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ORDER OF CONVERGENCE OF SECOND ORDER SCHEMES
BASED ON THE MINMOD LIMITER

BOJAN POPOV AND OGNIAN TRIFONOV

Abstract. Many second order accurate nonoscillatory schemes are based on
the minmod limiter, e.g., the Nessyahu–Tadmor scheme. It is well known that
the Lp-error of monotone finite difference methods for the linear advection
equation is of order 1/2 for initial data in W 1(Lp), 1 ≤ p ≤ ∞. For second
or higher order nonoscillatory schemes very little is known because they are
nonlinear even for the simple advection equation. In this paper, in the case of
a linear advection equation with monotone initial data, it is shown that the
order of the L2-error for a class of second order schemes based on the minmod
limiter is of order at least 5/8 in contrast to the 1/2 order for any formally
first order scheme.

1. Introduction

We are interested in the scalar hyperbolic conservation law

(1)
{

ut + f(u)x = 0, (x, t) ∈ R × (0,∞),
u(x, 0) = u0(x), x ∈ R,

where f is a given flux function. In recent years, there has been enormous ac-
tivity in the development of the mathematical theory and in the construction of
numerical methods for (1). Even though the existence-uniqueness theory of weak
solutions is complete, there are many numerically efficient methods for which the
questions of convergence and error estimates are still open. For example, there
are many nonoscillatory schemes based on a variety of nonlinear limiters which are
numerically robust, at least in many numerical tests, but theoretical results about
convergence and error estimates are still missing [1, 5, 6, 16]. In the case of lin-
ear flux, there is a unique solution of (1). Therefore, a total variation diminishing
(TVD) property guarantees convergence of such schemes; however, the question
regarding the accuracy of these schemes still remains open.

In this paper, we consider a class of the so-called Godunov-type schemes for
solving (1). There are two main steps in such schemes: evolution and projection.
In the original Godunov scheme, the projection is onto a piecewise constant function
such that its value in each cell is the cell average of the approximate solution after
the evolution step. In the general Godunov-type method, the projection is onto a
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piecewise polynomial function. To determine the properties of these schemes it is
necessary to study the properties of the projection operator. We limit our attention
to second order Godunov-type schemes based on the minmod limiter. Namely, the
piecewise linear projection in such schemes is based on cell averages and uses the
minmod limiter for the slope reconstruction (see (4) and (5) in the next section).
We call such a scheme minmod-type. For example, the Nessyahu–Tadmor (NT)
scheme [14] is of minmod-type and it is based on staggered evolution—we alternate
between two staggered grids (see Section 2 or [14] for details). Other examples
include the second order nonoscillatory central schemes with nonstaggered grids
given in [7], the TVD2 scheme in [5], and the high resolution TVD schemes in [4, 17].
Theoretical results about convergence of such schemes to the entropy solution, or
error estimates, are still missing. In most cases, the authors give a variation bound
for such a scheme which is enough to conclude that the method converges to a
weak solution (see [10]). In the case of linear flux, the conservation law (1) is the
usual linear advection equation. The theory of linear numerical schemes for the
linear advection equation is well developed and is presented in detail in [2]. It is
shown that if a linear finite difference scheme is of formal order µ and L2-stable,
then the order of convergence in L2 is exactly sµ

µ+1 for initial data in W s(L2). The
case 1 ≤ p ≤ ∞, p �= 2 is also analyzed but the theory is more complicated (see [2]
for details). Hence, the order of convergence increases with the formal order of the
linear scheme. In the case of BV(R) initial data, Tang and Teng show in [18] that
all monotone schemes (a special case of first order schemes used in conservation
laws) are exactly 1/2 order accurate in L1. This result was later extended to
the nonlinear case in [15]. Therefore, these schemes cannot be very accurate in
computations. From a numerical point of view, the formal second or higher order
nonoscillatory schemes developed in [4, 17, 5, 6, 14, 8, 13] are much better than
any monotone scheme, but theoretically there was no rigorous result confirming the
numerical evidence even in the case of a linear advection equation. The reason is
that many high order schemes used in conservation laws are based on limiters and
are nonlinear even in the simplest case of linear advection. Therefore, the results in
[2] are not valid for any nonoscillatory scheme based on limiters. The only known
result was that a nonoscillatory total variation bounded scheme is at least 1/2 order
accurate in L1. Recently in [11], we showed that the second order schemes based
on the minmod limiter (NT or TVD2 for example) are at least 1/2 order accurate
in L2 for any initial data in W 1(L2(R)). In both cases, the order of convergence
proven for the second order schemes is the same as the order for the first order (for
example monotone) schemes. In general, it was not clear how to prove better error
estimates for second or higher order nonoscillatory or simply nonlinear schemes
even in the case of a scalar linear advection equation. The difficulty in proving
better estimates is that even though the minmod-type schemes are formally second
order, they are known to preserve only first order smoothness of the initial data:

(i) the total variation for initial data in BV(R);
(ii) a discrete (l2) norm of the first derivative for initial data in W 1(L2(R))

(see [11]).

Hence, all existing error estimates were proven in the same way as for monotone
schemes because they also preserve the above functionals. Here, we develop a
new approach for proving better error estimates for second order schemes in the
case of the linear advection equation with monotone initial data in W 1

loc(L2(R)).
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Namely, we measure how well a scheme approximates a discrete (l2) norm of the first
derivative in time. In our earlier paper [11], we showed that some first (Godunov
and LxF) and second order (NT and TVD2) schemes diminish the l2-norm of the
first derivative in time and based on that we derived an error estimate with a
rate 1/2 for any initial data in W 1(L2(R)). Here, we prove that this decay for
a minmod-type second order scheme is different (smaller) than the decay of any
first order scheme in the case of a monotone initial data. The new decay estimate
allows us show that the error of the standard nonoscillatory second order scheme
is at least 5/8 for any monotone initial data u0 ∈ W 1

loc(L2(R)) with du0

dx ∈ L2(R).
The restriction to monotone initial data is natural because a standard minmod-
type scheme reduces to a formal first order scheme at any local extremum. In
the paper we refer to the upwind scheme as TVD2 because the other two upwind
minmod-type schemes [4, 17] coincide with the TVD2 scheme for linear flux.

The paper is organized as follows. In Section 2, we describe the generic second
order minmod-type schemes: the staggered minmod scheme (NT) and the upwind
minmod scheme in the case of a linear advection equation. Then, we give a new
decay estimate (see Lemma 1) for a discrete norm of the first derivative of the
numerical solution in time. In Section 3, we present our main result: minmod-type
schemes have a better convergence rate than first order schemes for monotone initial
data. In the Appendix, we give the proof of Lemma 1. The results in this paper
and our previous publication [11] are important steps in obtaining convergence
results and error estimates for second order nonoscillatory schemes in the case of a
conservation law with strictly convex flux.

2. Stability of nonoscillatory minmod-type schemes

In this section, we are concerned with nonoscillatory difference approximations
to the linear advection equation

(2)
{

ut + aux = 0, (x, t) ∈ R × (0,∞),
u(x, 0) = u0(x), x ∈ R,

The prototypes of all high order nonoscillatory schemes are the second order
schemes based on a piecewise linear spacial reconstruction. We restrict our at-
tention to the standard representatives: the usual TVD2 scheme (see, e.g., [5], and
the staggered Nessyahu–Tadmor (NT) scheme [14]). In the case of a linear flux,
f(u) = au, and uniform space and time meshes, both schemes reduce to the same
type of iterative relation between the sequences of new and old cell averages (note
that the NT scheme alternates between two uniform grids). For simplicity, we only
consider the case a ≥ 0 with the other case being analogous. We are going to show
that the relationship between new and old cell averages in any of the two schemes
(TVD2 or NT) is

(3) w′
j = αwj−1 + (1 − α)wj +

1
2
α(1 − α) (m(δj−1, δj) − m(δj , δj+1)) ,

where m(a, b) stands for the minmod limiter

(4) m(a, b) ≡ MinMod(a, b) :=
1
2
(sgn(a) + sgn(b)) · min(|a|, |b|),

and δj := wj − wj−1, j ∈ Z. We use {wj} for the sequence of cell averages of the
numerical solution v at the old time step tn = n∆t and {w′

j} for the sequence of
cell averages of the numerical solution v at the new time step tn+1 = (n + 1)∆t.
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We start with the upwind scheme TVD2. Let xj := j∆x and λ := ∆t
∆x . We

denote the numerical solution at time step tn with vn, vn := v(·, tn), and its cell
averages on each cell Ij := (xj−1/2, xj+1/2) with vn

j , j ∈ Z. Note that the cell
averages of v0 are equal to the cell averages of the initial condition u0: v0

j := u0
j ,

j ∈ Z. The numerical solution v(·, tn) is a linear function on each cell Ij given by
the minmod reconstruction

(5) vn|Ij
= vn

j + (x − xj)
1

∆x
m(vn

j+1 − vn
j , vn

j − vn
j−1).

The cell averages vn+1
j of the numerical solution at the next time step are deter-

mined by averaging the exact solution of (2) with initial condition vn at time ∆t.
The new averages vn+1

j , can be written in terms of the old averages vn
j and the old

jumps δn
j := vn

j − vn
j−1, j ∈ Z, in the following way (see section 7 of [5]):

(6) vn+1
j = λavn

j−1 + (1 − λa)vn
j +

λa

2
(1 − λa)

(
m(δn

j−1, δ
n
j ) − m(δn

j , δn
j+1)

)
for n ≥ 0. The CFL condition in this case is 0 ≤ λa ≤ 1. Note that the formula
above is (3) with α = λa.

In the case of the NT scheme, we alternate between the cell averages on two
staggered uniform partitions (see [14]). In order to formulate the iterative re-
lation in the same way as in the upwind case, we define xj := j∆x, In

j :=(
xj + (n−1)∆x

2 , xj + (n+1)∆x
2

)
, and α := 1

2 + λa. Similar to the TVD2 case, the
numerical solution vn := v(·, tn) is determined from its cell averages by the minmod
reconstruction

(7) vn|In
j

= vn
j +

(
x − xj −

n∆x

2

)
1

∆x
m(vn

j+1 − vn
j , vn

j − vn
j−1), j ∈ Z,

where vn
j := 1

∆x

∫
In

j
v(x, t)dx. Then, the cell averages vn+1

j at the next time step
are determined by averaging the exact solution of (2) with initial condition vn at
time ∆t. The new averages vn+1

j can be written using the iterative formula (3) with
α := 1

2 + λa (see [11]) and the CFL condition in this case is 0 ≤ 1
2 + λa = α ≤ 1.

The difference from the upwind case is that
(i) When n is even, the sequence of cell averages {vn

j } represents the averages of
the numerical solution on the regular partition Ij = (xj − ∆x

2 , xj + ∆x
2 ), j ∈ Z;

(ii) When n is odd, the sequence of cell averages {vn
j } represents the averages of

the numerical solution on the staggered partition Jj := (xj , xj+1), j ∈ Z.
In both cases, one can define a global numerical solution v corresponding to the

initial data u0 in the following way. Let v(x, t) be a right-continuous function in t
such that, for each n = 0, . . . , N − 1, v is the solution of

(8)
{

un
t + aun

x = 0, (x, t) ∈ R × (tn, tn+1),
u(x, 0) = vn(x), x ∈ R,

Note that v is uniquely determined by the functions {vn}N−1
n=0 , where vn is the

minmod piecewise linear reconstruction defined in (5) from the cell averages of
v(·, t−n ) with v(·, 0−) := u0. In the TVD2 case, we have the same uniform grid for
each step, and in the NT case we alternate between two staggered uniform grids.
In both cases, we end up with the same type of iterative relation between the cell
averages of the numerical solution (see (3)), just the value of α is different.
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We now present a new stability property for a numerical method which satisfies
(8). Namely, we assume that the new averages vn+1

j := w′
j can be written in terms

of the old averages vn
j := wj and the old jumps δn

j := vn
j − vn

j−1 by (3). The CFL
condition is 0 ≤ α ≤ 1 which covers both schemes (TVD2 and NT). Let us recall
the iterative formula (3) with the time index in place:

(9) vn+1
j = αvn

j−1 + (1 − α)vn
j +

1
2
α(1 − α)

(
m(δn

j−1, δ
n
j ) − m(δn

j , δn
j+1)

)
.

Using (9), we derive the formula for the sequence of new jumps {δn+1
j } in terms of

the old ones {δn
j }:

(10) δn+1
j = αδn

j−1 + (1− α)δn
j − βm(δn

j−2, δ
n
j−1) + 2βm(δn

j−1, δ
n
j ) − βm(δn

j , δn
j+1),

where β := 1
2α(1 − α).

In our previous paper [11], we proved that the the iterative formula (10) does
not increase the l2-norm of the jumps of the numerical solution in time. That is,

(11)
∑

j

(δn+1
j )2 −

∑
j

(δn
j )2 ≤ 0

for all n = 0, 1, . . . . The above stability result can be easily verified for any monotone
scheme because in that case the new cell averages are a convex combination of the
old ones. For a first order scheme (including all monotone schemes) the difference∑

j(δ
n
j )2 −

∑
j(δ

n+1
j )2 is of order

∑
j(δ

n
j − δn

j−1)
2. This reflects the diffusive nature

of the first order approximation. For the exact solution, there is no decay in time
of any shift invariant norm. But for a first order numerical solution we expect,
and it is easy to show for the Godunov and LxF schemes, the following numerical
viscosity in the decay of the first derivative l2-norm:

∑
j

(δn
j )2 −

∑
j

(δn+1
j )2 = O

⎛
⎝∑

j

(δn
j − δn

j−1)
2

⎞
⎠ = O

⎛
⎝∑

j

(vn
j+1 − 2vn

j + vn
j−1)

2

⎞
⎠ .

Here, we derive an improved stability estimate for the second order minmod-type
schemes given in (9). Namely, we give an exact estimate for the time decay of the
discrete l2-norm in the case of a monotone initial condition. We claim

Lemma 1. Let u0 be any monotone function and {vn}, n = 0, 1, . . . , be the se-
quence approximate solutions vn defined by (9). Then, we have

(12) 3β
∑

j

(
∆2δn

j

)2 ≥
∑

j

(δn
j )2 −

∑
j

(δn+1
j )2 ≥ β3

4

∑
j

(
∆2δn

j

)2
,

where β = 1
2α(1 − α) and ∆2δn

j = δn
j − 2δn

j−1 + δn
j−2.

The proof of this lemma is given in the Appendix. We want to point out the
main difference: for a first order scheme, we have a decay for

∑
j(δ

n
j )2−

∑
j(δ

n+1
j )2

of order
∑

j(v
n
j+1 − 2vn

j + vn
j−1)

2, and for a second order scheme we get a decay∑
j(v

n
j+1 − 3vn

j + 3vn
j−1 − vn

j−2)
2 by Lemma 1. We will use this decay estimate in

the next section to derive our main result.



1740 BOJAN POPOV AND OGNIAN TRIFONOV

3. Error estimates for second order schemes

In this section we present our main result. Namely, we will show that minmod-
type schemes have a better convergence rate than first order schemes for any mono-
tone initial condition u0 ∈ W 1

loc(L2) with du0

dx ∈ L2(R). In the text below, we refer
to a first order scheme as exactly first order, which means that it is not also a second
or higher order scheme. Let us first recall some results for first order linear schemes
(see Theorem 4.2 and Theorem 4.4 in [2]).

Theorem 2. Let u0 ∈ W 1(L2(R)), u(x, t) = u0(x−at) be the exact solution of (2),
and v be a numerical solution consistent with (2) and exactly first order accurate.
If the space and time meshes are h := ∆x and ∆t with ∆t/h = λ = const, then
there exists a constant C > 0 which depends on the final time T > 0 such that

‖u(·, T ) − v(·, T )‖L2 ≤ Ch1/2‖u0‖W 1(L2(R)).

Moreover, the above estimates is optimal over the class W 1(L2(R)). That is, there
exists a constant c > 0 such that

(13) sup{‖u(·, T ) − v(·, T )‖L2 : u0 ∈ Ĉ∞, ‖u0‖W 1(L2(R)) ≤ 1} ≥ c h1/2,

where Ĉ∞ is the set of all functions with Fourier transform in C∞
0 (R).

The above result is also valid for any monotone scheme except in the trivial case
of pure translation which corresponds to α = 0 or α = 1 here (see Remark 1 in
[18] and Section 3.3 in [2]). Using the linearity of the problem and the numerical
scheme, it is easy to show

Corollary 3. The convergence rate for any linear exactly first order scheme is not
better than 1/2 for the class of all monotone initial conditions u0 ∈ W 1

loc(L2(R))
with du0

dx ∈ L2(R). That is, an estimate of the type

‖u(·, T ) − v(·, T )‖L2 ≤ Chγ |u0|W 1(L2(R))

for all monotone u0 is not possible for γ > 1/2.

The seminorm |u0|W 1(L2(R)) is a natural replacement of the full norm in estimates
for equations with monotone initial conditions. It is also important to note that all
results above, including the lower bound (13), hold for initial conditions u0 which
have first derivatives with compact support. That is, the error estimate and the
lower bound in Theorem 2 do not depend on the infinite space domain. In the case
of the Godunov or LxF schemes one can give an example of a monotone function
with a derivative with compact support (similar to the construction in [18]) which
realizes the lower bound (13). Hence, there are no “log” effects and the rate of
convergence is exactly 1/2 for these two schemes.

The following theorem is our main result. That is, the standard second order
minmod-type schemes, NT and TVD2, have a better rate of convergence than the
rate of any formal first order (including monotone) scheme.

Theorem 4. Let u0 ∈ W 1
loc(L2(R)) be monotone with du0

dx ∈ L2(R), u(x, t) =
u0(x−at) be the exact solution of (2), and v be the numerical solution generated by
a standard minmod-type scheme (NT or TVD2) (see (8)–(9)). If the CFL condition
0 < α < 1 is satisfied, h := ∆x, tn = n∆t, 0 ≤ n ≤ N , and T = N∆t, we have

(14) ‖u(·, T ) − v(·, T )‖L2 ≤ Ch5/8|u0|W 1(L2(R)),
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where C is a constant which depends only on the final time T and α.

Proof. The error estimate is based on a refinement of the dual argument in [11]
and the new stability result Lemma 1. In the proof, C will be an absolute constant
that can be different at different places. It is enough to prove the estimate for
initial condition u0 which has a derivative with compact support. The general
result follows by standard arguments using the local dependence of the exact and
the numerical solutions.

Let e(x, t) := u(x, t) − v(x, t) be the difference between the global numerical
solution v defined in (8) and the exact solution u, and E(x, t) :=

∫ x

−∞ e(s, t)ds. Note
that u0 − v0 is zero for x ∈ (−∞, M), for some M ∈ R. Therefore E is well defined
for all (x, t) ∈ R× (0, T ). We have that E also satisfies (2) for n∆t ≤ t < (n+1)∆t
with initial data

∫ x

−∞ u(s, n∆t) − vn(s)ds, n = 0, 1, . . . , N − 1. For a function
g ∈ L1(R), we define a minus-one norm as

(15) ‖g‖−1,2 := ‖
∫ ·

−∞
g(s) ds‖L2(R).

It is easy to verify that for any τ ∈ R

(16) ‖Sτg‖−1,2 = ‖g‖−1,2,

where Sτ is the shift operator Sτg(·) := g(· − τ ).
Let us denote the piecewise linear minmod reconstruction (5) with Ph. That

gives vn = Phv(·, tn−) for n = 0, 1, . . . , N , and u(·, t) = St(u0) for any t ≥ 0.
Recall that T = N∆t. Then, we have the representations u(T, ·) = (Sa∆t)Nu0 and
v(T, ·) = vN = Ph(Sa∆tPh)Nu0. We have

‖e(·, T )‖−1,2 = ‖(Sa∆t)Nu0 − Ph(Sa∆tPh)Nu0‖−1,2,

and by the triangle inequality we obtain

‖e(·, T )‖−1,2 ≤ ‖(Sa∆t)Nu0 − (Sa∆tPh)Nu0‖−1,2

+ ‖Ph(Sa∆t)Nu0 − (Sa∆tPh)Nu0‖−1,2.
(17)

Using (16) in (17), we obtain
(18)
‖e(·, T )‖−1,2 ≤ ‖(Sa∆t)N−1u0 − Ph(Sa∆tPh)N−1u0‖−1,2 + ‖vN − v(·, tN−)‖−1,2.

Let en be the difference between the exact and the numerical solution at time
tn = n∆t. That is, en := ((Sa∆t)n − Ph(Sa∆tPh)n)u0, n = 0, 1, . . . , N . Then (18)
is equivalent to

(19) ‖eN‖−1,2 ≤ ‖eN−1‖−1,2 + ‖Phv(·, tN−) − v(·, tN−)‖−1,2,

and applying (19) for n = N, N − 1, . . . , 1, we get

(20) ‖eN‖−1,2 ≤
N∑

n=0

‖Phv(·, tn−) − v(·, tn−)‖−1,2.

We now estimate the minus-one norm of Phv(·, tn−) − v(·, tn−) in terms of the
usual L2-norm. In order to simplify the notation, we will use vn,− := v(·, tn−),
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and only consider the upwind case (TVD2 scheme) with the staggered case (NT
scheme) being analogous. We have

‖vn − vn,−‖2
−1,2 =

∫
R

(∫ x

−∞
(vn(s) − vn,−(s)) ds

)2

dx

=
∑
j∈Z

∫ xj+1/2

xj−1/2

(∫ x

xj−1/2

(vn − vn,−)(s) ds

)2

dx,(21)

where we use in (21) that vn = Phvn,− is a conservative approximation of vn, i.e.,∫ xj+1/2

xj−1/2
(vn − vn,−)(s) ds = 0 for all j ∈ Z. Note that in the case of the NT scheme

we need to use conservation over the staggered intervals (xj , xj+1), j ∈ Z, for odd
n. After applying the Cauchy–Schwarz inequality in (21), we obtain

‖vn − vn,−‖2
−1,2 ≤

∑
j∈Z

∫ xj+1/2

xj−1/2

(x − xj−1/2)
∫ x

xj−1/2

(vn(s) − vn,−(s))2 ds dx

≤
∑
j∈Z

∫ xj+1/2

xj−1/2

(x − xj−1/2)dx

∫ xj+1/2

xj−1/2

(vn(s) − vn,−(s))2 ds

=
h2

2
‖vn − vn,−‖2

L2(R).

Therefore, the error estimate (20) reduces to

(22) ‖eN‖−1,2 ≤ h√
2

N∑
n=0

‖vn − vn,−‖L2(R).

We now estimate the term ‖vn − vn,−‖L2(R). Because the minmod operator Ph is
nonlinear, we will use an intermediate approximation P̃h defined as

P̃hvn,−|Ij
= vn

j +
x − xj

h
(vn

j+1 − vn
j ),

for j ∈ Z. It is a straightforward computation that

(23) ‖Phvn,− − P̃hvn,−‖L2(R) ≤ Ch1/2‖∆2vn
j ‖l2 .

Hence, we have the estimate

(24) ‖vn − vn,−‖L2(R) ≤ Ch1/2‖{∆2vn
j }‖l2 + ‖P̃hvn,− − vn,−‖L2(R).

P̃h is a linear operator based on local averages. The local approximation properties
of P̃h were analyzed in [9]. Using that result, it is easy to show that

‖P̃hg − g‖L2(R) ≤ Ch2|g′′|L2(R), for g ∈ W 2(L2(R)),(25)

‖P̃hg‖L2(R) ≤ C‖g‖L2(R) for g ∈ L2(R).(26)

Then, by standard approximation theory arguments (see Chapter 7 in [3]), we derive

‖P̃hg − g‖L2(R) ≤ Cω2(g, h)L2(R)

for any g ∈ L2(R). Here ω2(g, h)L2(R) is the second modulus of smoothness of g in
L2:

ω2(g, h)L2(R) := sup
0≤s≤h

‖g(·) − 2g(· + s) + g(· + 2s)‖L2(R)
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(see [3] for properties and more detail). Using the above estimate with g := vn,−,
we obtain

(27) ‖P̃hvn,− − vn,−‖L2(R) ≤ Cω2(vn,−, h)L2(R) = Cω2(vn−1, h)L2(R)

because vn,− = Sa∆tv
n−1 and the modulus of smoothness ω2(vn−1, h)L2(R) is shift

invariant. It is not easy to compute ω2(g, h)L2(R) for a general g but in the case of
the piecewise linear function vn it is not hard to show that for any n = 0, 1, . . . , N ,
we have

(28) C1h
1/2‖{∆2vn

j }‖l2 ≤ ω2(vn, h)L2(R) ≤ C2h
1/2‖{∆2vn

j }‖l2 ,

with absolute constants C1 and C2. Finally, we use (28) and (27) in (24) and obtain

(29) ‖vn − vn,−‖L2(R) ≤ Ch1/2
(
‖{∆2vn−1

j }‖l2 + ‖{∆2vn
j }‖l2

)
.

We now go back and use (29) in the error estimate (22) to derive

(30) ‖eN‖−1,2 ≤ Ch3/2
N∑

n=0

‖{∆2vn
j }‖l2 = Ch3/2

N∑
n=0

‖{∆δn
j }‖l2 .

Here we recall that δn
j = vn

j − vn
j−1. Up to this point, our arguments are very

similar to the ones in our previous paper [11]. The only difference is that here,
in the estimate for the negative norm (30), we use ‖{∆δn

j }‖l2 instead of ‖{δn
j }‖l2

that was used in [11]. A new idea here will be the use of the improved l2-stability,
Lemma 1, to derive a better error estimate than before. Let us recall the lower
bound in the statement of Lemma 1. For any n = 0, . . . , N , we have

(31)
∑

j

(δn
j )2 −

∑
j

(δn+1
j )2 ≥ β3

4

∑
j

(
∆2δn

j

)2
,

where β = 1
2α(1 − α). We sum (31) for n = 0, . . . , N and obtain

(32)
β3

4

N∑
n=0

∑
j

(
∆2δn

j

)2 ≤
∑

j

(δ0
j )2 −

∑
j

(δN+1
j )2.

Recall that the CFL condition is 0 < α < 1. In the trivial case α(1 − α) = 0, not
covered by our theorem, we have a pure translation and the total error is equal to
the error of the first step; i.e., the order of the error is O(h). So, without loss of
generality, we can assume that 0 < α < 1. Then, from (32), we derive

(33)
N∑

n=0

∑
j

(
∆2δn

j

)2 ≤ C
∑

j

(δ0
j )2,

where C is an absolute constant for any fixed 0 < α < 1 (C = 4β−3). Using (33),
we will now estimate

∑N
n=0 ‖{∆δn

j }‖l2 . Because the support of du0

dx is finite and
the numerical solution has a finite domain of dependence, we have that the set
Λn := {j : δn

j �= 0} is finite for all n = 0, 1, . . . , N . Using Abel’s transform and the
finite support of {δn

j }, we obtain∑
j

(∆δn
j )2 = −

∑
j

δn
j (δn

j+1 − 2δn
j + δn

j−1).
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Hence, we have∑
j

(∆δn
j )2 ≤

∑
j

|δn
j | |δn

j+1 − 2δn
j + δn

j−1| ≤ ‖{δn
j }‖l2‖{∆2δn

j }‖l2 .

Using that ‖{δn
j }‖l2 ≤ ‖{δ0

j }‖l2 , we derive

(34) ‖{∆δn
j }‖l2 ≤ ‖{δ0

j }‖
1/2
l2

‖{∆2δn
j }‖

1/2
l2

.

Therefore, we have the estimates
N∑

n=0

‖{∆δn
j }‖l2 ≤ ‖{δ0

j }‖
1/2
l2

N∑
n=0

‖{∆2δn
j }‖

1/2
l2

≤ ‖{δ0
j }‖

1/2
l2

(N + 1)3/4

(
N∑

n=0

‖{∆2δn
j }‖2

l2

)1/4

,(35)

where we use Hölder’s inequality to derive (35). We use our stability estimate (33)
in (35) and conclude

N∑
n=0

‖{∆δn
j }‖l2 ≤ (N + 1)3/4‖{δ0

j }‖l2 .(36)

From Lemma 4 in [11], we have that ‖{δ0
j }‖l2 ≤ h1/2|u0|W 1(L2(R)). Hence,

N∑
n=0

‖{∆δn
j }‖l2 ≤ CN3/4h1/2|u0|W 1(L2(R)).(37)

We use (37) in (30) and derive the final minus-one norm error estimate

(38) ‖eN‖−1,2 ≤ C(Nh)3/4h5/4|u0|W 1(L2(R)) ≤ Ch5/4|u0|W 1(L2(R)),

where in the last inequality C depends on T and α. Similar to [11], we will now
interpolate between the negative norm estimate (38) and the discrete W 1

2 -stability
of the numerical scheme (11). Recall that eN = u(·, T ) − vN is not in W 1(L2(R)).
Analogous to [11], we approximate vN with ṽ, the Steklov (sliding) average of the
piecewise constant function AhvN , AhvN (x) = vN

j for x ∈ [xj−1/2, xj+1/2), j ∈ Z.
That is,

ṽ(x) :=
1
h

∫ x+h/2

x−h/2

AhvN (s) ds, x ∈ R.

The function ṽ ∈ W 1
loc(L2(R)) and has the properties

‖ṽ − vN‖−1,2 ≤ Ch2|u0|W 1(L2(R)),(39)

‖ṽ − vN‖L2(R) ≤ Ch|u0|W 1(L2(R)),(40)

and

(41) |ṽ|W 1(L2(R)) ≤ |u0|W 1(L2(R))

(see (54), (55), and (56) in [11]). Let ẽ := u(·, T ) − ṽ. Then

‖ẽ‖−1,2 ≤ ‖eN‖−1,2 + ‖ṽ − vN‖−1,2.

Using (38) and (39), we obtain

(42) ‖ẽ‖−1,2 ≤ Ch5/4|u0|W 1(L2(R)).
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Let Ẽ(x) =
∫ x

−∞ ẽ(s) ds. Then we have ‖Ẽ‖L2 = ‖ẽ‖−1,2, ‖Ẽ′‖L2 = ‖ẽ‖L2 , and

‖Ẽ′′‖L2 = ‖ẽ′‖L2 ≤ |u0|W 1(L2(R)) + |ṽ|W 1(L2(R)) ≤ 2|u0|W 1(L2(R)).

The Kolmogorov–Landau inequality in L2(R) (page 156 in [3]) for the functions
Ẽ(x), Ẽ′, and Ẽ′′ and the above estimate for ‖Ẽ′′‖L2 give

‖ẽ‖L2 = ‖Ẽ′‖L2 ≤
√

2‖Ẽ‖1/2
L2

‖Ẽ′′‖1/2
L2

≤ 2‖ẽ‖1/2
−1,2|u0|1/2

W 1(L2(R)).

Using (42), we derive

(43) ‖ẽ‖L2 ≤ Ch5/8|u0|W 1(L2(R)).

By the triangle inequality, we have

‖eN‖L2 ≤ ‖ẽ‖L2 + ‖vN − ṽ‖L2 ,

and using the estimates (43) and (40) we conclude

‖eN‖L2 ≤ Ch5/8|u0|W 1(L2(R))

where the constant C depends only on T and α. �

4. Appendix: Proof of Lemma 1

Let us recall the statement of the lemma. We claim (see (12)) that

3β
∑

j

(
∆2δj

)2 ≥
∑

j

δ2
j −

∑
j

(δ′j)
2 ≥ β3

4

∑
j

(
∆2δj

)2

where β = 1
2α(1 − α).

It is enough to consider the case of a nondecreasing data, δj ≥ 0, with the other
case being analogous. Let us introduce some notation. Let yj = min(δj , δj+1),
∆δj = δj − δj−1, ∆yj = yj − yj−1, ∆2δj = δj − 2δj−1 + δj−2, and ∆2yj = yj −
2yj−1 + yj−2. Recall that {δj}∞−∞ ∈ l2, and δj ≥ 0 for all j. It is enough to prove
Lemma 1 only for 0 < α < 1. We construct the new sequence {δ′j} by using the
rule

(44) δ′j = (1 − α)δj + αδj−1 − β∆2yj ,

for each j. First we assume that {δj} has finite support. It is easy to see how to
modify the proof in case the support is not finite. Therefore we assume δj = 0 for
j ≤ 3 and for j ≥ M −3 for some integer M . Then δ′j = 0 for j ≤ 3 and j ≥ M −2.
Thus

(45) ‖{δj}‖2
l2 − ‖{δ′j}‖2

l2 =
M∑

j=1

δ2
j −

M∑
j=1

(δ′j)
2.

We have
M∑

j=1

(δ′j)
2 =

M∑
j=1

(
((1 − α)δj + αδj−1)2 − 2β((1 − α)δj + αδj−1)∆2yj + β2(∆2yj)2

)
.
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Note that since δ0 = δ1 = 0 and δM−1 = δM = 0, we have
M∑

j=1

δ2
j − ((1 − α)δj + αδj−1)2

=
M∑

j=1

((1 − (1 − α)2)δ2
j − 2α(1 − α)δjδj−1 − α2

M∑
j=1

δ2
j−1

=
M∑

j=1

(1 − (1 − α)2 − α2)δ2
j − 2α(1 − α)δjδj−1

= 2β

M∑
j=1

(2δ2
j − 2δjδj−1) = 2β

M∑
j=1

(δj − δj−1)2 = 2β

M∑
j=1

(∆δj)2.

Therefore

(46)
M∑

j=1

δ2
j − ((1 − α)δj + αδj−1)2 = 2β

M∑
j=1

(∆δj)2.

Thus we get
(47)

M∑
j=1

δ2
j −

M∑
j=1

(δ′j)
2 = 2β

M∑
j=1

(
(∆δj)2 + ((1 − α)δj + αδj−1)∆2yj −

β

2
(∆2yj)2

)
.

Now we use ∆2yj = ∆yj − ∆yj−1, ∆yj = 0, δj = 0 for j ≤ 1, j ≥ M − 1, and
Abel’s transform to obtain

M∑
j=1

δj∆2yj =
M∑

j=1

(δj − δj+1)∆yj ,

and
M∑

j=1

δj−1∆2yj =
M∑

j=1

(δj−1 − δj)∆yj .

So, (47) becomes

M∑
j=1

δ2
j −

M∑
j=1

(δ′j)
2 = 2β

⎛
⎝ M∑

j=1

(∆δj)2 − (1 − α)
M∑

j=1

∆δj+1∆yj

− α
M∑

j=1

∆δj∆yj −
β

2

M∑
j=1

(∆2yj)2

⎞
⎠

= 2βQ1 + β2Q2,

where

Q1 =
M∑

j=1

(∆δj)2 − (1 − α)
M∑

j=1

∆δj+1∆yj − α
M∑

j=1

∆δj∆yj − β
M∑

j=1

(∆2δj)2,

and

Q2 = 2
M∑

j=1

(∆2δj)2 −
M∑

j=1

(∆2yj)2.
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To finish the proof, it is sufficient prove the following three lemmas.

Lemma 2.

Q1 =
1
2

∑
∆δj<0,∆δj−1≥0

((1 − α)∆δj−1 + α∆δj))2

+
1
2

∑
∆δj≥0,∆δj−1<0

((1 − α)∆δj + α∆δj−1))2

−
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1

+
(

1 − α

2
− β

) ∑
∆δj−1≥0,∆δj≥0

(∆2δj)2

+
(α

2
− β

) ∑
∆δj−1<0,∆δj<0

(∆2δj)2 ≥ 0.

Lemma 3.

Q2 =
∑

j

((∆δj+1)− − ∆δj + (∆δj−1)+))2

− 2
∑

j

∆δj∆δj−1 (1 − sgn(∆δj∆δj−1)) ≥ 0.

Here sgn(x) is the usual sign function defined by

sgn(x) =

⎧⎨
⎩

1, if x > 0,
0, if x = 0,
−1, if x < 0,

and u+ = max(u, 0), u− = min(u, 0).

Lemma 4.

3β
M∑

j=1

(∆δj)2 ≥ 2βQ1 + β2Q2 ≥ β3

4

M∑
j=1

(∆δj)2.

In order to simplify our notation, we will use
∑

j instead of
∑M

j=1 in the proofs
of all lemmas.

Proof of Lemma 2. Denote

A =
∑

j

∆δj+1∆yj and B =
∑

j

∆δj∆yj .

Our aim is to rewrite

(48) Q1 =
∑

j

(∆δj)2 − (1 − α)A − αB − β
∑

j

(∆2δj)2

in the form indicated in Lemma 2. It is easy to check that

(49) ∆yj = (∆δj)+ + (∆δj+1)−.
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We can transform A as follows:

A =
∑

j

∆δj+1((∆δj)+ + (∆δj+1)−)

=
∑

j

∆δj+1(∆δj)+ +
∑

j

∆δj(∆δj)−

=
∑

∆δj<0

(∆δj)2 +
∑

∆δj≥0

∆δj∆δj+1

=
∑

∆δj<0

(∆δj)2 +
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1 + D,

(50)

where
D =

∑
∆δj≥0,∆δj+1≥0

∆δj∆δj+1.

Further,

D =
1
2

∑
∆δj≥0,∆δj+1≥0

(
(∆δj)2 + (∆δj+1)2 − (∆2δj+1)2

)

=
1
2

∑
∆δj−1≥0,∆δj≥0

(
(∆δj−1)2 + (∆δj)2 − (∆2δj)2

)

=
1
2

∑
∆δj≥0,∆δj+1≥0

(∆δj)2 +
1
2

∑
∆δj≥0,∆δj−1≥0

(∆δj)2 −
1
2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)2.

Also, note that

(51)
∑

∆δj≥0,∆δj+1≥0

(∆δj)2 =
∑

∆δj≥0

(∆δj)2 −
∑

∆δj≥0,∆δj+1<0

(∆δj)2

and

(52)
∑

∆δj≥0,∆δj−1≥0

(∆δj)2 =
∑

∆δj≥0

(∆δj)2 −
∑

∆δj≥0,∆δj−1<0

(∆δj)2.

By (50), (51), and (52) we get

A =
∑

j

(∆δj)2 −
1
2

∑
∆δj≥0,∆δj+1<0

(∆δj)2 −
1
2

∑
∆δj≥0,∆δj−1<0

(∆δj)2

− 1
2

∑
∆δj−1≥0,∆δj≥0

(∆2δj)2 +
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1.

(53)

Transform B in the same way as A:

(54) B =
∑

∆δj≥0

(∆δj)2 +
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1 + E,

where
E =

∑
∆δj<0,∆δj+1<0

∆δj∆δj+1.

The quantity E can also be rewritten in the same way as D:

E =
1
2

∑
∆δj<0,∆δj+1<0

(∆δj)2 +
1
2

∑
∆δj−1<0,∆δj<0

(∆δj)2 −
1
2

∑
∆δj−1<0,∆δj<0

(∆2δj)2.
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Combining this equality with (54) we get

B =
∑

j

(∆δj)2 −
1
2

∑
∆δj<0,∆δj+1≥0

(∆δj)2 −
1
2

∑
∆δj<0,∆δj−1≥0

(∆δj)2

− 1
2

∑
∆δj−1<0,∆δj<0

(∆2δj)2 +
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1.

(55)

By (53) and (55),

(56) Q1 =
∑

j

(∆δj)2 − (1 − α)A − αB − β
∑

j

(∆2δj)2 =
9∑

i=1

Si,

where

S1 =
1 − α

2

∑
∆δj≥0,∆δj+1<0

(∆δj)2, S2 =
1 − α

2

∑
∆δj≥0,∆δj−1<0

(∆δj)2,

S3 =
α

2

∑
∆δj<0,∆δj+1≥0

(∆δj)2, S4 =
α

2

∑
∆δj<0,∆δj−1≥0

(∆δj)2,

S5 = −
∑

∆δj≥0,∆δj+1<0

∆δj∆δj+1,

S6 =
(

1 − α

2
− β

) ∑
∆δj−1≥0,∆δj≥0

(∆2δj)2, S7 =
(α

2
− β

) ∑
∆δj−1<0,∆δj<0

(∆2δj)2,

S8 = −β
∑

∆δj−1≥0,∆δj<0

(∆2δj)2, and S9 = −β
∑

∆δj−1<0,∆δj≥0

(∆2δj)2.

To get an upper bound for Q1, note that |Sj | ≤ 1
2

∑
j(∆

2δj)2 for j = 1, 2, 3, 4, 5.
Therefore, Q1 ≤ (3 − 2β)

∑
j(∆

2δj)2. Also, from the definition of Q2, Q2 ≤
2

∑
j(∆

2δj)2. Combining the upper bounds for Q1 and Q2 we get the upper bound
in Lemma 1.

Next, note that

S1 + S4 + S8 =
∑

∆δj<0,∆δj−1≥0

(
1 − α

2
(∆δj−1)2 +

α

2
(∆δj)2 − β(∆2δj)2

)
.

Also,
1 − α

2
(∆δj−1)2 +

α

2
(∆δj)2 − β(∆2δj)2

=
1 − α

2
(∆δj−1)2 +

α

2
(∆δj)2 −

1
2
(1 − α)α(∆δj − ∆δj−1)2

=
1
2
((1 − α)∆δj−1 + α∆δj))2.

Summing the last inequality over all j with ∆δj−1 ≥ 0, ∆δj < 0, we get

(57) S1 + S4 + S8 =
1
2

∑
∆δj<0,∆δj−1≥0

((1 − α)∆δj−1 + α∆δj))2.

Similarly,

S2 + S3 + S9 =
∑

∆δj≥0,∆δj−1<0

(
1 − α

2
(∆δj)2 +

α

2
(∆δj−1)2 − β(∆2δj)2

)
.
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As before,

1 − α

2
(∆δj)2 +

α

2
(∆δj−1)2 − β(∆2δj)2 =

1
2
(α∆δj−1 + (1 − α)∆δj)2.

Summing the last inequality over all j with ∆δj ≥ 0, ∆δj−1 < 0, we get

(58) S2 + S3 + S9 =
1
2

∑
∆δj≥0,∆δj−1<0

(α∆δj−1 + (1 − α)∆δj)2.

This completes the proof of Lemma 2. �

Proof of Lemma 3. By (49) we have ∆yj = (∆δj)+ + (∆δj+1)−. We also have
∆2δj = ∆δj − ∆δj−1. Thus, we need to rewrite the quantity

Q2 = 2
∑

j

(∆δj − ∆δj−1)
2 −

∑
j

(((∆δj+1)− − (∆δj)−) + ((∆δj)+ − (∆δj−1)+))2

in the form indicated in Lemma 3. We now use that for any real numbers x and y,
(x + y)2 = 2x2 + 2y2 − (x − y)2, and get∑

j

(((∆δj+1)− − (∆δj)−) + ((∆δj)+ − (∆δj−1)+))2

= 2

⎛
⎝∑

j

((∆δj+1)− − (∆δj)−)2 +
∑

j

((∆δj)+ − (∆δj−1)+)2
⎞
⎠

−
∑

j

((∆δj+1)− − (∆δj)− − (∆δj)+ + (∆δj−1)+)2

= 2

⎛
⎝∑

j

((∆δj)− − (∆δj−1)−)2 +
∑

j

((∆δj)+ − (∆δj−1)+)2
⎞
⎠

−
∑

j

((∆δj+1)− − ∆δj + (∆δj−1)+)2

(59)

(in the last equality we have used that the sequence {∆δj} has finite support).
Now, we claim that for any real numbers x and y

(60) (x − y)2 + xy(1 − sgn(xy)) = (x− − y−)2 + (x+ − y+)2.

First, if x = 0, both sides of (60) equal y2. Similarly, if y = 0, both sides of (60)
equal x2. Second, if x and y have opposite signs (sgn(xy) = −1), the LHS of (60)
is (x − y)2 + 2xy and the RHS is x2 + y2. Finally, if x and y have the same sign
then both the LHS and the RHS of (60) equal (x − y)2. Therefore, we have shown
that (60) holds in all cases.

By using (60) with x = ∆δj , y = ∆δj−1, and summing over j we get∑
j

((∆δj)− − (∆δj−1)−)2 +
∑

j

((∆δj)+ − (∆δj−1)+)2

=
∑

j

(∆δj − ∆δj−1)
2 +

∑
j

∆δj∆δj−1 (1 − sgn(∆δj∆δj−1)) .(61)

Combining (59) and (61) completes the proof of Lemma 3. �
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Proof of Lemma 4. We proved the upper bound of Lemma 4 earlier, so we concen-
trate on the lower bound.

Denote the five sums appearing in Lemma 2 by Σ1, . . . , Σ5, and the two sums
appearing in Lemma 3 by Σ6, and Σ7. Also, let

A++ = {j : ∆δj ≥ 0, ∆δj−1 ≥ 0}, A+− = {j : ∆δj ≥ 0, ∆δj−1 < 0},

and

A−+ = {j : ∆δj < 0, ∆δj−1 ≥ 0}, A−− = {j : ∆δj < 0, ∆δj−1 < 0}.

Since 1−α
2 − β = (1−α)2

2 > β2

2 and α
2 − β = α2

2 > β2

2 , we get

Σ4 >
β2

2

∑
j∈A++

(∆2δj)2 and Σ5 >
β2

2

∑
j∈A−−

(∆2δj)2.

Next, we need to divide both A+− and A−+ to a “good” part and a “bad” part.
We define the following index sets:

Ag
+− =

{
j ∈ A+− : |(1 − α)∆δj−1 + α∆δj | ≥

1
2

max((1 − α)|∆δj−1|, α|∆δj |)
}

,

Ab
+− =

{
j ∈ A+− : |(1 − α)∆δj−1 + α∆δj | <

1
2

max((1 − α)|∆δj−1|, α|∆δj |)
}

,

Ag
−+ =

{
j ∈ A−+ : |(1 − α)∆δj + α∆δj−1| ≥

1
2

max((1 − α)|∆δj |, α|∆δj−1|)
}

,

Ab
−+ =

{
j ∈ A−+ : |(1 − α)∆δj + α∆δj−1| <

1
2

max((1 − α)|∆δj |, α|∆δj−1|)
}

.

Now, when j ∈ Ag
+− we have

|(1 − α)∆δj−1 + α∆δj | ≥
1
2

max((1 − α)|∆δj−1|, α|∆δj |)

> β max(|∆δj−1|, |∆δj |) ≥
β

2
|∆2δj |.

Therefore, Σ2 > β2

8

∑
j∈Ag

+−
(∆2δj)2. Exactly in the same way, we get Σ1 >

β2

8

∑
j∈Ag

−+
(∆2δj)2.

Next use that

(62) If |x + y| <
1
2

max(|x|, |y|), then
1
2

<

∣∣∣∣xy
∣∣∣∣ < 2.

Indeed, by symmetry it is sufficient to consider the case |y| ≥ |x|. In this case
|y| − |x| ≤ |x + y| < 1

2 max(|x|, |y|) = 1
2 |y|, and we get 1

2 |y| < |x|, so 1
2 <

∣∣∣x
y

∣∣∣,
completing the proof of (62).

Next, let j ∈ Ab
+−. Using (62) we obtain 1

2 <
(1−α)|∆δj−1|

α|∆δj | < 2. So,

(|∆δj | + |∆δj−1|)2
|∆δj ||∆δj−1|

=
|∆δj |

|∆δj−1|
+ 2 +

|∆δj−1|
|∆δj |

<
2(1 − α)

α
+ 2 +

2α

1 − α
=

1 − 2β

β
.
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We get

(63) (∆2δj)2 ≤ (|∆δj | + |∆δj−1|)2 <
1 − 2β

β
|∆δj ||∆δj−1|.

Exactly in the same way, one can show that (63) holds when j ∈ Ab
−+. Also,

note that Ab
+− ∩Ab

−+ = ∅ and if j ∈ Ab
+− ∪Ab

−+, then sgn(∆δj∆δj−1) = −1, and
we get

Σ7 > 4β

⎛
⎝ ∑

j∈Ab
+−

(∆2δj)2 +
∑

j∈Ab
−+

(∆2δj)2

⎞
⎠ .

Combining the lower bounds for Σ4, Σ5, Σ2, Σ1, and Σ7, we get the lower bound in
Lemma 4 (note that all Σ’s are nonnegative). This completes the proof of Lemma
4 and of Lemma 1. �
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