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A TWO-GRID DISCRETIZATION METHOD
FOR DECOUPLING SYSTEMS

OF PARTIAL DIFFERENTIAL EQUATIONS

JICHENG JIN, SHI SHU, AND JINCHAO XU

Abstract. In this paper, we propose a two-grid finite element method for
solving coupled partial differential equations, e.g., the Schrödinger-type equa-
tion. With this method, the solution of the coupled equations on a fine grid
is reduced to the solution of coupled equations on a much coarser grid to-
gether with the solution of decoupled equations on the fine grid. It is shown,
both theoretically and numerically, that the resulting solution still achieves
asymptotically optimal accuracy.

1. Introduction

The idea of the two-grid finite element method was originally proposed by Xu
in [19, 20, 21, 22] for discretizing nonsymmetric and indefinite partial differential
equations. By employing two finite element spaces of different scales, one coarse
space and one fine space, this method was first used for symmetrization of non-
symmetric problems, which reduces the solution of a nonsymmetric problem on a
fine grid to the solution of a corresponding (but much smaller) nonsymmetric prob-
lem discretized on the coarse grid and the solution of a symmetric positive definite
problem on the fine grid. This method was also used for linearization for nonlinear
problems [12, 19, 20], for localization and parallelization for solving a large class of
partial differential equations [16, 17, 18]. There are also many other authors who
have used this method for many different applications. See, for example, Axelsson
et al. [2, 3, 4], Girault and Lions [7], Layton et al. [9, 10, 11], and Utnes [15].

In this paper, we explore the two-grid idea in a new direction, namely we will use
the two-grid discretization method to decouple the systems of partial differential
equations. For clarity, we will use a simple model problem of the Schrödinger
equation which arises from quantum mechanics to illustrate our idea. Similar to
the two-grid discretization method for symmetrization, linearization, localization
and parallelization as mentioned above, we use the two-grid method to decouple a
system of partial differential equations by first discretizing the original systems of
partial differential equations on the coarse grid and then discretizing a decoupled
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system on the fine grid. As a result, the computational complexity of solving,
say, a model Schrödinger equation is comparable to solving two decoupled Poisson
equations on the same fine grid.

Similar to other applications, the two-grid discretization method for decoupling
a system of partial differential equations is not only an efficient numerical method
by itself for such applications, but its analysis should provide some insights on how
a multiscale idea can be applied for systems of partial differential equations.

The rest of this paper is organized as follows. In section 2, we introduce a model
Schrödinger equation used to demonstrate our method. In section 3, we propose
the two-grid finite element algorithms and analyze the convergence. Section 4 is
devoted to the presentation of numerical examples showing the effectiveness of our
method.

2. A model Schrödinger equation

The Schrödinger equation is the fundamental equation in quantum mechanics. It
also arises in mathematically modelling underwater acoustics, where the Helmholtz
equation for the acoustic pressure is transformed into an equation of the same form
by applying the so-called “parabolic approximation” [14]. For simplification, here
we consider the following boundary value problem of the Schrödinger type:

−∆ψ(x) + V (x)ψ(x) = f(x), ∀ x ∈ Ω,(2.1)
ψ(x) = 0, ∀ x ∈ ∂Ω,(2.2)

where Ω ⊂ R2 is a polygonal domain which, for simplicity of exposition, will be
assumed to be convex. In general, f(x), the potential function V (x) and unknown
function ψ(x) are complex valued.

For any complex-valued function w(x), we denote its real part by w1(x), the
imaginary part by w2(x), and the vector function (w1(x), w2(x)) by w(x). Then
problem (2.1)–(2.2) is equivalent to the following coupled equations:

−∆ψ1(x) + V1(x)ψ1(x) − V2(x)ψ2(x) = f1(x), ∀ x ∈ Ω,(2.3)
−∆ψ2(x) + V1(x)ψ2(x) + V2(x)ψ1(x) = f2(x), ∀ x ∈ Ω,(2.4)
ψj(x) = 0, j = 1, 2, ∀ x ∈ ∂Ω.(2.5)

Let L2(Ω) be the inner product space with the inner product given by

(u, v) =
∫

Ω

u(x)v(x)dx

for real-valued and Lebesgue square integrable functions u(x) and v(x), let Hm(Ω)
be the standard Sobolev space with a norm given by ‖u‖2

m =
∑

|α|≤m ‖Dαu‖2
L2(Ω)

for a real-valued function u(x), and let H1
0 (Ω) be the subspace of H1(Ω) consisting

of functions with vanishing trace on ∂Ω. Then the equivalent variational form of
(2.3)–(2.5) is defined as follows.

(2.6)
Find ψ ∈ H1

0 (Ω) × H1
0 (Ω) such that

a(ψ,w) = (f ,w), ∀ w ∈ H1
0 (Ω) × H1

0 (Ω),

where

(f ,w) = (f1, w1) + (f2, w2) , a(ψ,w) = â(ψ,w) + N(ψ,w)
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with

â(ψ,w) = (∇ψ1, ∇w1) + (∇ψ2, ∇w2) ,
N(ψ,w) = (V1ψ1, w1) − (V2ψ2, w1) + (V1ψ2, w2) + (V2ψ1, w2) .

Let the notation “�” be equivalent to “≤ C” for some positive constant C and

‖w‖m denote
√
‖w1‖2

m + ‖w2‖2
m for any vector function w(x). Let us first state a

simple regularity result.

Theorem 1. Assume that

f ∈ L2(Ω) × L2(Ω), V ∈ L∞(Ω) × L∞(Ω), V1(x) ≥ 0 in Ω.(2.7)

Then the variational problem (2.6) has a unique solution ψ ∈ H2(Ω)×H2(Ω), and

‖ψ‖2 � ‖f‖0 .(2.8)

Proof. From (2.7), we can easily check that

|a(u,w)| � ‖u‖1 ‖w‖1 , ∀ u,w ∈ H1
0 (Ω) × H1

0 (Ω),

‖w‖2
1 � a(w,w), ∀ w ∈ H1

0 (Ω) × H1
0 (Ω).

Therefore, by the Lax-Milgram theorem, the variation problem (2.6) has a unique
solution ψ ∈ H1

0 (Ω) × H1
0 (Ω). Note that ψ1(x), ψ2(x) are the weak solutions of

problem (2.3)–(2.5). By the regularity theory for elliptic boundary value problems
[6], we have

‖ψ1‖2 � ‖f1 + V2ψ2‖0 � ‖ψ2‖0 + ‖f1‖0 ,
‖ψ2‖2 � ‖f2 − V2ψ1‖0 � ‖ψ1‖0 + ‖f2‖0 .

The above two inequalities imply that

‖ψ‖2 � ‖ψ‖0 + ‖f‖0 .(2.9)

From (2.6) we have

‖ψ‖2
1 � a(ψ, ψ) = (f , ψ) � ‖ψ‖0 ‖f‖0 ,

and then

‖ψ‖1 � ‖f‖0 .

Therefore, (2.8) follows from (2.9) and the above inequality. �

Let Th be a quasi-uniform triangulation of Ω with mesh size h > 0, and let
Sh

0 ⊂ H1
0 (Ω) be the corresponding piecewise linear polynomial space. Then the

finite element approximation of problem (2.6) is defined as follows.

(2.10)
Find ψh ∈ Sh

0 × Sh
0 such that

a(ψh,wh) = (f ,wh), ∀ wh ∈ Sh
0 × Sh

0 .

As shown in the following theory, the error analysis of the above finite element
discretization can be obtained by standard techniques.

Theorem 2. Under the assumption (2.7), ψh has the error estimate

‖ψ − ψh‖s � h2−s ‖ψ‖2 , s = 0, 1.(2.11)
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Proof. Let eh = ψ − ψh. Then it follows from (2.6) and (2.10) that

a(eh,wh) = 0, ∀ wh ∈ Sh
0 × Sh

0 .(2.12)

Let ψI ∈ Sh
0 × Sh

0 be the interpolation of ψ. Then

‖eh‖2
1 � a(eh, eh) = a(eh, ψ − ψI) � ‖eh‖1

∥∥∥ψ − ψI
∥∥∥

1
,

which implies that

‖eh‖1 �
∥∥∥ψ − ψI

∥∥∥
1

� h ‖ψ‖2 .(2.13)

We consider the auxiliary problem of (2.3)–(2.5):

−∆u1(x) + V1(x)u1(x) + V2(x)u2(x) = g1(x), ∀ x ∈ Ω,(2.14)
−∆u2(x) + V1(x)u2(x) − V2(x)u1(x) = g2(x), ∀ x ∈ Ω,(2.15)
uj(x) = 0, j = 1, 2, ∀ x ∈ ∂Ω.(2.16)

Then similar to Theorem 1, for any g ∈ L2(Ω)×L2(Ω) there exists a unique solution
u ∈

(
H2(Ω)

⋂
H1

0 (Ω)
)
×

(
H2(Ω)

⋂
H1

0 (Ω)
)

such that

a(w,u) = (g,w), ∀ w ∈ H1
0 (Ω) × H1

0 (Ω),(2.17)

and

‖u‖2 � ‖g‖0 .(2.18)

Take g = eh in (2.17) and let uI ∈ Sh
0 × Sh

0 be the interpolation of u. Then we
have

‖eh‖2
0 = a(eh,u) = a(eh,u− uI)

� ‖eh‖1

∥∥u − uI
∥∥

1
� h ‖eh‖1 ‖u‖2 � h ‖eh‖1 ‖eh‖0 ,

which implies that

‖eh‖0 � h ‖eh‖1 .(2.19)

Therefore, (2.11) follows from (2.12) and (2.19). �

3. A new two-grid finite element method

The finite element discretization (2.10) apparently corresponds to a coupled sys-
tem of equations in the general case that the potential function V (x) given in
(2.1) is complex valued. In order to reduce the computational cost, following Xu
[12, 19, 20], we introduce another finite element space SH

0 (⊂ Sh
0 ⊂ H1

0 (Ω)) defined
on a coarser quasi-uniform triangulation (with meshsize H > h) of Ω, and propose
the following algorithm.

Algorithm A1.

Step 1. Find ψH ∈ SH
0 × SH

0 such that

a(ψH , χ) = (f , χ), ∀ χ ∈ SH
0 × SH

0 .(3.1)

Step 2. Find ψ∗
h ∈ Sh

0 × Sh
0 such that

â(ψ∗
h,wh) = (f ,wh) − N(ψH ,wh), ∀ wh ∈ Sh

0 × Sh
0 .(3.2)
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We note that the linear system in Step 2 is a decoupled system which involves
only two separate Poisson equations, and only on the coarser space a coupled system
needs to be solved in Step 1. As the following theorem shows, ψ∗

h can reach the
optimal accuracy in H1-norm if the coarse meshsize H is taken to be

√
h. Because

the dimension of SH
0 is much smaller than the dimension of Sh

0 , the efficiency of
the algorithm is then evident.

Theorem 3. Under the assumption (2.7), ψ∗
h hass the following error estimate:

‖ψh − ψ∗
h‖1 � H2.(3.3)

Consequently,

‖ψ − ψ∗
h‖1 � h + H2,(3.4)

namely, ψ∗
h has the same accuracy as ψh in H1-norm if H =

√
h.

Proof. Let eh = ψ − ψh, êh = ψh − ψ∗
h. Then from (2.10) and (3.2) we get

â (êh, wh) + N(ψh − ψH ,wh) = 0, ∀ wh ∈ Sh
0 × Sh

0 .(3.5)

By taking wh = êh in the above equality, we have

‖êh‖2
1 � â (êh, êh) � ‖ψh − ψH‖0 ‖êh‖0 ,

and then

‖êh‖1 � ‖ψh − ψH‖0 .(3.6)

From Theorem 2 we get

‖ψh − ψH‖0 ≤ ‖ψ − ψh‖0 + ‖ψ − ψH‖0 � h2 + H2.

Therefore, (3.3) follows from (3.6) and the above inequality. Also, (3.4) follows
from (2.11), (3.3) and the following inequality:

‖ψ − ψ∗
h‖1 ≤ ‖ψ − ψh‖1 + ‖êh‖1 . �

Algorithm A1 can be improved in a successive fashion as follows.

Algorithm A2. Let ψ0
h = 0. Assume that ψk

h ∈ Sh
0 × Sh

0 has been obtained, then
ψk+1

h ∈ Sh
0 × Sh

0 is defined as follows:
Step 1. Find eH ∈ SH

0 × SH
0 such that

(3.7) a(eH , χ) = (f , χ) − a(ψk
h, χ), ∀ χ ∈ SH

0 × SH
0 .

Step 2. Find ψk+1
h ∈ Sh

0 × Sh
0 such that

(3.8) â(ψk+1
h ,wh) = (f ,wh) − N(ψk

h + eH ,wh), ∀ wh ∈ Sh
0 × Sh

0 .

Theorem 4. Under the assumption (2.7), ψk
h admits the following error estimate:∥∥∥ψh − ψk

h

∥∥∥
1

� Hk+1, k ≥ 1.(3.9)

Consequently, ∥∥∥ψ − ψk
h

∥∥∥
1

� h + Hk+1, k ≥ 1,(3.10)

namely, ψk
h, k ≥ 1, has the same accuracy as ψh in H1-norm if H = h

1
k+1 .
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Proof. From (2.10) and (3.8), we have

(3.11) â
(
ψh − ψk+1

h ,wh

)
= −N

(
ψh − (ψk

h + eH),wh

)
, ∀ wh ∈ Sh

0 × Sh
0 ,

which, by taking wh = ψh − ψk+1
h , gives∥∥∥ψh−ψk+1

h

∥∥∥2

1
� â

(
ψh−ψk+1

h , ψh−ψk+1
h

)
�

∥∥∥ψh−(ψk
h+eH)

∥∥∥
0

∥∥∥ψh−ψk+1
h

∥∥∥
0
,

and then ∥∥∥ψh − ψk+1
h

∥∥∥
1

�
∥∥∥ψh − (ψk

h + eH)
∥∥∥

0
.(3.12)

It follows from (2.10) and (3.7) that

a
(
ψh − (ψk

h + eH), χ
)

= 0, ∀ χ ∈ SH
0 × SH

0 .(3.13)

Thus ∥∥∥ψh − (ψk
h + eH)

∥∥∥2

1
� a

(
ψh − (ψk

h + eH), ψh − (ψk
h + eH)

)
= a

(
ψh − (ψk

h + eH), ψh − ψk
h

)
�

∥∥∥ψh − (ψk
h + eH)

∥∥∥
1

∥∥∥ψh − ψk
h

∥∥∥
1
,

and then ∥∥∥ψh − (ψk
h + eH)

∥∥∥
1

�
∥∥∥ψh − ψk

h

∥∥∥
1
.(3.14)

Let u be the solution of problem (2.17) with g = ψh −
(
ψk

h + eH

)
and let

uI ∈ SH
0 × SH

0 be the interpolation of u. Then according to (2.18) and (3.13), we
have∥∥∥ψh − (ψk

h + eH)
∥∥∥2

0
= a

(
ψh − (ψk

h + eH),u
)

= a
(
ψh − (ψk

h + eH),u − uI
)

�
∥∥∥ψh − (ψk

h + eH)
∥∥∥

1

∥∥u − uI
∥∥

1

� H
∥∥∥ψh − (ψk

h + eH)
∥∥∥

1
‖u‖2

� H
∥∥∥ψh − (ψk

h + eH)
∥∥∥

1

∥∥∥ψh − (ψk
h + eH)

∥∥∥
0
,

which implies that ∥∥∥ψh − (ψk
h + eH)

∥∥∥
0

� H
∥∥∥ψh − (ψk

h + eH)
∥∥∥

1
.(3.15)

Therefore, from (3.12), (3.15), and (3.14), we have∥∥∥ψh − ψk
h

∥∥∥
1

� H
∥∥∥ψh − ψk−1

h

∥∥∥
1

� Hk−1
∥∥ψh − ψ1

h

∥∥
1
, k ≥ 1.(3.16)

Note that ψ1
h is the solution ψ∗

h obtained by Algorithm A1, thus, (3.9) follows from
(3.16) and (3.3). Additionally, (3.10) follows from (3.9), (2.11), and the following
inequality: ∥∥∥ψ − ψk

h

∥∥∥
1
≤ ‖ψ − ψh‖1 +

∥∥∥ψh − ψk
h

∥∥∥
1
. �
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According to Theorem 4, it suffices to take H = h
1

k+1 to obtain the optimal
approximation in H1-norm. Therefore, the dimension of SH

0 can be much smaller
than the dimension of Sh

0 , and thus the dominated part of the work in Algorithm
A2 is to solve two separate Laplacian systems in Step 2, which is much easier solved
than the coupled system in (2.10).

4. Numerical examples

In this section we will demonstrate the efficiency of our algorithms proposed in
section 3 by two numerical examples. Here, we consider the following boundary
value problem of the Schrödinger type:

−∆ψ(x) + V (x)ψ(x) = f(x), ∀ x ∈ Ω,(4.1)
ψ(x) = 0, ∀ x ∈ ∂Ω,(4.2)

where Ω = (0, 1)2, V (x) = 1 + i.

Example 1. f(x) is so chosen that ψ(x) = (0.5 + i) sin(πx) sin(πy) is the exact
solution.

The domain Ω is uniformly divided by two nested triangulations of mesh size
H and h, respectively, SH

0 and Sh
0 are the corresponding piecewise linear finite

element spaces. The standard finite element solution ψh on different meshes is
first computed by (2.10), and the numerical results are listed in Table 1, which
shows that ‖ψ − ψh‖s ≈ O(h2−s), s = 0, 1. For H = 1/4, 1/8, and h = H2,
ψ∗

h is computed by Algorithm A1, and the numerical results are listed in Table
2. We can see that ‖ψ − ψ∗

h‖1 ≈ O(H2), which coincides with the theoretical
result obtained in Theorem 3. For H = 1/4 and h = H3, ψ2

h is computed by
Algorithm A2, and its error together with the errors of ψ1

h, ψ3
h and the standard

finite element solution ψh are listed in Table 3. Just as Theorem 4 shows, in case
that h = H3, ψ2

h has the same accuracy as ψh in H1-norm. Finally, for fixed

Table 1. Errors of ψh in H1 and L2 norms.

Mesh ‖ψ − ψh‖1 ‖ψ − ψh‖0

h = 1/16 2.43D-01 5.78D-03
h = 1/32 1.22D-01 1.45D-03
h = 1/64 6.09D-02 3.63D-04

Table 2. Errors of ψ∗
h with h = H2.

Mesh ‖ψ − ψ∗
h‖1 ‖ψ − ψ∗

h‖0

H = 1/4, h = 1/16 2.44D-01 4.70D-03
H = 1/8, h = 1/64 6.13D-02 1.22D-03

Table 3. Errors of ψ2
h, ψ1

h and ψh; H = 1/4, h = H3.

H1-norm L2-norm
ψ − ψH 9.42D-01 8.56D-02
ψ − ψ1

h 6.60D-02 5.24D-03
ψ − ψ2

h 6.09D-02 3.70D-04
ψ − ψ3

h 6.09D-02 3.63D-04
ψ − ψh 6.09D-02 3.63D-04
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Table 4. Errors between ψh and ψk
h, k = 1, 2, 3. h = 1/64 is fixed.

H ‖ψh − ψ1
h‖1 Ratio ‖ψh − ψ2

h‖1 Ratio ‖ψh − ψ3
h‖1 Ratio

1/4 2.52D-02 3.10D-04 4.00D-06
1/8 6.55D-03 3.8 2.15D-05 14.4 7.58D-08 52.8
1/16 1.58D-03 4.1 1.27D-06 16.9 1.11D-09 68.3
1/32 3.17D-04 5.0 5.38D-08 23.6 1.19D-11 93.3

Table 5. Errors between ψh and ψk
h, k = 1, 2, 3. h = 1/64 is fixed.

H ‖ψh − ψ1
h‖0 Ratio ‖ψh − ψ2

h‖0 Ratio ‖ψh − ψ3
h‖0 Ratio

1/4 5.46D-03 6.65D-05 8.50D-07
1/8 1.42D-03 3.8 4.60D-06 14.5 1.60D-08 53.1
1/16 3.43D-04 4.1 2.72D-07 16.9 2.33D-10 68.7
1/32 6.89D-05 5.0 1.15D-08 23.7 2.54D-12 91.7

h = 1/64 and different H = 1/4, 1/8, 1/16, 1/32, ψk
h, k = 1, 2, 3, are computed by

Algorithm A2. The errors between the standard finite element solution ψh and ψk
h

are listed in Table 4 for H1-norm and Table 5 for L2-norm, and the ratios of the
errors are also listed. From Table 4, we can see that ‖ψh − ψ1

h‖1 ≈ O(H2), which
verifies the theoretical results (3.9) with k = 1 in Theorem 4. Note that ψ1

h is just
ψ∗

h computed by Algorithm A1, so the theoretical results (3.3) in Theorem 3 are also
valid. However, for k ≥ 2, ‖ψh −ψk

h‖1 is decreasing rather faster than O(Hk+1); it
seems as if ‖ψh −ψk

h‖1/‖ψh −ψk−1
h ‖1 ≈ O(H2), therefore, ‖ψh −ψk

h‖1 ≈ O(H2k).
This suggests that the error bound obtained in (3.9) may not be optimal, but this
error bound is the best one we are able to obtain so far. We plan to make further
theoretical investigation in a future work to see if further improvements can be
made on this type of error estimate. As to the errors in L2-norm, Table 5 shows
that ‖ψh−ψk

h‖0 has the same order of convergence as ‖ψh−ψk
h‖1. Therefore, both

Algorithms A1 and A2 are not optimal in L2-norm, which is a typical behavior of
this kind of two-grid method.

In order to make more observations about the behavior of ‖ψh −ψk
h‖s, s = 0, 1,

we consider another example as follows.

Table 6. Errors between ψh and ψk
h, k = 1, 2, 3. h = 1/64 is fixed.

H ‖ψh − ψ1
h‖1 Ratio ‖ψh − ψ2

h‖1 Ratio ‖ψh − ψ3
h‖1 Ratio

1/4 1.17D-01 1.44D-03 1.84D-05
1/8 3.03D-02 3.9 9.83D-05 14.7 3.42D-07 53.8
1/16 7.30D-03 4.2 5.79D-06 17.0 4.96D-09 69.0
1/32 1.46D-03 5.0 2.45D-07 23.6 4.98D-11 99.6

Table 7. Errors between ψh and ψk
h, k = 1, 2, 3. h = 1/64 is fixed.

H ‖ψh − ψ1
h‖0 Ratio ‖ψh − ψ2

h‖0 Ratio ‖ψh − ψ3
h‖0 Ratio

1/4 2.54D-02 3.09D-04 3.92D-06
1/8 6.58D-03 3.9 2.11D-05 14.6 7.24D-08 54.1
1/16 1.59D-03 4.1 1.24D-06 17.1 1.05D-09 69.0
1/32 3.18D-04 5.0 5.25D-08 23.6 1.09D-11 96.3
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Example 2. f(x) is so chosen that ψ(x) = (1 + 20i)x(1 − x) sin(πy) is the exact
solution.

Similar to Example 1, for fixed h = 1/64 and different H = 1/4, 1/8, 1/16, 1/32,
ψk

h, k = 1, 2, 3, are computed by Algorithm A2, the errors between the standard
finite element solution ψh and ψk

h are listed in Tables 6 and 7. From these numerical
results, we can also have the same conclusions about ψk

h as in Example 1.

5. Concluding remarks

Using the Schrödinger equation as an illustration, we presented in this paper
a new two-grid discretization technique to decouple systems of partial differential
equations. This is a new application of the two-grid idea. This two-grid decoupling
technique can obviously be extended in many different ways, for example for dif-
ferent discretizations such as finite volume and finite difference methods, for other
types of systems of partial differential equations. We hope this short paper will
trigger some subsequent works on this new idea.
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