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OPTIMAL ANISOTROPIC MESHES
FOR MINIMIZING INTERPOLATION ERRORS

IN Lp-NORM

LONG CHEN, PENGTAO SUN, AND JINCHAO XU

Abstract. In this paper, we present a new optimal interpolation error esti-
mate in Lp norm (1 ≤ p ≤ ∞) for finite element simplicial meshes in any
spatial dimension. A sufficient condition for a mesh to be nearly optimal is
that it is quasi-uniform under a new metric defined by a modified Hessian
matrix of the function to be interpolated. We also give new functionals for the
global moving mesh method and obtain optimal monitor functions from the
viewpoint of minimizing interpolation error in the Lp norm. Some numerical
examples are also given to support the theoretical estimates.

1. Introduction

In this paper, we are interested in obtaining (nearly) optimal meshes for the
piecewise linear finite element interpolation of a given function. Let Ω ⊂ R

n be
a bounded domain, TN a simplicial finite element mesh of Ω with a fixed number
N of elements, and uI a piecewise linear finite element interpolation of a given
function u defined on Ω. We try to find an optimal mesh that minimizes the error
‖u − uI‖Lp(Ω) (1 ≤ p ≤ ∞) in some sense.

This question can be traced back to de Boor [33, 34] where a problem of the best
approximation by free knot splines was studied in one spatial dimension. In this
work, the equidistribution principle was first introduced, and this concept has been
widely used by other researchers studying grid adaptation. A pioneering work in
adaptive finite element methods was done by Babuška and Rheinboldt [9] in which
a finite element mesh was shown to be nearly optimal in the sense of minimizing the
error in the H1 norm if the local errors are approximately equal for all elements.
Thus, to get an optimal mesh, elements where the error are large will be marked
for refinement, while elements with a small error are left unchanged or coarsened.

Most of the adaptive finite element methods in the literature (see [10]) are con-
cerned with meshes that are shape regular (which in two dimensions means that no
element has very small angle) and this type of shape-regular finite element are ap-
propriate for physical problems that are mostly isotropic. But for some anisotropic
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problems (with, say, sharp boundary layers or internal layers), the shape of ele-
ments can be further optimized and an equidistribution of a scalar error density is
not sufficient to ensure that a mesh is optimally efficient [31]. In two dimensions
the optimal triangulations for the discontinuous piecewise linear approximation in
the sense of minimizing error in the L2 norm was studied by Nadler [70]. The L∞

case was studied by D’Azevedo and Simpson [31, 32]. An optimal mesh obtained
in those works is that each triangle under the Hessian metric is equilateral and
the error is equidistributed on each triangle. Recently the optimality of the L∞
error estimates was shown by Agouzal, Lipnikov and Vassilevski [3, 2, 62, 61, 63].
Anisotropic mesh adaptation which aims to generate equilateral triangles under
the metric induced by the Hessian matrix was developed in [80, 16, 43, 36] and
successfully applied to the computational fluid dynamic problems in two spatial
dimensions [43, 37].

Another global approach has been carried out in the literature in the study of the
so-called moving mesh method [39, 83, 20, 74, 20, 46, 23, 49, 66, 81, 15, 65, 38, 35, 60,
59]. In this type of study, a given finite element grid (often uniform to begin with) is
moved while keeping the topological structure to better approximate a solution that
has a certain anisotropic property. While most of this line of works in the literature
are heuristic, there has been some work recently on the theoretical understanding
of how a moving finite element method works [46, 49, 38, 65]. In Huang [46] and
Huang and Sun [49], by formulating the conditions in terms of the isotropy and the
equidistribution, the authors obtained (formally) interpolation error estimates in L2

and H1 norms and further constructed corresponding functionals to be minimized
for the global moving mesh methods.

There are other a priori and a posteriori interpolation error estimates for aniso-
tropic finite elements [5, 6, 7, 4, 40, 41, 57, 58, 51, 52, 54, 55, 53, 56, 67, 71, 72].
Apel [4] obtained some estimates under a condition on the coordinate orientation
and on the maximal allowable mesh angle. Formaggia and Perotto [40] exploited
the spectral properties of the affine map from the reference triangle to the general
triangle to get anisotropic estimates for the L2 and H1 interpolation error on linear
finite elements in two dimensions. Kunert [51] introduced the matching function
to measure the alignment of an anisotropic function and an anisotropic mesh and
presented error estimates using the matching function. Yet the overall optimal
convergent rate in terms of the number of degrees of freedom is not easy to get
from those approaches.

In this paper we first present a new local edge-based error estimate and global
interpolation error bound in Lp(1 ≤ p ≤ ∞) norm for any spatial dimension and
then justify the optimality of this error bound. This estimate can be viewed as a
modification and generalization of the previous work mentioned above. We require
the mesh to be quasi-uniform under the new metric (detH)−1/(2p+n)H where H is
a majorant of the Hessian matrix ∇2u (see Section 2 for the details). Specifically
the simplices are locally isotropic and their volumes are globally equidistributed
under the new metric. Combining with another appropriate technical assumption,
we obtain the error estimate

(1.1) ‖u − uI‖Lp(Ω) ≤ CN−2/n‖ n
√

detH‖
L

pn
2p+n (Ω)

,

where N is the number of elements in the triangulation and the constant C does
not depend on u and N . This estimate is optimal in the sense that it is a lower
bound if u is strictly convex or concave.
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We would like to point out that the estimate (1.1) has been formally obtained
for the special case p = ∞ in D’Azevedo [31] and for the case p = 2 in Huang and
Sun [49]. We will derive the more general estimate (1.1) rigorously using a different
approach in this paper. More importantly, we will use this general estimate to
derive several new results for the moving mesh method.

Based on this new error bound, we can construct a nonlinear functional whose
minimizer aims to satisfy the equidistribution and isotropy requirements simulta-
neously in the moving mesh method. Let Ωc be the computational domain with a
quasi-uniform (under the standard Euclidean metric) triangulation TN,c. The mesh
on Ω can be viewed as the image of a transformation x = x(ξ) : Ωc → Ω. Then that
the transformed mesh is quasi-uniform with respect to the metric G(x) is more or
less equivalent to that x = x(ξ) is the global minimizer of the minimizing problem

min
x

∫
Ωc

[ n∑
i=1

(∇xi)tG(x)∇xi

]q
(ξ)dξ, q > n/2.

It is often more convenient to study the moving meshes in terms of ξ = ξ(x). In
this case, we have the optimization problem

min
ξ

∫
Ω

(detG)1/2
[ n∑

i=1

(∇ξi)tG−1∇ξi

]q
(x)dx, q > n/2.

The minimizer of either of these two functionals is expected to satisfy, to some
degree, both equidistribution and isotropy conditions simultaneously. We note that
the q = 1 case corresponds to the harmonic mapping but we require q > n/2 here.
When n ≥ 3, these minimization problems (which are more or less p-Laplacian with
p > n) are significantly different from the harmonic mapping which has been most
commonly used in the literature for the moving mesh method [39, 20, 48, 59]. If we
choose G = (detH)−1/(2p+n)H in these functionals, we can get a nearly optimal
mesh which minimizes the interpolation error ‖u − uI‖Lp(Ω) by solving the above
optimization problems.

The rest of the paper is organized as follows. In Section 2 we develop the
interpolation error estimate and show that for strictly convex or concave functions,
it is also a lower bound. In Section 3 we present two new functionals for a moving
mesh method and give several practical remarks and comparisons with existing
approaches. Section 4 contains numerical experiments, where we show the existence
of such near optimal meshes. Some concluding remarks are made in the last section.

2. Optimal anisotropic meshes

In this section we will present an interpolation error bound by using the Taylor
expansion and a scaling of a modified Hessian matrix. This bound is optimal in the
sense that for strictly convex functions it is also a lower bound. For simplicity of
exposition most theoretical results in this paper are presented under the regularity
assumption that u ∈ C2(Ω).

2.1. A majorant of the Hessian matrix and Taylor expansion. Given a
function u ∈ C2(Ω), where Ω is an open set of R

n, a symmetric positive definite
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matrix function H ∈ (C(Ω))n×n is called a majorant of the Hessian matrix for u if
it satisfies

(2.1) |ξt(∇2u)(x)ξ| ≤ c0ξ
tH(x)ξ, ξ ∈ R

n, x ∈ Ω,

for some positive constant c0.
One example of H can be constructed as follows. First, we diagonalize the

Hessian: ∇2u = Qtdiag(σi)Q and then define

(2.2) H = Qtdiag(|σi|)Q + δI, δ ≥ 0.

It is easy to see that this matrix H is a majorant of the Hessian matrix of u
and it satisfies (2.1) for any δ > 0 with c0 = 1. When ∇2u is singular, a positive
parameter δ is critical to control the variation of H. A careful analysis in Huang
[47] shows that δ can also be used to control the ratio of mesh points in the singular
region and smooth region of the function.

Given a simplex τ with vertices {ak}n+1
k=1 , we denote the edge vector lij = ai−aj .

Let us now derive a linear interpolant error estimate in terms of the majorant of
the Hessian matrix.

Lemma 2.1.

|(u − uI)(x)| ≤ c0

2

n+1∑
j,k=1

ltjkHk(x)ljk ∀x ∈ τ,

where

Hk(x) = 2
∫ 1

0

tH(ak(t)), ak(t) = ak + t(x − ak).

Proof. Let {λk(x)} be the barycentric coordinates of τ . By Taylor expansion,

(2.3) uI − u =
1
2

n+1∑
k=1

λk(x)(x − ak)t

[
2
∫ 1

0

t∇2u(ak(t))
]

(x − ak).

Note that x − ak =
∑

i λilik. We have

|(uI − u)(x)| ≤ c0

2

n+1∑
i,j,k=1

λiλjλkltikHkljk.

By the Cauchy–Schwarz inequality,

|(uI − u)(x)| ≤ c0

2

n+1∑
i,j,k=1

λiλjλk

√
ltikHklik ·

√
ltjkHkljk

≤ c0

2

⎛
⎝ n+1∑

i,j,k=1

λiλjλkltikHklik

⎞
⎠

1/2

·

⎛
⎝ n+1∑

i,j,k=1

λiλjλkltjkHkljk

⎞
⎠

1/2

=
c0

2

n+1∑
j,k=1

ltjkHkljk.

In the third step, we use the fact
∑n+1

i=1 λi = 1. �
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2.2. Main theorem. Let u ∈ C2(Ω) and H be a majorant of the Hessian of u
satisfying (2.1). Associated with u, we consider a triangulation TN of Ω that is
adaptively obtained according to the properties of u. Here the subscript N indicates
that the triangulation has N elements. We will now make two major assumptions
on TN in its relation with u.

Our first assumption on TN is a local one. We assume that the matrix H does
not change very much on each element.

(A1). There exist two positive constants α0 and α1 such that

(2.4) α0ξ
tHτξ ≤ ξtH(x)ξ ≤ α1ξ

tHτξ, ξ ∈ R
n,

where Hτ is the average of H over τ , namely

Hτ =
1
|τ |

∫
τ

H(x)dx.

The above assumption is hard to satisfy where ∇2u is nearly singular. In this
event, the introduction of the relaxation parameter δ in (2.2) becomes critical for
this assumption.

Given 1 ≤ p ≤ ∞, we introduce a scaled majorant of the Hessian matrix as
follows

(2.5) Hp = µpH, µp = (detH)−
1

2p+n .

Note that Hp also defines a Riemannian metric on Ω. We have a new edge length
and element volume introduced by this metric. In particular, we denote by |Ω|Hp

the volume of Ω under this new metric. By definition,

|Ω|Hp
=
∫

Ω

(detHp)1/2(x)dx =
∫

Ω

(detH)
p

2p+n (x)dx.

Given a triangulation TN , we then define a discretization of Hp by

(2.6) Hτ,p = µτ,pHτ , µτ,p = [det(Hτ )]−
1

2p+n , ∀τ ∈ TN .

The edge length under this new metric is defined by

(2.7) dτ,ij = (ltijHτ,plij)1/2.

It is more convenient to order them with one single index, say lexigraphically, i.e.,
dk, k = 1, 2, . . . , n(n + 1)/2.

We will denote

(2.8) |τ |Hτ,p
= (detHτ,p)1/2|τ |, and |Ω|Hτ,p

=
∑

τ∈TN

|τ |Hτ,p
.

Under the assumption (A1), it is clear that |Ω|Hτ,p
≤ C(α1)|Ω|Hp

.
Our second assumption is both local and global. Let

diamHτ,p
(τ ) = max

x,y∈τ
(x − y)tHτ,p(x − y)

be the diameter of τ under the new metric Hτ,p. The following assumption means
that TN is quasi-uniform under the new metric induced by Hτ,p.
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(A2). There exist two positive constants β0 and β1 such that

(2.9)
diamHτ,p

(τ )

|τ |1/n
Hτ,p

≤ β0 ∀ τ ∈ TN

and

(2.10)
maxτ∈TN

|τ |Hτ,p

minτ∈TN
|τ |Hτ,p

≤ β1.

The inequality (2.9) means that each τ is shape-regular under the metric Hτ,p,
namely all edges of τ are of comparable size. This is related to the so-called isotropy
criterion considered in [46]. The inequality (2.10) means that all elements τ are of
comparable size (under the new metric). This is related to the so-called equidistri-
bution criterion, considered in [31] and [46].

It is easy to see that (A2) implies that
n(n+1)/2∑

i=1

d2
τ,i ≤

n(n + 1)
2

β0|τ |2/n
Hτ,p

∀ τ ∈ TN

and
|τ |Hτ,p

≤ β1N
−1|Ω|Hτ,p

∀ τ ∈ TN .

In the statement of our main theorem below, we need to use

‖u‖Lr(Ω) :=
{∫

Ω

|u|rdx
} 1

r

.

We note that ‖ · ‖Lr is not a norm when 0 < r < 1.

Theorem 2.2. Let u ∈ C2(Ω) and the triangulation TN satisfy assumptions (A1)
and (A2). The error estimate

(2.11) ‖u − uI‖Lp(Ω) ≤ CN−2/n‖ n
√

det H‖
L

pn
2p+n (Ω)

, 1 ≤ p ≤ ∞,

holds for some constant C = C(n, p, c0, α0, α1, β0, β1).

Proof. We first prove (2.11) for p = ∞. Let us assume u−uI attains the maximum
at point x∗ and let τ∗ be a simplex containing x∗. By Lemma 2.1 and assumptions
(A1) and (A2), we have

|(u − uI)(x∗)| ≤ C

n(n+1)/2∑
i=1

d2
τ∗,i ≤ C|τ∗|2/n

Hτ
≤ CN−2/n|Ω|2/n

Hτ
≤ CN−2/n|Ω|2/n

H .

The desired result then follows.
For 1 ≤ p < ∞,

|(u − uI)(x)| ≤ C

n+1∑
j,k=1,j<k

ltjkHτ ljk = Cµ−1
τ,p

n(n+1)/2∑
i=1

d2
τ,i ≤ Cµ−1

τ,p|τ |
2/n
Hτ,p

.

Thus ∫
τ

|(u − uI)(x)|pdx ≤ Cµ−p
τ,p|τ‖τ |

2p/n
Hτ,p

.

Note that

(2.12) |τ | = (detHτ,p)−1/2|τ |Hτ,p
= µ−n/2

τ,p (detHτ )−1/2|τ |Hτ,p
,
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thus ∫
τ

|(u − uI)(x)|pdx ≤ Cµ−(p+n/2)
τ,p (detHτ )−1/2|τ |

2p+n
n

Hτ,p
= C|τ |

2p+n
n

Hτ,p
,

since by definition (2.6) of µτ,p,

µ−(p+n/2)
τ,p (detHτ )−1/2 = 1.

By assumptions (A1) and (A2)∫
Ω

|(u − uI)(x)|pdx =
∑

τ∈T N

∫
τ

|(u − uI)(x)|pdx ≤ C
∑

τ∈T N

|τ |
2p+n

n

Hτ,p

≤ CN− 2p
n |Ω|

2p+n
n

Hτ,p
≤ CN− 2p

n |Ω|
2p+n

n

Hp
,

which yields the desired result. �

Remark 2.3. We would like to point out that the above theorem can be improved
and generalized in many ways. For example, for p �= ∞, the assumption (A2) can
be slightly relaxed. More precisely, the assumption (A2) can be replaced by the
following.

(A2′) There exists two piecewise constant functions β0 and β1 such that

n(n+1)/2∑
i=1

d2
τ,i ≤ β0(τ )|τ |2/n

Hτ,p
∀τ ∈ TN ,

|τ |Hτ,p
≤ β1(τ )N−1|Ω|Hτ,p

∀τ ∈ TN ,

and ∑
τ

β0(τ )β
2p+n

n
1 (τ ) ≤ β2,

where β2 is constant. Such a relaxation is of practical significance. This means
that optimal error estimates are still valid on a mesh which has a few exceptional
elements that do not satisfy the isotropic or equidistribution assumptions.

Remark 2.4. Suboptimal metric. In some literature (see [70, 43, 36]) only the metric
induced by a majorant of the Hessian matrix (without using the scaling µτ,p or using
µτ,∞ = 1) is used to get an anisotropic mesh optimization methodology. To see
why it would work to some degree, let us assume the triangulation is quasi-uniform
under the metric Hτ . Then

‖u − uI‖p
Lp(Ω) ≤ C

∑
τ

|τ ||τ |2p/n
Hτ

≤ CN−2p/n|Ω||Ω|2p/n
Hτ

= CN−2p/n

(∫
Ω

1dx

)(∫
Ω

(detH)1/2dx

) 2p
n

.

This tells us that we can still get a reasonable convergent rate if we only use the
majorant of the Hessian metric without scaling. But this is not optimal since,
comparing Theorem 2.2,(∫

Ω

1dx

)(∫
Ω

(detH)1/2dx

) 2p
n

≥
(∫

Ω

(detH)
p

2p+n dx

) 2p+n
pn

.
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On the other hand, from |τ ||τ |2p/n
Hτ

we can see that if |τ |Hτ
are almost equal for

every τ , but |τ | are not supposed to be equal in general. Thus we cannot guarantee
the global equidistribution condition by only using the Hessian metric. While by
scaling the metric, we can achieve both local and global conditions simultaneously.

2.3. Optimality of the result: A lower bound. In this section, we shall show
that the error estimate presented above is sharp in some sense for strictly convex
(or concave) functions.

Let us first introduce some standard short-hand notation for multiple indices.
A multi-index α is an m-tuple of nonnegative integers α = (α1, α2, . . . , αm). The
length of α is defined by |α| =

∑m
i=1 αi. For a given vector (x1, x2, . . . , xm), we

define xα = xα1
1 xα2

2 · · · xαm
m .

Assume that we are given a strictly convex (or concave) function u ∈ C2(Ω),
namely ∇2u is positive (or negative) definite and continuous on Ω. We can define
a metric H = ∇2u, its average Hτ and Hτ,p as before.

Then we define d2
ij = (ai − aj)Hτ (ai − aj), i, j = 1, 2, . . . , n + 1, and d2 =

(d2
1, d

2
2, . . . , d

2
m), where m = n(n + 1)/2. Furthermore we will define

(2.13) κ0(τ ) = min
ξ∈Rn,x∈τ

ξtH(x)ξ
ξtHτξ

, and κ1(τ ) = min
x∈τ

[
det Hτ

(detH)(x)

]1/n

.

Since we assume u is strictly convex (or concave), the above functions are well
defined.

For a given multi-index α = (α1, α2, . . . , αn(n+1)/2), we define a (n+1)× (n+1)
symmetric matrix B = (bij) by bii = 0, bij = α(i−1)×(n+1)+j , for i < j and a new
multi-index α̃ = (α̃1, α̃2, . . . , α̃n+1) by α̃i =

∑n+1
j=1 bij .

Now we are ready to present our lemmas.

Lemma 2.5. Let u ∈ C2(Ω) be a strictly convex function. We have

‖u − uI‖p
Lp(τ) ≥ κ0(τ )

p!n!
2p(2p + n)!

|τ |
∑
|α|=p

α̃!
α!

d2α
τ , 1 ≤ p < ∞,(2.14)

‖u − uI‖L∞ ≥ κ0(τ )
2(n + 1)2

m∑
i=1

d2
τ,i, p = ∞.(2.15)

Proof. By (2.3) and (2.13)

|(u − uI)(x)| ≥ κ0(τ )
2

n+1∑
j=1

λj(x)(x − aj)tHτ (x − aj)

=
κ0(τ )

2

n+1∑
i,j,k=1

(λiλj)(x)(ai − aj)Hτ (x − aj).

Using the symmetry of the index i and j, we can also write the inequality as

|(u − uI)(x)| ≥ κ0(τ )
2

n+1∑
i,j,k=1

(λiλjλk)(x)(aj − ai)Hτ (x − ai).

Summing the above two inequalities gives us that

(2.16) |(u − uI)(x)| ≥ κ0(τ )
2

n+1∑
i,j=1,i<j

(λiλj)(x)d2
τ,ij .
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The inequality (2.14) can then be obtained by using the two elementary identities

(
m∑

i=1

xi)p =
∑
|α|=p

p!
α!

xα

and ∫
τ

λα(x)dx =
α!n!

(|α| + n)!
|τ |,

where λ = (λ1, λ2, . . . , λn+1).
For p = ∞, we choose xτ , the barycenter of τ , in (2.16). Since λi(xτ ) = 1/(n+1)

for i = 1, . . . , m, we get (2.15). �

Lemma 2.6. Let

Ep(x) =
∑

α,|α|=p

α̃!
α!

xα, 1 ≤ p < ∞.

Then for any x = (x1, x2, . . . , xm) with xi > 0, i = 1, 2, . . . , m,

(2.17) Ep(x) ≥ Ep(x∗)

(
m∑

i=1

xi

)p

.

When P > 1 the equality holds if and only if x = x∗ with x∗ = (1/m, 1/m, . . . , 1/m).

Proof. When p = 1 the assertion (2.17) is trivially true. We will prove the result for
p > 1. Let us first compute the minimum of Ep(x) under the constraint

∑m
i=1 xi =

1. Let

F (x, λ) = Ep(x) − λ(
m∑

i=1

xi − 1).

The critical point of F satisfies

λ = ∂1Ep(x) = ∂2Ep(x) = · · · = ∂mEp(x).

Here for convenience in notation, we let ∂iEp denote the partial derivative
∂Ep

∂xi
.

Since Ep is symmetric with respect to xi, namely

Ep(σ(x)) = Ep(σ2(x)) = · · · = Ep(σm(x)),

where σ is the cyclic permutation σ((x1, x2, . . . , xm)) = (x2, . . . , xm, x1), we then
have

∂1Ep(σ(x)) = ∂2Ep(σ2(x)) = · · · = ∂mEp(σm(x)),
and conclude that the point (x∗, ∂1Ep(x∗)) is a critical point of F .

Note that Ep(x) is pth homogeneous. By differentiating the Euler formula
x · ∇Ep(x) = pEp(x), we get x · (∇2Ep) = (p − 1)∇Ep(x) and thus

x · ∇2Ep(x)xt = (p − 1)x · ∇Ep = (p − 1)pEp(x) > 0.

Since F has the same quadratic part as Ep as a function of x, we conclude that
F achieves the minimum at x∗ under the constraint

∑m
i=1 xi = 1.

By combining this result with the obvious identity

Ep

( x∑m
i=1 xi

)
=

Ep(x)(∑m
i=1 xi

)p ,

we complete the proof. �
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The following lemma is a well-known geometry inequality between the total edge
length and the volume of a simplex; for an example, see [69] (p.517).

Lemma 2.7.
m∑

i=1

d2
τ,i ≥

n(n + 1)n!2/n

(n + 1)1/n
|τ |2/n

Hτ,p
.

The equality holds if and only if τ is equilateral under the metric Hτ,p.

For a family of triangulations {TN , N ≥ N0 ∈ N} of Ω we define

hN = max
τ∈TN

diam(τ ),

κN
0 (x) = κ0(τ ), κN

1 (x) = κ1(τ ), x ∈ τ

and
ρN =

maxτ,i dτ,i

minτ,i dτ,i
.

We say all edges {dτ,i} are asymptotically equal if limN→∞ ρN = 1.

Theorem 2.8. Assume that u ∈ C2(Ω) is a strictly convex (or concave) function
and {TN} are a family of triangulations of Ω satisfying limN→∞ hN = 0. Then

(2.18) lim inf
N→∞

N2/n‖u − uI‖Lp(Ω),N ≥ Cn,p‖ n
√

detH‖
L

pn
2p+n (Ω)

,

where

Cn,p =
( ∑

α,|α|=p

α̃!
α!

) p!n!
(2p + n)!

n!2p/n

(n + 1)p/n
, 1 ≤ p < ∞,

Cn,∞ =
n

2(n + 1)
n!2/n

(n + 1)1/n
.

Furthermore the equality holds if all edges in {TN} are asymptotically equal under
the new metric, namely limN→∞ ρN = 1.

Proof. We first prove the case 1 ≤ p < ∞. By (2.14) in Lemmas 2.6 and 2.7:

|τ |Ep(d2
τ ) = µ−p

τ,p|τ |Ep(d2
τ ) ≥ Cµ−p

τ,p|τ |
(

m∑
i=1

d2
τ,i

)p

≥ Cµ−p
τ,p|τ ||τ |

2p/n
Hτ,p

,

where µτ,p and |τ |Hτ,p
are defined by (2.6) and (2.8). The constant C only depends

on p and n but not τ . The equality holds if and only if the simplex τ is regular
under the new metric Hτ,p; i.e., all edges of τ are equal under the new metric Hτ,p.

By (2.12) and the definition of µτ,p, we know that

µ−p
τ |τ‖|τ |2p/n

Hτ,p
= |τ |

2p+n
n

Hτ,p
.

Consequently,

‖u − uI‖p
Lp(Ω) ≥ C

∑
τ∈TN

κ0(τ )|τ |
2p+n

n

Hτ,p

≥ CκN
0 (x)κN

1 (x)
∑

τ∈TN

(∫
τ

[
n
√

detH
] np

2p+n

(x)dx

) 2p+n
n

≥ CN−2p/nκN
0 (x)κN

1 (x)
(∫

Ω

[
n
√

det H
] np

2p+n

(x)dx

) 2p+n
n

.
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The last inequality becomes an equality if and only if all the volumes of elements
under the new metric are equal. Furthermore, if all edges are equal under the new
metric, we can achieve all the equalities.

Since ∇2u is continuous, κN
0 (x)κN

1 (x) are uniformly bounded and it approaches
1 when N goes to ∞. The desired inequality of the theorem for 1 ≤ p < ∞ then
follows.

For p = ∞, we make use of (2.15) in Lemma 2.6 and follow the same procedure
to get the desired inequality. �

The constants Cn,p in (2.18) are useful in other related problems. In [25] we show
that Cn,∞ is closely related to the sphere covering problem and Cn,1 to optimal
polytopes approximation of convex bodies.

Remark 2.9. The strict convexity assumption of the function is to ensure ∇2u is
a Riemannian metric so that we can apply the geometry inequalities locally. For
p = ∞ the strict convexity assumption can be relaxed to be nonsingular; i.e., the
indefinite metric is allowed in this case (see [73, 63]).

3. New optimization problems for the moving mesh method

In this section, we shall apply the error estimate obtained above to derive some
new optimization problem that can be used in the moving mesh method. The
basic idea in our argument below is not new (see, for example, Huang [46]), but
the optimization problems we will obtain appear to be new and especially appear
to be more appropriate than those in the literature. The main new feature of our
new optimization problems is that they address the isotropic and equidistribution
criteria simultaneously.

The moving mesh method can be described by two different sets of domains, Ωc

and Ω, and corresponding grids, TN,c and TN , which are linked by a transformation
x = x(ξ) : Ωc �→ Ω. Here Ωc is known as the computational domain with a quasi-
uniform triangulation TN,c with respect to the standard Euclidean metric and Ω
is the physical domain with an adapted mesh TN . The adapted grid TN can be
viewed as a result of moving the grid TN,c through the transformation:

x = x(ξ), x = (x1, x2, . . . , xn)t, ξ = (ξ1, ξ2, . . . , ξn)t.

Let us assume x : Ωc �→ Ω is a differentiable homeomorphism and denote the
Jacobian of the transformation x = x(ξ) : Ωc �→ Ω by

J =
∂x

∂ξ
= ((∇ξx1)t, . . . , (∇ξxn)t) =

(
∂xi

∂ξj

)
.

Let G be a metric on Ω. Then the transformation induces a new metric on Ωc

which is Gc = J tGJ . Now we have three manifolds (Ω, G), (Ωc, I), and (Ωc, Gc),
where I denotes the standard Euclidean metric. TN is quasi-uniform in (Ω, G) if
TN,c is quasi-uniform in (Ωc, Gc). But TN,c is already quasi-uniform in (Ωc, I).
Thus it is equivalent to asking that

JT GJ = cI or J−T G−1J−1 = cI.

In general we may not get the identity since it is equivalent to asking the manifold
(Ωc, Gc) be flat. We try to approximate this identity as well as possible.
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3.1. An optimization problem in terms of x = x(ξ). Let us first obtain a new
optimization problem in terms of x = x(ξ). Let {µi}n

i=1 be the eigenvalues of Gc.
Note that µi > 0 since G is a metric. Following [46], we begin our derivation with
the elementary inequality

1
n

n∑
i=1

µi ≥
( n∏

i=1

µi

)1/n

.

Therefore,
1
n

trace(Gc) ≥ (detGc)1/n.

The matrix Gc is a scalar matrix if and only if the above equality holds. Namely
the ratio on the left-hand side is minimized.

But

trace(Gc) =
m∑

i=1

[
(∇xi)tG∇xi

]
, (detGc) = (detJ)2(detG),

thus

(3.1)
m∑

i=1

(∇xi)tG∇xi ≥ n
[
(detJ)2(detG)

]1/n
.

Raising this inequality with power q > n/2 and integrating the result on Ωc gives∫
Ωc

( n∑
i=1

(∇xi)tG∇xi

)q

(ξ)dξ ≥ nq

∫
Ωc

[
(detJ)2(detG)

]q/n(ξ)dξ.

By the Hölder inequality,

|Ω|1−n/2q

{∫
Ωc

[
(detJ)2(detG)

]q/n(ξ)dξ

}n/2q

≥
∫

Ωc

(detJ)(detG)1/2(ξ)dξ.

Namely∫
Ωc

[
(detJ)2(detG)

]q/n(ξ)dξ ≥ |Ωc|1−2q/n

[∫
Ωc

(detJ)(detG)1/2(ξ)dξ

]2q/n

= |Ωc|1−2q/n

[∫
Ω

(detG)1/2(x)dx

]2q/n

= |Ωc|1−2q/n|Ω|2q/n
G .

In summary, we have∫
Ωc

( n∑
i=1

(∇xi)tG∇xi

)q

(ξ)dξ ≥ nq

∫
Ωc

[
(detJ)2(detG)

]q/n(ξ)dξ

≥ nq|Ωc|1−2q/n|Ω|2q/n
G .

By the well-known properties of two inequalities used above, we note that the first
inequality holds with equality if and only if Gc has all equal eigenvalues (isotropic),
namely Gc is a scalar matrix, and the second inequality holds with equality if and
only if (detGc)1/2 = (detJ)(detG)1/2 = constant (equidistribution). Thus both
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inequalities hold with equalities if and only if both isotropy and equidistribution
conditions are satisfied. This argument leads to the optimization problem:

(3.2) min
x

∫
Ωc

[ n∑
i=1

(∇xi)tG(x)∇xi

]q
(ξ)dξ, q > n/2.

For a given q > n/2, the minimizer of the above functionals is expected to sat-
isfy both equidistribution and isotropy conditions simultaneously. Since the lower
bound in the derivation may not be attainable, minimizers for a different q may be
different. The index q will control the mesh density. A larger q will lead to a more
equidistributed grid.

3.2. An optimization problem in terms of ξ = ξ(x). A similar optimization
problem can also be obtained in terms of ξ = ξ(x). From a computational point of
view, x = x(ξ) is the transformation that we need to use, but, as we shall explain
later, there are some advantages of using its inverse transformation to define the
optimization problem.

We can apply similar arguments for the map ξ = ξ(x). Let us assume J is
nonsingular. Note that (Gc)−1 = J−tG−1J−1. Similar to (3.1), we have( n∑

i=1

∇ξt
iG

−1∇ξi

]
≥ n

[
(detJ)2(detG)

]−1/n

,

and for q > n/2∫
Ω

(detG)1/2
( n∑

i=1

∇ξt
iG∇ξi

)q

(x)dx ≥ nq

∫
Ω

[
(detJ)2(detG)

]−q/n

(x)dx.

Let r = 2q/n and r′ be its congruent index; i.e., 1/r + 1/r′ = 1. By the Hölder
inequality,∥∥∥[(detJ)(detG)

]− 1
2r′
∥∥∥

Lr

∥∥∥(detG)
1

2r′
∥∥∥

Lr′ ≥
∫

Ω

(detJ)−1(x)dx =
∫

Ωc

1dξ = |Ωc|.

The equality holds if and only if (detJ)(detG)1/2 = constant which is equivalent
to the equidistribution condition.

Noting that
∥∥(detG)

1
2r′
∥∥

Lr′ =
∫
Ω
(detG)1/2dx = constant, we then end up with

the optimization problem

(3.3) min
ξ

∫
Ω

[
(detG)(x)

]1/2[ n∑
i=1

(∇ξi)tG−1(x)∇ξi

]q
dx, q > n/2.

Remark 3.1. Monitor functions. The matrix G(x) used in (3.2) and (3.3) is called
monitor function in the literature. It is widely used in the existing variational mesh
adaptation methods; e.g., see [50, 39, 20, 48, 19, 84]. Based on our discussions above,
the following choice of monitor function is evident:

(3.4) G(x) = (detH)(x)−
1

2p+n H(x).

3.3. On the minimization problems (3.2) and (3.3). Followins are some brief
discussions on the minimization problems (3.2) and (3.3). The discussion for the one
dimensional case is easy. The situation for multiple dimensions is more complicated.
One main conclusion for multiple dimensions is that our optimization problem is
significantly different from the harmonic mapping approach which is what has been
used most widely in the literature.
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3.3.1. One dimension n = 1. In one dimension, namely n = 1, as we shall see now,
both optimization problems can be solved exactly and in fact the solutions to both
problems are identical to each other. The result we obtain in one dimension is not
new and it coincides, for example, with the so-called grading function obtained by
Carey and Dinh [22].

Without loss of generality, we may suppose that Ω = (0, 1). Solving functional
(3.2) gives us

(3.5) (Gqx′2q)′ = 0 ⇒ G1/2(x)x′(ξ) = c ⇒ ξ′(x) = c−1G1/2(x).

We obtain

(3.6) ξ(x) =

∫ x

0
G1/2(t)dt∫ 1

0
G1/2(t)dt

,

which will be called the mesh distribution function. The asymptotic optimal mesh
can be obtained by the inverse of the mesh distribution function, more precisely xi =
ξ−1(ξi), i = 0, 1, . . . , N, ξi = i/N , which may be obtained by the Newton method or
a discrete version of the mesh distribution function. Recently the mesh distribution
function has been applied successfully to the polygonal curve simplification [27].

Now, we consider the optimization problem (3.3). In this case, the Euler–
Lagrangian equation becomes

(G1/2−qξ′(x)2q−1)′ = 0

which gives
ξ′(x) = cG1/2(x).

This is the same as (3.5). Thus we get the same mesh distribution function from
(3.3).

We summarize the above discussions as follows.

Proposition 3.2. In one dimension, both optimization problems (3.2) and (3.3)
are equivalent and their minimizer, known as the mesh distribution function, is
given by (3.6), which is independent of the parameter q.

3.3.2. Multiple dimensions. The situations in multiple dimensions are much more
complex. Let us first point out that the optimization problem (3.3) appears to have
more desirable properties than (3.2). For example, the functional in (3.3) is strictly
convex while the functional in (3.2) is more complex. Especially, for q = 1, the
Euler–Lagrange equation for (3.3) is linear while the Euler–Lagrange equation for
(3.2) is always nonlinear.

Since the problem (3.3) is strictly convex, the existence and uniqueness of the
minimizer is then obvious for this problem. A less obvious question is if the min-
imizer ξ = ξ(x) is actually a homeomorphism between Ω and Ωc and furthermore
if its Jacobian is nonsingular. These two questions are already well studied for
the special case that q = 1 and n = 2 in the literature and the answers to both
questions are affirmative under the assumption that the computational domain Ωc

is convex (see [44, 78]). One natural question to ask is whether these results can
also be extended to the case that q > 1. This question is significant especially for
n ≥ 3 and it will be a subject of further study.

The optimization problem (3.2), on the other hand, is more complex to analyze
than (3.3). Let us now only discuss the existence for this problem as the answers
to other relevant questions are not so obvious.
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Theorem 3.3. Given a homeomorphism g : ∂Ωc �→ ∂Ω, there is a transformation
x : Ωc → Ω such that it is a minimizer of the minimization problem (3.2) subject
to

x ∈ (W 1,2q(Ωc))n, x(ξ) = g(ξ), ξ ∈ ∂Ωc.

This theorem can be established by using the following simple lemma.

Lemma 3.4. Assume that G ∈ (L∞(Ω))n×n, is continuous almost everywhere in
Ωn×n, and is uniformly symmetric positive definite in Ω. Then∫

Ωc

[ n∑
i=1

(∇xi)tG(x)∇xi

]q
(ξ)dξ

is lower semi-continuous in (W 1,2q(Ωc))n for a given q > n/2.

Proof. Let us first assume that G is continuous everywhere in Ωn×n, namely G ∈
(CB(Ω))n×n. When q > n/2, W 1,2q((Ωc)n) is compactly embedded in (L∞(Ωc))n.
Thus if (xm) is a bounded sequence in (W 1,2q(Ωc))n that is weakly convergent to
x∗, we have xm → x∗ strongly in (C(Ωc))n. By a simple mean value theorem:∣∣∣∣∣

∫
Ωc

[ n∑
i=1

(∇xm
i )tG(xm)∇xm

i

]q
(ξ)dξ −

∫
Ωc

[ n∑
i=1

(∇xm
i )tG(x∗)∇xm

i

]q
(ξ)dξ

∣∣∣∣∣
= q

∫
Ωc

{
n∑

i=1

(∇xm
i )t
[
θG(xm) + (1 − θ)G(xm)

]
∇xm

i

}q−1

·
{

n∑
i=1

(∇xm
i )t
[
G(xm) − G(x∗)

]
∇xm

i

}
(ξ)dξ

≤ q‖G‖L∞‖G(xm) − G(x∗)‖L∞

∫
Ωc

∑
i

|∇xm
i |2q(ξ)dξ.

It follows that

lim
m→∞

inf
∫

Ωc

[ n∑
i=1

(∇xm
i )tG(xm)∇xm

i

]q
(ξ)dξ

= lim
m→∞

inf
∫

Ωc

[ n∑
i=1

(∇xm
i )tG(x∗)∇xm

i

]q
(ξ)dξ

≥
∫

Ωc

[ n∑
i=1

(∇x∗
i )

tG(x∗)∇x∗
i

]q
(ξ)dξ

where, in the last step, we have used the fact that∫
Ωc

[ n∑
i=1

(∇xi)tG(x∗)∇xi

]q
(ξ)dξ

is semicontinuous as a convex nonlinear functional of x. This completes the lemma
when G ∈ (CB(Ω))n×n. For the general case G ∈ (L∞(Ω))n×n, the result follows
from the standard density argument. �
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3.3.3. Comparisons with harmonic mapping. Theories based on harmonic mapping
have been used extensively in formulating variational mesh generation techniques.
The advantages of this approach include

• It is easy to get the existence and uniqueness of the minimizer.
• The Euler–Lagrange equation of this functional is a linear elliptic equation

which is easy to solve.

For a comprehensive treatment, we refer to the book [64] and the references therein.
Here we only point out that it corresponds to q = 1 case in (3.3). Based on the
requirement q > n/2, we see for one dimension, the harmonic mapping approach
is justified by our theory. But for multiple dimensions, it seems that the harmonic
mapping only addresses the isotropy property not the equidistribution property.
We also note that n = 2 is the borderline case for q > n/2 when harmonic mapping
(q = 1) is used. Hence the harmonic mapping may still be a reasonable approach
in two dimensions and it may not be the case for n ≥ 3.

3.4. Monitor functions for nonuniform computational meshes. The opti-
mization problems have been obtained based on the assumption that the compu-
tational grid is quasi-uniform (with respect to the usual Euclidean metric). In this
section, we propose a slight modification of the monitor function to relax the quasi-
uniform assumption on the computational domain. This modification is useful when
the moving mesh method is combined with the local grid refinement method.

Given a computational grid TN,c which may not be quasi-uniform but is assumed
to be shape regular (namely the all the elements are locally isotropic), we introduce
a size function s(ξ) = |τc(ξ)|2/n, where τc(ξ) means the element in TN,c which
contains point ξ. Noting that s(ξ) is a scalar function, if we use

G(x) = s(ξ(x)) [(detH)(x)]−
1

2p+n H(x)

in (3.2) or (3.3), the isotropy condition is still satisfied for the minimizer of (3.2)
or (3.3). Meanwhile the minimizer is aimed to satisfy

sn(detJ)2(detG) = (detGc)|τc|2 = |τc|2Gc
= constant,

which means the triangulation satisfies the equidistribution condition.
By using this modified metric, we can use a shape-regular mesh in the com-

putational domain. Conventional isotropic refinement strategies, namely regular
division [11, 12, 10] and bisection [79, 76, 75], will result in a regular mesh. Thus
it is possible to combine moving mesh (r-type adaptive method) and local refine-
ment (h-type adaptive method) together to get a more efficient algorithm to solve
equations. A combination of those two methods has been studied in [1, 8, 42, 21].

4. Numerical experiments

In this section, we shall report some numerical examples that support the in-
terpolation error estimates presented in Section 2. We are not going to discuss all
the details of our algorithm that produce the underlying meshes since this paper
mainly concentrates on theoretical issues of interpolation errors. For the descrip-
tion of our algorithm, see our recent work [26, 24]. More sophisticated algorithms
for a Delaunay-type mesh generation algorithm governed by Riemannian metrics
can be found in [17, 18].
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Table 1. Errors for the one dimensional example

N Error N2× Error

32 2.9756e − 004 3.0470e − 001
64 7.4198e − 005 3.0392e − 001
128 1.8519e − 005 3.0342e − 001
256 4.6285e − 006 3.0333e − 001
512 1.1570e − 006 3.0331e − 001
1024 2.8925e − 007 3.0330e − 001

4.1. One dimensional example. We first report some tests in the one dimen-
sional case. We choose the test function

u = e−
x
ε + 0.5x2, x ∈ [0, 1],

with ε = 10−3. This function has a boundary layer near x = 0. We combine
refinement and local moving strategies to get the optimal mesh for this function.
The ideal convergent rate is N−2 if we choose a (nearly) optimal mesh, where N
is the number of intervals. We begin with N = 32, using the mesh distribution
function to move mesh points to get a good initial mesh in this coarse level, and
then do the refinement. Once we insert a point into an interval, we move this new
point in this interval so that it is the middle point of this interval under the new
metric.

Table 1 contains the results of computation on six optimal meshes for the L2

norm. In the last column, we compute N2 × Error to show that we achieve the
optimal convergent rate. Figure 1 also shows the convergent rate clearly.

Note that in one dimension, we only have the equidistribution condition. To
show our mesh satisfies this condition, we computed the error on each interval for
the finest mesh N = 1024 and the sorted errors are shown in Figure 2. From this
picture we can see that 96% of errors are almost the same, which illustrates the
equidistribution principle.

Figure 1. Convergent rate Figure 2. Distribution
of the error
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(a) Assumption (A1) (b) Assumption (A2)

Figure 3. Validation of assumptions (A1) and (A2)

To show that assumptions (A1) and (A2) are satisfied, we plot edge lengths
under the new metric and the ratio of u′′ in each interval. Since u′′ is monotone
decreasing in [0, 1], we compute r(i) = |u′′(i)/u′′(i + 1)|. Figure 3(a) shows that
99% of r(i) are below 1.1 and the maximum ratio is 1.64 and Figure 3(b) shows that
96% of edge lengths are almost the same and it varies from 1.15e − 3 to 1.71e − 3.
All the data in Figure 3 is sorted.

Figure 4. Optimal convergent rate in different norms
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(a) for L1 norm (b) for L2 norm

Figure 5. Optimal mesh vs. Non-optimal mesh

4.2. Two dimensional examples. In two dimensions, we use the test function

u(x, y) = e−( r−0.5
ε )2 + 0.5r2,

where r2 = (x+0.1)2+(y+0.1)2. This function changes dramatically at the ε neigh-
borhood of r = 0.5. We use the offset (x + 0.1, y + 0.1) to avoid the nonsmoothing
Hessian matrix at (0, 0) and quadratic function 0.5r2 to ensure the Hessian matrix
is not singular when r is far away from the shock so we can focus our attention
near the shock only.

We first test the theoretical convergent rate by fixing ε = 10−3. We measured the
error in the L∞, L2, L1 norms. Then the algorithm will try to produce equilateral
triangles in different metrics and the ideal convergent rate will be N−1 using optimal
meshes, where N is the number of triangles. Since we refine and move the mesh
many times (from N ≈ 8000 to N ≈ 20000), we are not going to list the error table

Figure 6. Uniformly bounded with respect to ε



198 LONG CHEN, PENGTAO SUN, AND JINCHAO XU

(a) Mesh 1
(b) Mesh 2

(c) Mesh 3 (d) Mesh 4

Figure 7. An anisotropic mesh and its details

at each time. Figure 4 shows the convergent rate for L∞, L2, L1. Note that the
constant to which N× Error converges is monotone increasing with respect to p.

To show the optimality of our scaling metric, we also compute the suboptimal
mesh by only using the Hessian matrix. Since the scaling µp only affects the mesh
density (equidistribution), its advantage appears when the number of elements is
bigger; see Figure 5.

Now we fix the error norm and let ε vary. As in the error bound, ‖ detH‖ p
p+1

is
bounded independently of ε, which means if we get the optimal mesh, the conver-
gence rate is independent of ε. Indeed it will actually get better when ε is smaller
(since in this case ‖ detH‖ p

p+1
= O(ε1/(p+1)). Figure 6 illustrates this observation.

It is clear that the function only changes rapidly in the r direction around the
shock if we use polar coordinates. Thus the mesh around the shock is aligned
to the shock, namely the edges are large along the tangential direction of circle
r = 0.5 while they are small along the normed direction. In the remaining part of
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the region, the metric is dominated by the quadratic part. Thus they are nearly
equilateral triangles when they are away from the shock. In Figure 7 we present
several pictures of our meshes.

5. Conclusion and future work

In this paper, we have obtained optimal interpolation error estimates in the
Lp norm and, based on the estimate, we have derived new criteria for optimal
meshes that minimize the Lp error. We further use the estimate to derive some
new optimization problem for the global moving mesh method. This optimization
problem is different from the harmonic function approach used in the literature.
In particular, we present an optimization problem that can also be used when the
computational mesh is not uniform (hence the global mesh moving and local mesh
refinement can be combined).

We have, however, not discussed much how these theoretical results can be used
in adaptive finite element approximations to partial differential equations. To carry
out the interpolation results to finite element approximations, there are many ques-
tions that need to be answered.

One such question is how the anisotropic mesh can be practically generated
to satisfy the assumptions required in our theorems. Of course, many existing
techniques in the literature can be used for this but some special issues need also to
be addressed to satisfy the special requirements from our new theoretical results.
We have indeed developed all relevant techniques including new techniques for
refinement, coarsening, edge swapping, and local smoothing to improve the mesh
quality. We refer to our recent works [26, 28, 24] for details.

Another critical question that needs to be answered is how the Hessian matrix
of the solution can be obtained when linear finite element approximation is used
for the discretization of partial differential equations. Since taking piecewise second
derivatives to piecewise linear functions will not lead to any useful approximation
to the Hessian matrix, special postprocessing techniques need to be used to obtain
reasonable Hessian matrix approximation from linear finite elements. Fortunately,
there have been many techniques developed in the literature for superconvergent
recovery of the gradient of the solution, which would naturally lead to good recovery
schemes for the Hessian matrix. On superconvergent recovery schemes, we refer
to Zikienwicz–Zhu [87, 86], Hoffmann–Schatz–Wahlbin–Wittum [45], Zhang–Naga
[85], Bank–Xu [14, 13], and Xu–Zhang [82], etc. We note, however, that all these
results were derived for isotropic elements. How to generalize these results or to
develop new techniques for anisotropic meshes is a problem for further research.
We have in fact some preliminary results in this direction, but this will be a topic
for another paper.

In addition to the above questions, we are also very interested in applying our
results to problems such as convection-dominated problems. In [26] we observed
that a properly adapted mesh will enhance the stability of the standard finite
element methods which often fails for convection dominated problems on quasi-
uniform grids. This phenomenon has been observed in other simpler situations
(see books Miller et al. [68], Roos et al. [77]). In the current work, the mesh is
adapted to optimize the interpolation error. We expect that the discretization
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error will inherit the optimality of the interpolation error on a nearly optimal mesh
for the linear interpolant. We have obtained some preliminary results for a one
dimensional convection dominated model problem. In [29, 30] we show that for
a carefully designed streamline diffusion finite element method the discretization
error is controlled by the interpolation error (in the L∞ norm).
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