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ON EFFICIENT COMPUTATION
AND ASYMPTOTIC SHARPNESS OF KALANTARI’S BOUNDS

FOR ZEROS OF POLYNOMIALS

YI JIN

Abstract. We study an infinite family of lower and upper bounds on the
modulus of zeros of complex polynomials derived by Kalantari. We first give a
simple characterization of these bounds which leads to an efficient algorithm for
their computation. For a polynomial of degree n our algorithm computes the
first m bounds in Kalantari’s family in O(mn) operations. We further prove
that for every complex polynomial these lower and upper bounds converge to
the tightest annulus containing the roots, and thus settle a problem raised in
Kalantari’s paper.

1. Introduction

In [3], Kalantari derives an infinite family of lower and upper bounds on the
modulus of zeros of analytic functions. When applied to complex polynomials,
these bounds can be computed in polynomial time.

Let

f(z) = anzn + an−1z
n−1 + · · · + a1z + a0, a0, . . . , an ∈ C, ana0 �= 0,

and

F (z) = f(z)z.

Then from an expansion formula of a fundamental family of root-finding iteration
functions applied to F (z) at z = 0 (see (2.4) in [3]), we get

(1.1) 1 +
n+k∑

i=1+k

(−1)k+2 D̂k+1,i+1(0)
Dk+1(0)

θi = 0
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for k = 0, 1, 2, . . . , where θ is a zero of f(z), and

Dm(z) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F ′(z) F ′′(z)
2! · · · F (m−1)(z)

(m−1)!
F (m)(z)

(m)!

F (z) F ′(z) · · · . . . F (m−1)(z)
(m−1)!

0 F (z)
. . . . . .

...
...

...
. . . . . . F ′′(z)

2!
0 0 · · · F (z) F ′(z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D̂m,j(z) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F ′′(z)
2!

F ′′′(z)
3! · · · F (m)(z)

(m)!
F (j)(z)

j!

F ′(z) F ′′(z)
2!

. . . F (m−1)(z)
(m−1)!

F (j−1)(z)
(j−1)!

F (z) F ′(z)
. . .

...
...

...
...

. . . F ′′(z)
2!

F (j−m+2)(z)
(j−m+2)!

0 0 · · · F ′(z) F (j−m+1)(z)
(j−m+1)!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and “det” denotes determinant.
Let

ĉk,i = (−1)k+2 D̂k+1,i+1(0)
Dk+1(0)

;

then (1.1) becomes

(1.2) 1 +
n+k∑

i=1+k

ĉk,iθ
i = 0.

Now define

γk = max
{
|ĉk,i|1/i : i = 1 + k, . . . , n + k

}
and uk = γk|θ|.

Then ui
k ≥

∣∣ĉk,iθ
i
∣∣ and

(1.3)
n+k∑

i=1+k

ui
k ≥

n+k∑
i=1+k

∣∣ĉk,iθ
i
∣∣ ≥ 1.

Proposition 1.1. Inequality (1.3) implies uk > rk, where rk < 1 is the unique
positive zero of the polynomial tk+1 + t − 1.

Proof. The following proof was given by Kalantari [3].
First, the polynomial q(t) = tk+1 + t− 1 has a unique positive zero rk < 1. This

follows from the inequalities q(0) < 0, q(1) > 0, and q′(t) > 0 for t ≥ 0.
Now assume uk ≤ rk < 1. Note by definition that uk > 0. So we have

uk+1
k

1 − uk
> uk+1

k

1 − un
k

1 − uk
=

n+k∑
i=1+k

ui
k ≥ 1,

or equivalently uk+1
k + uk − 1 > 0. But by strict upward monotonicity of q(t) for

t ≥ 0, 0 < uk ≤ rk implies uk+1
k + uk − 1 ≤ 0, a contradiction. �
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Plugging uk = γk|θ| into uk > rk, we obtain an infinite family of lower bounds
on zeros of f(z):

|θ| >
rk

γk
= Lk, k = 0, 1, 2, 3, . . . .

The quantity Lk is called the (k + 2)-th order lower bound (and denoted by Lk+2)
in [3].

To obtain upper bounds on zeros of f(z), we apply the above lower bounds to
g(z) = a0z

n + a1z
n−1 + · · ·+ an−1z + an. Since the reciprocals of zeros of g(z) are

zeros of f(z), the reciprocal of the lower bound Lk on zeros of g(z) is the upper
bound Uk on zeros of f(z), which is called the (k + 2)-th order upper bound (and
denoted by Uk+2) in [3].

The first bounds L0 and U0 of this family also appear in Henrici [1] as Theorem
6.4b and Corollary 6.4k, respectively.

Remark 1.2. A straightforward computation of the lower bound Lm on zeros of
f(z) takes O(m3n) operations.

In Section 2, we give a simple characterization of Kalantari’s bounds which leads
to an efficient algorithm that computes the first m bounds on zeros of f(z) in
O(mn) operations. In Section 3, we prove that for every complex polynomial the
upper and lower bounds converge to the tightest annulus containing the roots, and
thus settle a problem raised in [3].

2. The algorithm

The key element in our algorithm is the efficient computation of ĉk,i. We start
with an alternative interpretation of ĉk,i.

For each integer k ≥ 0, define

Ω(k) = {1 +
n+k∑

i=1+k

αiz
i : αi ∈ C}.

That is, Ω(k) is the set of complex polynomials of degree n+k whose constant term
is 1, and the coefficients of zi, i = 1, . . . , k are 0.

Then for each integer k ≥ 0, there exists a unique polynomial qk(z) of degree k,
such that

f(z)qk(z) ∈ Ω(k).

Moreover, the coefficient of zi, i ≥ 0, in qk(z) is independent of k, so we can write

qk(z) =
k∑

i=0

biz
i.

The existence and uniqueness of bi, i = 0, 1, 2, . . . , and hence the existence and
uniqueness of qk(z), k = 0, 1, 2, . . . , are implied by recurrence (2.2) shown below.

For each integer k ≥ 0, let

(2.1) hn+k(z) ≡ f(z)qk(z) = f(z)
k∑

i=0

biz
i = 1 +

n+k∑
i=1+k

ck,iz
i.

That is, ck,i is defined as the coefficient of zi in hn+k(z).
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It is easy to see that bi and hn+i(z), i = 0, 1, 2, . . . , satisfy the following recur-
rence:

b0 = 1/a0, hn(z) = b0f(z),(2.2a)

bi = −ci−1,i/a0, hn+i(z) = hn+i−1(z) + biz
if(z), i = 1, 2, . . . .(2.2b)

Proposition 2.1. For each integer k ≥ 0, define

ĥn+k(z) ≡ 1 +
n+k∑

i=1+k

ĉk,iz
i.

Then
ĥn+k(z) ≡ hn+k(z),

or equivalently ĉk,i = ck,i for i = 1 + k, . . . , n + k.

Proof. From (1.2) the zeros of f(z) are also zeros of ĥn+k(z). Thus, if the zeros of
f(z) are all simple, we can factor f(z) out of ĥn+k(z). That is, ĥn+k(z) = f(z)ĝk(z),
where ĝk(z) is a polynomial of degree k. Since ĥn+k(z) ∈ Ω(k), we have

ĝk(z) ≡ gk(z), ĥn+k(z) ≡ hn+k(z),

hence the proof of the claim.
If f(z) has root(s) of multiplicity greater than 1, we can view f(z) as the limit

of a sequence of polynomials of degree n whose roots are all simple. Since both ck,i

and ĉk,i are continuous functions of a0, . . . , an, we conclude that our claim holds in
this case, too. �

Now we can write γk as a function of ck,i, i = 1 + k, . . . , n + k:

γk = max
{
|ck,i|1/i : i = 1 + k, . . . , n + k

}
.

Our algorithm makes use of recurrence (2.2) to compute hn+k(z), from which
the coefficients ck,i are extracted to compute γk and then the lower bounds Lk, k =
0, . . . , m − 1. Observe that rk is independent of the polynomial f whose roots we
want to bound, so it can be precomputed and stored in a lookup table. We shall
assume rk is available to our algorithm.

Algorithm 1: Computing the first m lower bounds on zeros of f(z) in
O(mn) operations.

input : f(z) = anzn + an−1z
n−1 + · · · + a1z + a0, ana0 �= 0 and m.

output: The first m lower bounds on zeros of f(z).

b0 = 1/a0;
hn(z) = b0f(z);
γ0 = max

{
|c0,i|1/i : i = 1, . . . , n

}
;

output L0 = r0/γ0;
for k from 1 to m − 1 do

bk = −ck−1,k/a0;
hn+k(z) = hn+k−1(z) + bkzkf(z);
γk = max

{
|ck,i|1/i : i = 1 + k, . . . , n + k

}
;

output Lk = rk/γk;
end
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Remark 2.2. We can scale f(z) to make a0 = 1, thus eliminating the division
operation when computing bi.

It is hard to believe that the lower bounds generated by such a simple scheme
would be asymptotically sharp, not to mention that each Lk has to be a lower
bound on zeros of qk(z) =

∑k
i=0 biz

i as well. Yet extensive numerical experiments
suggest that this family is indeed asymptotically sharp.

Example 2.3. Let f(z) = 3z5 + 4z4 + 4z3 + 2z2 + 2z + 1. It has 5 distinct
roots: θ1 = −0.57478, θ2 = 0.27086 + 0.69254i, θ3 = 0.27086 − 0.69254i, θ4 =
−0.65014+0.79124i, θ5 = −0.65014−0.79124i, and the smallest and largest moduli
of these roots are 0.57478 and 1.0241, respectively.

We now use Algorithm 1 to compute the first 7 lower bounds on zeros of f(z):

k bk h5+k(z) γk rk Lk

0 1 1 + 2z + 2z2 + 4z3 + 4z4 + 3z5 2. 0.50000 0.25000
1 −2 1 − 2z2 − 4z4 − 5z5 − 6z6 1.4142 0.61803 0.43702
2 2 1 + 4z3 + 3z5 + 2z6 + 6z7 1.5874 0.68233 0.42984
3 −4 1 − 8z4 − 5z5 − 14z6 − 10z7 − 12z8 1.6818 0.72449 0.43079
4 8 1 + 11z5 + 2z6 + 22z7 + 20z8 + 24z9 1.6154 0.75488 0.46730
5 −11 1 − 20z6 − 24z8 − 20z9 − 33z10 1.6475 0.77809 0.47227
6 20 1 + 40z7 + 16z8 + 60z9 + 47z10 + 60z11 1.6938 0.79654 0.47027

As the above table shows, although the first few bounds are not monotonically
improving, the trend is already set. As we explore higher order bounds, this trend
toward convergence becomes very clear:

k Lk Uk k Lk Uk k Lk Uk

10 0.49680 1.2140 150 0.56178 1.0502 1000 0.57192 1.0295
50 0.54586 1.0838 200 0.56436 1.0449 4000 0.57389 1.0258

100 0.55717 1.0598 250 0.56602 1.0413 8000 0.57429 1.0249

Upper bounds for zeros of f(z) given by the well-known formulas (i)–(viii) listed
in Mignotte [6, Theorem 4.2, pp. 146–148] are (i) 4.3333, (ii) 2.3333, (iii, iv) 6.6667,
(v) 2.6667, (vi) 1.6667, (vii) 1.3333, and (viii) 5.3985. The best bound is obtained
by formula (vii), which only works for polynomials with positive real coefficients.
The first 3 upper bounds in Kalantari’s family are U0 = 2.6667, U1 = 1.6759, and
U2 = 1.1774. So in this particular instance, U2 beats all the bounds in Theorem
4.2 of [6]. Moreover, Kalantari’s bounds are applicable to all complex polynomials.

In general, the first members of Kalantari’s family already exhibit superior per-
formance as individual bounds. In an empirical study conducted by McNamee
and Olhovsky [5], U2 stands out as the best among a sample of upper bounds,
outperforming 44 other bounds in the literature by a wide margin. However, the
superiority of Kalantari’s bounds are achieved at the price of high computational
complexity.

A MAPLE program that implements Algorithm 1 and its upper bound counter-
part is available online at http://paul.rutgers.edu/~yjin/MAPLE/kbounds.
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3. Proof of convergence

In this section we shall prove the following result.

Theorem 3.1. Let θ1, . . . , θs be distinct zeros of f(z) with multiplicities d1, . . . , ds;
then

lim
k→∞

Lk = min{|θ1|, |θ2|, . . . , |θs|}.

Remark 3.2. By symmetry, we also have

lim
k→∞

Uk = max{|θ1|, |θ2|, . . . , |θs|}.

Thus, both the lower and upper bounds are asymptotically sharp.

Proof of Theorem 3.1. The key observation is that the sequence {bi}∞i=0 is gener-
ated by 1

f(z) , i.e.,

1
f(z)

=
1

anzn + an−1zn−1 + · · · + a1z + a0
=

∞∑
i=0

biz
i.

To see this, note that (2.1) implies

a0b0 = 1,(3.1a)
i∑

j=0

ajbi−j = 0 for 1 ≤ i < n,(3.1b)

n∑
j=0

ajbi−j = 0 for i ≥ n,(3.1c)

so we have

f(z)

( ∞∑
i=0

biz
i

)
=

(
n∑

i=0

aiz
i

)( ∞∑
i=0

biz
i

)
= 1.

Remark 3.3. The above identity may be seen as the limiting case of (2.1) as k
approaches infinity.

It is well known in the calculus of finite differences that

bi =
s∑

j=1

Pj(i)θ−i
j for i ≥ 0,

where

f(z) = a0 + a1z + · · · + an−1z
n−1 + anzn = a0

s∏
j=1

(
1 − θ−1

j z
)dj

,

and Pj(x) is a polynomial of degree dj − 1 (see Stanley [7, Theorem 4.1, p. 110]).
This can be proved by expanding the rational function 1

f(z) into partial fractions,
or by solving the linear homogeneous recurrence (3.1c).

Let ρmin = min{|θ1|, |θ2|, . . . , |θs|}. First we bound bi:

|bi| ≤
s∑

j=1

∣∣Pj(i)θ−i
j

∣∣ ≤ s∑
j=1

|Pj(i)|ρ−i
min ≤ Q(i)ρ−i

min,

where Q(x) is a polynomial of degree max{d1, . . . , ds}−1 with positive coefficients.
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Next we bound ck,i. We shall use the fact that Q(x) is monotonically increasing
when x ≥ 0.

Let

α = max{|a0|, |a1|, . . . , |an|} and β = max{1, ρn
min}

n−1∑
j=0

ρj
min.

For k ≥ n, i = 1 + k, . . . , n + k, we have

|ck,i| =

∣∣∣∣∣∣
k∑

j=i−n

ai−jbj

∣∣∣∣∣∣ ≤ αQ(k)
k∑

j=i−n

ρ−j
min ≤ αQ(i)ρ−i+(i−k)

min

n−1∑
j=0

ρj
min ≤ αβQ(i)ρ−i

min.

Thus,

γk = max
{
|ck,i|1/i : i = 1 + k, . . . , n + k

}
≤ max

{
[αβQ(i)]1/i : i = 1 + k, . . . , n + k

}
ρ−1
min = Bk.

On the other hand, γk > rk/ρmin = Ak. It is easy to verify that

lim
i→∞

[αβQ(i)]1/i = 1 and lim
k→∞

rk = 1.

So
lim

k→∞
Ak = ρ−1

min and lim
k→∞

Bk = ρ−1
min.

Since Ak < γk ≤ Bk, we conclude that

lim
k→∞

γk = ρ−1
min.

Finally,

lim
k→∞

Lk = lim
k→∞

rk

γk
= ρmin = min{|θ1|, |θ2|, . . . , |θs|}. �

Remark 3.4. The linear recurrence (3.1c) with initial conditions (3.1a) and (3.1b)
allows us to compute b0, b1, . . . , bk directly. Together with identity (2.1), it gives
rise to another efficient algorithm to compute ck,i, i = 1 + k, . . . , n + k:

Algorithm 2: Computing ck,i, i = 1 + k, . . . , n + k, in O(kn) arithmetic
operations using linear recurrence relation (3.1) and identity (2.1).

input : f(z) = anzn + an−1z
n−1 + · · · + a1z + a0, an �= 0, a0 = 1 and k.

output: ck,i, i = 1 + k, . . . , n + k.

b0 = 1;
for i from 1 to k do

bi = −
∑min{n,i}

j=1 ajbi−j ;
end
for i from 1 + k to n + k do

ck,i =
∑k

j=max{0,i−n} ai−jbj ;
end
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Remark 3.5. While there are plenty of individual bounds on polynomial roots in
the literature, families of such bounds are rare, and Kalantari’s family is the only
one we know of that is asymptotically sharp. For a bibliography on bounds of
polynomial roots, see McNamee [4].
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