈ N, Pd−1(0, 1) ⊂ S(Φj),(J )

S(Φj) ⊂ S(Φj+1),(N )

for some γ > 0, and any s ∈ [0, γ),

‖ · ‖Hs(0,1) � 2sj‖ · ‖ on S(Φj),

(B)

with analogous conditions on (Φ̃j)j , denoted as (L̃), (S̃), (J̃ ), (Ñ ), and (B̃), with
(d, γ) replaced by generally different parameters (d̃, γ̃). We assume that the primal
scaling functions are continuous and satisfy

(V) φj,x(0) = 0 for x ∈ Ij\{0}.

Finally, we assume that the primal and dual scaling functions are biorthogonal, i.e.,
that

(D) 〈Φj , Φ̃j〉 = I.

Although in applications it is important to select the minimal level m as small as
possible (see [BF01] for an approach), for convenience, in order to be not forced to
handle exceptional cases corresponding to the coarsest levels, we will assume that
m is sufficiently large .

From the assumptions on Ij , the uniform boundedness of all scaling functions,
(L), (L̃), and (D), it follows that both Φj and Φ̃j are uniform L2(0, 1)-Riesz systems
(see, e.g., [DKU99, Lemma 2.1]).

In addition, for j ∈ Zm+1, we assume an index set Jj ⊂ (0, 1) with Jj ∩ Ij = ∅,
x ∈ Jj if and only if 1 − x ∈ Jj , and supk∈N0

#(Jj ∩ [k2−j , (k + 1)2−j ]) � 1. For
j ∈ Zm+1, we assume collections

Ξj = [ξj,x]x∈Jj
⊂ S(Φj+1)
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that satisfy corresponding conditions (L), (S), and (V), the latter meaning that all
ξj,x vanish at {0, 1}, such that

Υj+1 :=
[
ΦT

j ΞT
j

]T
is a uniform L2(0, 1)-Riesz basis for S(Φj+1)

and

(2.1) 〈Υj+1, Φ̃j+1〉−1 is uniformly local,

by which we mean that only entries of this matrix indexed by (x, y) with |x− y| �
2−j might be nonzero. The last condition is only needed if one is also interested
in having locally supported dual wavelets. By Υj+1 = 〈Υj+1, Φ̃j+1〉Φj+1, note that
〈Υj+1, Φ̃j+1〉−T represents the transformation from Φj+1 to the two-level basis
Υj+1.

Remark 2.1. In [DS99a], the matrices 〈Υj+1, Φ̃j+1〉T and 〈Υj+1, Φ̃j+1〉−T are de-
noted as M̆j and Ğj , respectively. The completion of Φj by Ξj to a uniform
L2-Riesz basis for S(Φj+1), or equivalently, the completion of the #Ij+1 × #Ij

matrix 〈Φj , Φ̃j+1〉T by the #Ij+1 × #Jj matrix 〈Ξj , Φ̃j+1〉T to a uniformly well-
conditioned matrix 〈Υj+1, Φ̃j+1〉T , is known as an (initial) stable completion (see
[CDP96]).

For any 2 ≤ d ≤ d̃ with d + d̃ even and d̃ sufficiently large, collections Φj , Φ̃j

that satisfy all above assumptions with γ = d − 1
2 and γ̃ growing proportionally

with d̃ were constructed in [DKU99]. For some parameter N � r ≥ d− 1+ d mod 2
that one may choose, the primal collections Φj span the standard spline space of
order d with respect to the knot sequence

(2.2) (0, . . . , 0︸ ︷︷ ︸
d times

, r2−j , r2−j + 2−j , . . . , 1 − r2−j , 1, . . . , 1︸ ︷︷ ︸
d times

).

As collections Ξj one may take bases for the biorthogonal complement spaces
S(Φj+1)∩S(Φj)⊥L2(0,1) , i.e., collections of biorthogonal wavelets on the interval as
constructed in [DKU99], which, in view of (V), have to be modified by subtracting
from those wavelets that do not vanish at 0 or 1 a suitable multiple of φj−1,0 or
φj−1,1 (cf. [DS99a, Remark 2.4.2]). These biorthogonal wavelets themselves were
constructed by subtracting biorthogonal projections from simpler initial stable com-
pletions Ξj . Alternatively, just these completions can be applied, which, for n > 1,
actually lead to composite wavelets with smaller supports (cf. [Har01, HS04]).

2.2. Modified scaling functions. We are going to construct sequences of collec-
tions of modified primal and dual scaling functions (Φnew

j )j∈Zm
and (Φ̃new

j )j∈Zm

that span the original spaces, satisfy (D), as well as all of (L)–(V) or (L̃)–(B̃),
respectively, and, in addition, for which

(2.3) Pd̃−1(0, 1) ⊂ S(Φ̃new
j \{φ̃new

j,0 , φ̃new
j,1 }),

and, with ∂ being each of {0}, {1}, or {0, 1},

(2.4) S({φ̃new
j,x : x ∈ Ij\∂}) ⊂ S({φ̃new

j+1,x : x ∈ Ij+1\∂}).

We will search the modified collections in the form

(2.5) Φ̃new
j = BjΦ̃j , Φnew

j = B−T
j Φj ,
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with, for some vector αj = [αj,x]x∈Ij\{0,1} of uniformly bounded scalars with a
uniformly bounded number of non-zeros, and α

�
j := [αj,1−x]x∈Ij\{0,1},

(2.6) Bj :=

1 · · · 0 · · · 0

αj I α
�
j

0 · · · 0 · · · 1

, and thus B−T
j =

1 −αT
j 0

: :

0 I 0

: :

0 −(α�
j )

T 1

.

Since these transformations do not change the spans, and retain (D), and (L), (S),
(V), and (L̃), (S̃), the only properties to verify are (2.3) and (2.4).

Under some additional mild conditions, the following theorem shows that suitable
coefficients αj,x can always be found.

Theorem 2.2. Assume, for j ∈ Zm, that 〈φj,0, φ̃j+1,1〉 = 0 and

(2.7) 〈φ̃j,x, φj+1,0〉 = 0 for x ∈ Ij\{0},
and that

(2.8) sup
j∈Zm

〈φj,0, φ̃j+1,0〉〈φ̃j,0, φj+1,0〉 < 1.

Then, with

αj+1,x :=
〈φ̃j,0, φj+1,0〉

1 − 〈φj,0, φ̃j+1,0〉〈φ̃j,0, φj+1,0〉
〈φj,0, φ̃j+1,x〉, (x ∈ Ij+1\{0, 1}),

we have

(2.9) S(Φ̃j) ⊂ S(Φ̃new
j+1\{φ̃new

j+1,0, φ̃
new
j+1,1}),

which implies both (2.4) and, after replacing m by m + 1, by (J̃ ) also (2.3).

Before proving this theorem, note that the condition 〈φj,0, φ̃j+1,1〉 = 0 follows
from (L), (L̃) when m is sufficiently large. When the dual scaling functions are
continuous at 0, (2.7) follows from

(2.10) φ̃j,x(0) = 0 for x ∈ Ij\{0}, j ∈ Zm,

which is the analogue of (V) at the dual side, since, by (J̃ ), then φ̃j,0(0) �= 0
(j ∈ Zm). A modification of the collections Φj , Φ̃j from [DKU99] such that (2.10)
is valid is introduced in [DS99a]. The condition (2.8) is satisfied when the boundary
primal and dual scaling functions on all levels are generated from one pair by means
of dyadic dilation, in which case 〈φj,0, φ̃j+1,0〉〈φ̃j,0, φj+1,0〉 = 1

2 .

Proof. By (L), (L̃), the number of nonzero coefficients αj+1,x is uniformly bounded.
Because of (N ), (Ñ ), for v ∈ S(Φ̃j) we have

v = 〈v, Φj〉Φ̃j =
〈
v, 〈Φj , Φ̃j+1〉Φj+1

〉
〈Φ̃j , Φj+1〉Φ̃j+1

= 〈v, Φj+1〉〈Φj , Φ̃j+1〉T 〈Φ̃j , Φj+1〉Φ̃j+1,

and also

v = 〈v, Φj+1〉Φ̃j+1.(2.11)
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Comparing the coefficient in front of φ̃j+1,0 in both expressions for v using (2.7),
we infer that(

1 − 〈φj,0, φ̃j+1,0〉〈φ̃j,0, φj+1,0〉
)
〈v, φj+1,0〉

=
∑

x∈Ij+1\{0}
〈φj,0, φ̃j+1,x〉〈φ̃j,0, φj+1,0〉〈v, φj+1,x〉,

or, by definition of αj+1,x and the assumption 〈φj,0, φ̃j+1,1〉 = 0, that

〈v, φj+1,0〉 =
∑

x∈Ij+1\{0,1}
αj+1,x〈v, φj+1,x〉,

and so by (S̃) that 〈v, φj+1,1〉 =
∑

x∈Ij+1\{0,1} αj+1,1−x〈v, φj+1,x〉. By substituting
these expressions into (2.11), by definition of Φ̃new

j+1 we find that

v =
∑

x∈Ij+1\{0,1}
〈v, φj+1,x〉φ̃new

j+1,x

(
=

∑
x∈Ij+1\{0,1}

〈v, φnew
j+1,x〉φ̃new

j+1,x

)
,

which completes the proof. �
In Theorem 2.2 the vector αj was constructed such that (2.9) is valid, the prop-

erty of which is generally stronger than the combination of (2.3) and (2.4), and
therefore generally requires more nonzero coefficients than is strictly necessary, re-
sulting in modified scaling functions with larger supports. In the following theorem,
under some additional conditions, however without (2.7), we present a construction
that realizes (2.3) and (2.4) with a generally minimal number of nonzero coefficients
αj,x.

Theorem 2.3. For j ∈ Zm, let Īj ⊂ Ij\{0, 1} with #Īj = d̃, sup{x : x ∈ Īj} � 2−j,
and

(2.12) inf
0�=p∈Pd̃−1(0,1)

sup
0�=v∈S({φj,x:x∈Īj})

|〈p, v〉|
‖p‖‖v‖ � 1.

With Qj : L2(0, 1) → S({φj,x : x ∈ Īj}) being the projector with �(I −Qj) ⊥L2(0,1)

Pd̃−1(0, 1), whose existence follows from (2.12), let

(2.13) 〈(I − Qj+1)φj+1,0, φ̃j,x〉 = 0 for all x ∈ Ij\(Īj + {0}).
Then for each j ∈ Zm, there exists a unique vector αj = [αj,x]x∈Ij\{0,1} with
αj,x = 0 when x �∈ Īj, whose coefficients are uniformly bounded, such that Φnew

j and
Φ̃new

j defined by (2.5), (2.6) satisfy (2.3) and (2.4). The coefficients {αj,x : x ∈ Īj}
can be found by solving

(2.14) φnew
j,0 := φj,0 +

∑
x∈Īj

αj,xφj,x ⊥L2(0,1) Pd̃−1(0, 1).

Proof. After selecting a basis {p0, . . . , pd̃−1} for Pd̃−1(0, 1), solving (2.14) amounts
to inverting the matrix [〈φj,x, p�〉]x∈Īj ,0≤�≤d̃−1. Because of (2.12), there is a unique,
uniformly bounded solution. Note that φnew

j,0 = (I − Qj)φj,0.
Knowing Pd̃−1(0, 1) ⊂ S(Φ̃j) = S(Φ̃new

j ), (S) and (D), (2.3) is equivalent to
φnew

j,0 ⊥L2(0,1) Pd̃−1(0, 1), which holds by construction.
Knowing S(Φ̃new

j ) ⊂ S(Φ̃new
j+1), (S), (S̃) and (D), (2.4) is equivalent to

(2.15) φnew
j+1,0 ⊥L2(0,1) S(Φ̃new

j \{φ̃new
j,0 }).
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By construction, for x ∈ Ij\(Īj +{0}) we have φ̃new
j,x ⊂ S({φ̃j,x : x ∈ Ij\(Īj +{0})}),

and so the assumption (2.13) shows that

(2.16) 〈φnew
j+1,0, φ̃

new
j,x 〉 = 0 for all x ∈ Ij\(Īj ∪ {0}).

From (2.3) we have p� =
∑

x∈Ij\{0,1}〈p�, φ
new
j,x 〉φ̃new

j,x for 0 ≤ � ≤ d̃ − 1. From (2.16)

and φnew
j+1,0 ⊥L2(0,1) Pd̃−1(0, 1), we infer that φnew

j+1,0 ⊥L2(0,1)

∑
x∈Īj

〈p�, φ
new
j,x 〉φ̃new

j,x .
Since φnew

j,x = φj,x for x ∈ Ij\{0, 1}, and [〈p�, φj,x〉]0≤�≤d̃−1,x∈Īj
is an invertible

system because of (2.12), this means that 〈φnew
j+1,0, φ̃

new
j,x 〉 = 0 also for x ∈ Īj , which

completes the proof of (2.15) and thus of the theorem. �

In the following, for a particular choice of Īj , we verify the conditions of Theo-
rem 2.3 for any pair of biorthogonal scaling functions constructed in [DKU99]. By
definition and (V), φ̃j,0 is the dual of the unique primal scaling function φj,0 that
does not vanish at 0. We now take Īj to be the index set of those d̃ dual scaling
functions other than φ̃j,0 whose supports have their minima closest to 0. Inside
this collection, there is one φ̃j,z such that (φj,z, φ̃j,z) is a biorthogonal pair of scal-
ing functions on the line as constructed in [CDF92]. The set I◦j := {0} + Īj\{z}
(denoted as ĨL

j in [DKU99]) is the index set of the left boundary adapted scal-
ing functions. By construction of the scaling functions in [DKU99], it holds that
〈φj+1,y, φ̃j,x〉 = 0 for all y ∈ Īj+1, x ∈ Ij\(Īj + {0}), so that (2.13) is valid.

Since all {φj,x : x ∈ Īj} are constructed from one set by means of dyadic dilation,
the quantity on the left-hand side of (2.12) is independent of j. By construction of
the boundary adapted scaling functions in [DKU99], there exists a basis {px : x ∈
I◦j } for Pd̃−1(0, 1) such that

px = φ̃j,x +
∑

v∈Ij\I◦
j

〈px, φj,v〉φ̃j,v.

By applying this basis, using biorthogonality we infer that (2.12) is equivalent
to invertibility of [〈φ̃j,x + 〈px, φj,z〉φ̃j,z, φj,y〉]x∈I◦

j ,y∈Īj
. Since, modulo invertible

transformations, {φ̃j,x + 〈px, φj,z〉φ̃j,z : x ∈ I◦j } is the collection of left boundary
adapted dual scaling functions that one obtains by increasing the parameter r from
(2.2) by 1, and {φj,y : y ∈ Īj} is the collection of left boundary adapted primal
scaling functions from which φj,0 is removed, and to which the interior primal
scaling function succeeding φj,z is added, Theorem 4.2 of [DS98] shows that the
aforementioned matrix is indeed invertible, and thus that (2.12) is valid.

Remark 2.4. For the collections Φnew
j , Φ̃new

j yielded by Theorem 2.3, it holds that
the functions from {φnew

j,x : x ∈ Ij\{0, 1}} vanish at {0, 1}, and that Pd̃−1(0, 1) ⊂
S({φ̃new

j,x : x ∈ Ij\{0, 1}}), meaning that these reduced collections satisfy so-called
complementary boundary conditions of order zero. Starting with any pair (Φj)j ,
(Φ̃j)j from [DKU99], one may verify that these reduced collections, if not equal,
span the same spaces as the collections with zeroth order complementary boundary
conditions constructed in [DS98]. In this paper, however, the full collections Φnew

j

and Φ̃new
j will be needed. Under appropriate conditions, transformations as in

Theorems 2.2 or 2.3 can be applied repeatedly, starting with {φnew
j,x : x ∈ Ij\{0, 1}}

and {φ̃new
j,x : x ∈ Ij\{0, 1}}, yielding biorthogonal collections with complementary

boundary conditions of higher order.
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As a final ingredient on [0, 1], we define collections of functionals Λj = [λj,x]x∈Ij

⊂ C[0, 1]′, Λ̃j = [λ̃j,x]x∈Ij
⊂ L2(0, 1)′ by λj,0(v) = v(0), λj,1(v) = v(1), λ̃j,0(v)

= λ̃j,1(v) = 0, and, for x ∈ Ij\{0, 1}, λj,x(v) = 〈v, φ̃new
j,x 〉 and λ̃j,x(v) = 〈v, φnew

j,x 〉.
Note that, with the common notation as discussed at the end of Section 1,

〈Φnew
j , Λj〉 = I, 〈Φ̃new

j , Λ̃j〉 = diag([0, 1, . . . , 1, 0]).

In the next two sections, we will drop the superscript “new”, so that with Φj

and Φ̃j collections are meant, as constructed in Theorems 2.2 or 2.3, that satisfy
(D), (L)–(V) or (L̃)–(B̃), respectively, and, in addition, (2.3) and (2.4). Using
these collections, we will construct composite wavelet bases on general domains or
manifolds following the construction introduced in [DS99a]. We will present the
main steps, and refer to [DS99a] or [Ste04a] for proofs.

3. Biorthogonal multiresolution on (0, 1)n

With � := (0, 1)n, let 〈·, ·〉 = 〈·, ·〉L2(�) throughout this section. With Π we will
denote the collection of all affine mappings from � onto �, which consists of any
composition of reflections of type x �→ (x1, . . . , xi−1, 1−xi, xi+1, . . . , xn) (1 ≤ i ≤ n)
and permutations of the n Cartesian coordinates. With a face of �, we mean a
complete, closed face of any dimension 0 ≤ k ≤ n − 1, i.e., for n = 3, it is either a
vertex, an edge, or a facet.

For j ∈ N0, we define index sets

I�
j = (Ij)n, J�

j = (Jj ∪ Ij)n\I�
j ;

collections of functions

Φ�
j = [φ�

j,x]x∈I�
j

, Φ̃�
j = [φ̃�

j,x]x∈I�
j

, and Ξ�
j,x = [ξ�

j,x]x∈J�
j

,

by

φ�
j,x(y) =

n∏
i=1

φj,xi
(yi), φ̃�

j,x(y) =
n∏

i=1

φ̃j,xi
(yi),

and

ξ�
j,x(y) =

n∏
i=1

ωj,xi
(yi) with ωj,xi

:= ξj,xi

when xi ∈ Jj and ωj,xi
:= φj,xi

otherwise; and collections of functionals

Λ�
j = [λj,x]j∈I�

j
⊂ C(�)′, Λ̃�

j = [λ̃j,x]j∈I�
j
⊂ L2(�)′

by, for univariate functions, vi,

λ�
j,x(

∏
i

vi) =
∏

i

λj,xi
(vi), λ̃�

j,x(
∏

i

vi) =
∏

i

λ̃j,xi
(vi),

which determines λ�
j,x, λ̃�

j,x on the whole of C(�), L2(�), respectively. Clearly, we
have

〈Φ�
j , Φ̃�

j 〉 = I, 〈Φ�
j , Λ�

j 〉 = I, and 〈Φ̃�
j , Λ̃�

j 〉 = diag({dj,x : x ∈ I�
j })

with dj,x = 0 if x ∈ ∂�, and dj,x = 1, otherwise.
For a proof of the next proposition, we refer to [DS99a, Proposition 3.1], where

for the projector at the dual side (2.3) has to be used.



WAVELETS WITH PATCHWISE CANCELLATION PROPERTIES 1881

Proposition 3.1. For the projectors P�
j : v �→ 〈v, Λ�

j 〉Φ�
j , P̃�

j : v �→ 〈v, Λ̃�
j 〉Φ̃�

j

onto S(Φ�
j ) and to S(Φ̃�

j ), respectively, we have

‖(I − P̃�
j )v‖L2(�) � 2−d̃j |v|Hd̃(�) (v ∈ H d̃(�)),

and, when d > n
2 ,

‖(I − P�
j )v‖L2(�) � 2−dj |v|Hd(�) (v ∈ Hd(�)).

Moreover, writing P�
j v =

∑
x∈I�

j
cj,xφ�

j,x, P̃�
j v =

∑
x∈I�

j
c̃j,xφ̃�

j,x, it holds that if v

vanishes on a face of �, then cj,x = 0 for all x on that face, whereas c̃j,x = 0 for
all x ∈ ∂� anyway.

Remark 3.2. The (primal and dual) wavelets that we are going to construct on
general domains or manifolds Ω will depend on S(Φ�

j ) and S(Φ̃�
j ), but not on the

selection of their bases Φ�
j and Φ̃�

j . On the other hand, they do depend on the
collection Ξ�

j . We have constructed this collection by taking tensor products of
functions from Φj and Ξj . However, Ξ�

j = {ξ�
j,x : x ∈ J�

j } can be any collection
that satisfies ξ�

j,x(y) = 0 if not |x−y| � 2−j ; ξ�
j,x vanishes on any face of � that does

not contain x; (ξ�
j,x)|∂� = (ξ�

j,π(x) ◦ π)|∂� for all π ∈ Π; Υ�
j+1 :=

[
(Φ�

j )T (Ξ�
j )T

]T
is a uniform L2(�)-Riesz basis for S(Φ�

j+1); and, but only if one is interested in
having dual wavelets that are also locally supported, for which 〈Υ�

j+1, Φ̃
�
j+1〉−1 is

uniformly local. Taking an alternative collection Ξ�
j can yield wavelets with smaller

supports, or, which still has to be investigated, it might result in quantitatively
better conditioned wavelet bases.

4. Biorthogonal wavelets on Ω

4.1. Setting. For some n′ ≥ n ≥ 1, let Ω be a n-dimensional bounded manifold in
R

n′
, with or without a boundary. We assume that Ω is given as

Ω =
M⋃

q=1

Ωq, with Ωq ∩ Ωq′ = ∅ when q �= q′, and Ωq = κq(�),

where κq : R
n → R

n′
are some smooth, regular parametrizations. We assume that

the splitting of Ω into the patches Ωq is conforming in the sense that for any q �= q′,
Ωq ∩ Ω′

q is either empty or

κ−1
q (Ωq ∩ Ω′

q) is a face of �,

and, in addition, that the parametrizations can be chosen such that the following
matching condition is satisfied: there exists a π ∈ Π with

(M) κq′ ◦ π ◦ κ−1
q = I on Ωq ∩ Ω′

q.

Note that our setting allows Ω to be a bounded domain in R
n, as well as an open

or closed bounded manifold in R
n′

for some n′ > n.
We equip L2(Ω) with the modified L2(Ω)-scalar product

(4.1) 〈〈u, v〉〉 :=
M∑

q=1

〈u ◦ κq, v ◦ κq〉L2(�),

which defines a norm that is equivalent to the canonical L2(Ω)-norm.
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We include the possibility that homogeneous, zeroth order Dirichlet boundary
conditions are prescribed on some part ∂ΩD ⊂ Ω\Ω, for which, for all 1 ≤ q ≤ M ,

(4.2) κ−1
q (∂ΩD ∩ Ωq) is a (possibly empty) union of faces of �.

4.2. Biorthogonal multiresolution on Ω. We define the index sets IΩ
j ⊂Ω\∂ΩD,

and analogously JΩ
j , by

(4.3) IΩ
j =

(
M⋃

q=1

κq(I�
j )

)
∩ (Ω\∂ΩD).

By (M) and π(I�
j ) = I�

j (π ∈ Π), for any 1 ≤ q, q′ ≤ M with Ωq ∩ Ωq′ �= ∅, the
sets κq(I�

j ) and κq′(I�
j ) restricted to this interface coincide.

Setting, for x ∈ Ω,
k(x) = #{q : x ∈ Ωq},

for j ∈ N0 we define the collections ΦΩ
j = [φΩ

j,x]x∈IΩ
j
, Φ̃Ω

j = [φ̃Ω
j,x]x∈IΩ

j
, ΞΩ

j =

[ξΩ
j,x]x∈JΩ

j
, and ΥΩ

j+1 :=
[
(ΦΩ

j )T (ΞΩ
j )T

]T
of functions on Ω by

(4.4)

φΩ
j,x(y) =

1√
k(x)

·
{

φ�
j,κ−1

q (x)
(κ−1

q (y)) when x ∈ Ωq, y ∈ Ωq for a 1 ≤ q ≤ M,

0 elsewhere,

with analogous definitions of φ̃Ω
j,x and ξΩ

j,x. Note that by (S), (V) and (4.2), φj,x

and ξj,x extend to continuous functions on Ω that vanish on ∂ΩD. However, since
Φ̃j does not satisfy the analogue of (V) at the dual side, the collection {φ̃Ω

j,x : x ∈⋃M
q=1 κq(I�

j ∩ �)} ⊂ Φ̃Ω
j , that is, the collection of dual scaling functions that are

not ‘glued’ over the patch interfaces, contains functions that do not vanish on all
interfaces, and which thus are discontinuous, as well as functions that do not vanish
on ∂ΩD. By assumptions (L) or (L̃), the collections ΦΩ

j , Φ̃Ω
j , ΞΩ

j are uniformly local.
By this we mean that x ∈ supp φj,x, and that dΩ(x, y) � 2−j for any y ∈ supp φj,x,
where dΩ(x, y) denotes the geodesic distance of x and y over Ω, i.e., the length of
the shortest curve on Ω connecting x and y.

Setting Ej,q : �2(I�
j ) → �2(IΩ

j ), and analogously Fj,q : �2(J�
j ) → �2(JΩ

j ), by

(4.5) (Ej,qc�
j )x =

1√
k(x)

·
{

c�
j,κ−1

q (x)
x ∈ Ωq,

0 otherwise,

by construction of ΦΩ
j from Φ�

j , and the fact that the latter collection is a uniform
L2(�)-Riesz system, we have

〈〈ΦΩ
j , ΦΩ

j 〉〉 =
M∑

q=1

Ej,q〈Φ�
j , Φ�

j 〉L2(�)ET
j,q �

M∑
q=1

Ej,qET
j,q = I,

meaning that ΦΩ
j , and analogously Φ̃Ω

j and ΥΩ
j , are uniform L2(Ω)-Riesz systems.

Moreover, we have biorthogonality, i.e.,

〈〈ΦΩ
j , Φ̃Ω

j 〉〉 =
M∑

q=1

Ej,q〈Φ�
j , Φ̃�

j 〉L2(�)ET
j,q =

M∑
q=1

Ej,qET
j,q = I.
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Setting ΛΩ
j = [λΩ

j,x]x∈IΩ
j
, Λ̃Ω

j = [λ̃Ω
j,x]x∈IΩ

j
by

λΩ
j,x(u) =

√
k(x)λ�

j,κ−1
q (x)

(u ◦ κq) when x ∈ Ωq,

with an analogous definition of λ̃Ω
j,x, for PΩ

j : C(Ω) → S(ΦΩ
j ) : v �→ 〈〈v, ΛΩ

j 〉〉ΦΩ
j we

have

(4.6) ((I − PΩ
j )v) ◦ κq = (I − P�

j )(v ◦ κq), (1 ≤ q ≤ M),

with the analogous statement for P̃Ω
j : L2(Ω) → S(Φ̃Ω

j ) : v �→ 〈〈v, ΛΩ
j 〉〉ΦΩ

j .
Because of (V), at the primal side we have the analogue of (2.3), i.e., for ∂ being

each of {0}, {1}, or {0, 1}, it holds that

S({φj,x : x ∈ Ij\∂}) ⊂ S({φj+1,x : x ∈ Ij+1\∂}),

and also

S({υj+1,x : x ∈ (Ij + Jj)\∂}) = S({φj+1,x : x ∈ Ij+1\∂}).

As a consequence, despite the possible exclusion of functions because of the bound-
ary conditions (cf. (4.3)), we have

S(ΦΩ
j ) ⊂ S(ΦΩ

j+1), S(Φ̃Ω
j ) ⊂ S(Φ̃Ω

j+1), and S(ΥΩ
j+1) = S(ΦΩ

j+1).

In particular, the representations of the inclusions (the “refinement matrices”) or
the basis transformations can be expressed in terms of their counterparts on the
cube, and with that in terms of their counterparts on the interval (however, cf.
Remark 3.2), as follows:

(4.7)

〈〈ΦΩ
j , Φ̃Ω

j+1〉〉T =
M∑

q=1

Ej+1,q〈Φ�
j , Φ̃�

j+1〉TL2(�)E
T
j,q,

〈〈Φ̃Ω
j , ΦΩ

j+1〉〉T =
M∑

q=1

Ej+1,q〈Φ̃�
j , Φ�

j+1〉TL2(�)E
T
j,q,

〈〈ΥΩ
j+1, Φ̃

Ω
j+1〉〉T =

M∑
q=1

Ej+1,q〈Υ�
j+1, Φ̃

�
j+1〉TL2(�)

[
ET

j,q 0
0 FT

j,q

]
,

〈〈ΥΩ
j+1, Φ̃

Ω
j+1〉〉−T =

M∑
q=1

[
Ej,q 0
0 Fj,q

]
〈Υ�

j+1, Φ̃
�
j+1〉−T

L2(�)E
T
j+1,q,

where, because of (2.1), as the other three matrices, 〈〈ΥΩ
j+1, Φ̃

Ω
j+1〉〉−T is uniformly

local, meaning that only entries indexed by (x, y) with dΩ(x, y) � 2−j might be
nonzero.

4.3. Wavelets. Since ΦΩ
j , Φ̃Ω

j are biorthogonal, uniformly local, uniform L2(Ω)-
Riesz systems, the collections of primal and dual wavelets ΨΩ

j , Ψ̃Ω
j defined by

(4.8) ΨΩ
j = ΞΩ

j − 〈〈ΞΩ
j , Φ̃Ω

j 〉〉ΦΩ
j , Ψ̃Ω

j =
[

0 I
]
〈〈ΥΩ

j+1, Φ̃
Ω
j+1〉〉−T Φ̃Ω

j+1

are biorthogonal (with respect to 〈〈·, ·〉〉), uniformly local, uniform L2(Ω)-Riesz bases
for the spaces S(ΦΩ

j+1) ∩ (S(Φ̃Ω
j ))⊥〈〈·,·〉〉 and S(Φ̃Ω

j+1) ∩ (S(ΦΩ
j ))⊥〈〈·,·〉〉 , respectively.
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Here also 〈〈ΞΩ
j , Φ̃Ω

j 〉〉 can be expressed in terms of its counterpart on the cube, via

〈〈ΞΩ
j , Φ̃Ω

j 〉〉 =
M∑

q=1

Fj,q〈Ξ�
j , Φ̃�

j 〉L2(�)ET
j,q

=
M∑

q=1

Fj,q〈Ξ�
j , Φ̃�

j+1〉L2(�)〈Φ̃�
j , Φ�

j+1〉TL2(�)E
T
j,q.

(4.9)

For s ≥ 0, we set

Hs(Ω) =
{

Hs
0,∂ΩD

(Ω) when s ≤ 1,

Hs(Ω) ∩ H1
0,∂ΩD

(Ω) when s > 1,
H̃s(Ω) = Hs(Ω),

H−s(Ω) = H̃s(Ω)′, and H̃−s(Ω) = Hs(Ω)′, where, in the true manifold case, we re-
strict ourselves to those s for which the definition of the Sobolev spaces is permitted
by the regularity of the manifold. Furthermore, we set ΨΩ

−1 = ΦΩ
0 and Ψ̃Ω

−1 = Φ̃Ω
0 .

Then, together, the nesting of primal and dual spaces, the fact that they can be
equipped with biorthogonal uniform L2(Ω)-Riesz bases, the Jackson estimates that
can be deduced from Proposition 3.1 and (4.6), the Bernstein estimates implied
by (B) at primal and dual side, and the continuous/discontinuous gluing of basis
functions over the interfaces between patches at primal and dual side, imply that
for s ∈ (−min{ 1

2 , γ̃}, min{ 3
2 , γ}) or s ∈ (−min{ 3

2 , γ}, min{ 1
2 , γ̃}), the collections⋃

j≥−1

2−s(j+1)ΨΩ
j or

⋃
j≥−1

2−s(j+1)Ψ̃Ω
j

are Riesz bases for Hs(Ω) or H̃s(Ω), respectively (cf. [DS98]), assuming that, in
the true manifold case, s is such that this Sobolev space is defined.

The crucial property of the primal wavelets, as reflected in the title of this
work, is given by the following result, which is a direct consequence of, for j ≥ 0,
S(ΨΩ

j ) ⊥〈〈·,·〉〉 S(Φ̃Ω
j ), (2.3), and Φ̃Ω

j ⊃ {φ̃Ω
j,x : x ∈

⋃M
q=1 κq(I�

j ∩ �)}.

Proposition 4.1. For all j ∈ N0, x ∈ JΩ
j and 1 ≤ q ≤ M ,

ψΩ
j,x|Ωq

◦ κq ⊥L2(�) Qd̃−1(�).

So the primal wavelets have the patchwise cancellation property of order d̃, which
has the attractive consequences concerning matrix compression as discussed at the
beginning of this paper.

5. Illustration

We choose the simplest case from [DKU99] to illustrate the proposed construc-
tion, namely the case d = d̃ = 2 (and r = 1; cf. (2.2)). Actually, we take the
collections Φj , Φ̃j from [DS99a], which differ from those from [DKU99] by basis
transformations. These transformations have no influence on the new primal and
dual scaling functions, also not after “gluing”, and so also not on our wavelets, but
they were essential for the construction of the composite wavelets in [DS99a], since
they guarantee the analogue of (V) at the dual side. The collection Φj spans the
space of continuous piecewise linears with respect to an equidistant subdivision of
the interval [0, 1] into 2j intervals. With Ij := {k2−j : k = 0, 1, . . . , 2j}, the primal
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scaling functions are defined by φj,x(y) = δxy2j/2 (y ∈ Ij), i.e., they are the familiar
“hat functions”, except for the boundary function

φj,0(x) = 2j/2

⎧⎪⎨
⎪⎩

1 − 2j · 7x/6, 0 ≤ x ≤ 2−j ,

2j · x/6 − 1/3, 2−j < x ≤ 2 · 2−j ,

0, elsewhere,

and likewise φj,1. Applying a canonical ordering of the scaling functions, the primal
and dual refinement relations are given by

〈Φj , Φ̃j+1〉 =
1√
2

⎡
⎢⎢⎢⎣
1 7/12 −1/6 −1/12

1/2 1 1/2
1/2 1 1/2

. . .

⎤
⎥⎥⎥⎦ ,

〈Φ̃j , Φj+1〉 =
1√
2

⎡
⎢⎢⎢⎣
1 3/2 −3/4

1/2 3/2 1/2 −1/4
−1/4 1/2 3/2 1/2 −1/4

. . .

⎤
⎥⎥⎥⎦ .

To find suitably modified scaling functions, we can either apply Theorems 2.2 or
2.3, that result in an update of φj,0 with a linear combination of 2 or 3 neighbouring
scaling functions, respectively. We apply Theorem 2.3, which amounts to solving
αj,2−j and αj,2·2−j such that φj,0 + αj,2−j φj,2−j + αj,2·2−j φj,2·2−j ⊥L2(0,1) P1(0, 1).
From the discussion following the proof of Theorem 2.3 we know in advance that
a unique solution exists. We found αj,2−j = 2/3 and αj,2·2−j = −1/3, so that the
new boundary function is given by

φnew
j,0 (x) = 2j/2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2j · 11x/6, 0 ≤ x ≤ 2−j ,

2j · 7/6x − 2, 2−j < x ≤ 2 · 2−j ,

1 − 2jx/3 2 · 2−j < x ≤ 3 · 2−j ,

0, elsewhere,

and likewise φnew
j,1 . Making the corresponding transformation at the dual side in-

dicated in (2.5) and (2.6), the new refinement matrices 〈Φnew
j , Φ̃new

j+1〉, 〈Φ̃new
j , Φnew

j+1〉
are given by

1√
2

⎡
⎢⎢⎢⎣
1 11/12 −7/6 −1/4 1/3 1/6

1/2 1 1/2
1/2 1 1/2

. . .

⎤
⎥⎥⎥⎦ ,

1√
2

⎡
⎢⎢⎢⎢⎢⎣
−1/4 3/2 −3/4

3/2 1 1/2 −1/4
−1/2 0 1/2 3/2 1/2 −1/4

−1/4 1/2 3/2 1/2 −1/4
. . .

⎤
⎥⎥⎥⎥⎥⎦ ,

respectively.
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Figure 1. The first two primal (left) and the first four dual (right)
new scaling functions.

The new scaling functions closest to the left boundary of [0, 1] are shown in
Figure 1, where the second primal and the fourth dual scaling function correspond
to the stationary functions on the line from [CDF92]. Note that there are three new
dual scaling functions that do not vanish at 0, whereas there is only one function
in Φ̃j with that property. The sets Φj \ {φnew

j,0 , φnew
j,1 } and Φ̃j \ {φ̃new

j,0 , φ̃new
j,1 } are

identical to the scaling functions constructed in [DS98] to obtain wavelets with
complementary boundary conditions (cf. Remark 2.4).

As a first application of the modified scaling functions to construct composite
wavelets, we consider the one-dimensional domain Ω = [0, 2] with patches [0, 1]
and [1, 2], where we impose Dirichlet boundary conditions at x = 2. The scaling
functions are glued according to (4.4). Then, setting Jj := Ij+1 \ Ij , and using
the canonical hierarchical basis as an initial complementary basis Ξj , we obtain the
primal and dual wavelet functions by formulas (4.8), (4.9), and (4.7), taking into
account the new refinement matrices 〈Φnew

j , Φ̃new
j+1〉 and 〈Φ̃new

j , Φnew
j+1〉 derived above.

In the left picture of Figure 2, we illustrated the left boundary primal wavelet, one
of both primal wavelets with support across the interface x = 1 (the other one
is obtained by reflection), and the right boundary primal wavelet satisfying the
Dirichlet boundary condition, as well as their values at the “grid”-points defining
the underlying partition. One may verify that indeed these wavelets have the
patchwise cancellation property of order 2. In the right picture of Figure 2 one
finds the corresponding dual wavelets. Note that the dual wavelet with support
across the interface x = 1 exhibits a jump.
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Figure 2. Primal (top) and corresponding dual (bottom) wavelets
on Ω = [0, 2] composed from the patches [0, 1] and [1, 2].
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Figure 3. The L-shaped domain as a union of three patches.

Figure 4. Primal (left) and corresponding dual (right) wavelets
on the L-shaped domain near the re-entrant corner.

Next, we consider the two-dimensional L-shaped domain

Ω = ([0, 2] × [0, 2.5]) \ ([1, 2] × [0, 1.5]),

which we represent by three patches according to Figure 3. On the faces indicated
by the black bullets we prescribe Dirichlet boundary conditions. As set Ξ�

j on
the reference domain � = (0, 1)2, we employ the standard choice [Φnew

j ⊗ Ξj , Ξj ⊗
Φnew

j , Ξj ⊗Ξj ] (cf. Remark 3.2). Again, the primal and dual wavelets are given by
the formulas (4.8), (4.9), and (4.7).

In Figure 4, we plotted two primal wavelets and their corresponding duals which
live near the re-entrant corner (x, y) = (1, 1.5). Even though we have mixed bound-
ary conditions in a neighbourhood of this vertex, these primal wavelets satisfy ho-
mogeneous Dirichlet boundary conditions everywhere. In Figure 5 we plotted two
other primal wavelets, where one satisfies Dirichlet boundary conditions and the
other does not. No dual wavelet satisfies Dirichlet boundary conditions.

The implementation of the wavelets follows the same line as that of the stan-
dard composite primal wavelets introduced in [DS99a]; see [Har01, HS04] for details.
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Figure 5. Wavelets with (left) and without (right) Dirichlet
boundary conditions.

Note, however, that those standard composite primal wavelets that “meet” Dirichlet
boundary conditions or, due to the jump in the Jacobians of the parametrizations,
that have supports across the interface between the rectangle [0, 1]× [0, 1.5] and the
square [0, 1]× [1.5, 2.5] have no cancellation properties with respect to the canonical
L2(Ω)-scalar product. All our primal wavelets satisfy patchwise cancellation prop-
erties of order 2, and so in particular cancellation properties of order 2 with respect
to the canonical L2(Ω)-scalar product. On the other hand, it is fair to say that, in
this example, the L2(Ω)-condition number of our primal wavelets was about four
times the L2(Ω)-condition number of the corresponding composite wavelets. For
completeness, note that, due to the different dual spaces, the collection of wavelets
on any given level constructed in this paper span a different space than the collec-
tion of standard composite wavelets on that level.
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