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DEPENDENCY OF UNITS IN NUMBER FIELDS

CLAUS FIEKER AND MICHAEL E. POHST

Abstract. We develop a method for validating the indepencence of units in
algebraic number fields. In case that a given system of units has a dependency,
we compute a certificate for this.

1. Introduction

A key problem in computational number theory is to decide whether a given
system of units {ε1, . . . , εl} is (multiplicatively) independent, i.e., to decide if for
some z = (z1, . . . , zl) ∈ Zl, z �= 0, we have

l∏
i=1

εzi
i = 1.

This problem occurs naturally during the computation of class groups or unit groups
and is therefore important for most applications.

There are known algorithmic solutions for this problem (e.g., the use of MLLL
[8] or a real-gcd [3, Algorithm 6.5.7]), but they lack reliability in the sense that
they utilize real arithmetic and do not provide rigorous error analysis.

In our new approach, we use a different numerical method to check for depen-
dencies (with an error analysis) and then use any of the above methods to find a
dependency.

2. Notation

Throughout this section and the subsequent ones F denotes an algebraic number
field of degree d over the rational numbers Q. We assume that it is generated by a
root ρ of a monic irreducible polynomial

f(t) = td + a1t
d−1 + · · · + ad ∈ Z[t].

Over the complex numbers C the polynomial f(t) splits into a product of linear
factors

f(t) =
d∏

j=1

(t − ρ(j)),
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where the conjugates ρ = ρ(1), . . . , ρ(d) are ordered as usual; i.e., ρ(1), . . . , ρ(r1) ∈ R

and ρ(r1+1), . . . , ρ(d) ∈ C\R subject to ρ(r1+j) = ρ(r1+r2+j) (1 ≤ j ≤ r2), and where
ρ denotes the complex conjugate of ρ. In particular, we have

d = r1 + 2r2.

Any element α of F can be presented as a linear combination of 1, ρ, . . . , ρd−1,
with rational coefficients. Substituting ρ(j) for ρ in that presentation, we obtain
the jth conjugate α(j) of α (1 ≤ j ≤ d). Arithmetical problems usually require
computations with algebraic integers contained in F ; i.e., those elements of F
whose minimal polynomials have coefficients in Z. They form a ring oF with a
Z-basis ω1, . . . , ωd (integral basis of F ), the so-called maximal order of F . In the
remainder we fix some integral basis. Any element β of F is then presentable by a
vector of d rational numbers via

β =
d∑

i=1

bi ωi (bi ∈ Q).

We note that β is in oF precisely if all bi are rational integers.
For a matrix A ∈ Rl×k, we write ‖A‖∞ for the largest entry (by absolute value)

of A and likewise for vectors. We write ‖x‖2 to denote the usual Euclidean norm
of a vector x ∈ Rl.

A positive definite matrix B ∈ Rl×l gives rise to a positive definite form Q :
Rn → R : x �→ xtrBx. By d(Q) we denote the discriminant of this quadratic form,
i.e., d(Q) =

√
det B. Let Mi(Q) be Minkowski’s successive minima of Q:

Mi(Q) := min
λ>0

{∃x1, . . . ,xi ∈ Zl linearly independent with Q(xi) ≤ λ}

and let γl be Hermite’s constant. We will make extensive use of the well known
theorem ([11]):

Theorem 2.1. For all quadratic forms Q we have

d(Q)2 ≤
l∏

i=1

Mi(Q) ≤ γl
ld(Q)2.

3. The unit lattice

By the Dirichlet unit theorem, the unit group O× of any order O in F is of the
form

O× = 〈ζ〉 × 〈E1〉 × · · · × 〈Er〉 ∼= Cw × Zr,

where r := r1 + r2 − 1 is the unit rank and ζ is a primitive wth root of unity and
generates the torsion subgroup. Any system of generators E1, . . . , Er of the infinite
part is called system of fundamental units.

As usual, the logarithmic map is used to transfer the multiplicative property of
dependence/independence of units to the more familiar linear (in)dependency of
real vectors:

L : O× → Rr+1 : ε �→ (ci log |ε(i)|)1≤i≤r1+r2 ,

where the weights ci are chosen according to the infinite places: ci := 1 for 1 ≤ i ≤
r1 and ci := 2, otherwise.

We have the following well known results ([11]).
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Theorem 3.1. The units ε1, . . . , εl are multiplicatively independent if and only if
L(ε1), . . . , L(εl) are R-linearly independent.

Theorem 3.2. The image L(O×) is a lattice of rank r in Rr+1. The (normalized)
volume of a fundamental domain of L(O×) is called the regulator RO of O.

So, in principle, testing dependency of units is reduced to a problem in real linear
algebra. However, the decision whether an integral linear combination of vectors of
logarithms of units is indeed zero is highly nontrivial! A sincere discussion of this
problem is not yet contained in the literature. For example, the MLLL algorithm
yields a certificate for the dependency of units (i.e., it will find an integral relation
which can be verified algebraically), but it cannot prove their independence.

So far, the independence of units is reduced to the independence of the corre-
sponding real logarithm vectors, which is a difficult problem in numerical analysis
and the results are usually not guaranteed.

In the following we develop a method for proving the independence of units.
For this we will need a lower bound on the length of nonzero elements in the unit
lattice. To get such an estimate we use the following result in [7, Theorem 2.2], [4].

Theorem 3.3. Let F be a number field of degree d > 1 over Q and α an algebraic
integer. Then either α is a torsion unit or there is at least one conjugate i such
that

|α(i)| > 1 +
1
6

log d

d2
.

For totally real fields we can follow the proof in [12] to improve this

Corollary 3.4. Let α be a integral number in a totally real field. Then either α is
of the form cos qπ (q ∈ Q) or there is at least one conjugate i such that

|α(i)| > 2 +
1

1152
log2 2d

d4
.

Proof. By [12] or [6] we know that either α is of the form cos qπ for some q ∈ Q

or there is at least one conjugate |α(i)| > 2. Let K := F (β), where β is a root
of x2 − xα + 1 = 0. Since for the ith conjugate we see that the discriminant
(α(i)/2)2 − 1 is positive, not all conjugates of β can be complex. Hence β is not a
root of unity. Therefore by Theorem 3.3 there is a conjugate β(j) of β such that
|β(j)| > 1 + 1

6
log 2d
(2d)2 . Let j̄ be such that β(j) is a root of x2 − α(j̄)x + 1. Then

α(j̄) = β(j) + β̄(j) = β(j) +
1

β(j)

since ββ̄ = 1. Thus

|α(i)| ≥ 1 +
1
6

log 2d

(2d)2
+

1
1 + 1

6
log 2d
(2d)2

≥ 2 +
1
2
(
1
6

log 2d

(2d)2
)2 = 2 +

1
72

log2 2d

(2d)4

(using 1
1+x ≥ 1 − x + 1

2x2). �

Applying Theorem 3.3 to the unit group we immediately get
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Corollary 3.5. Let ε be a unit in a number field F of degree d > 1. Then either ε
is a torsion unit or

‖L(ε)‖2 >
21
128

log d

d2
.

Proof. For 1 > x > 0 we have log(1 + x) > x − 1/2x2 so that for i as in Theorem
3.3 we get for any nontorsion unit ε,

log |ε(i)| > log(1 +
1
6

log d

d2
) >

1
6

log d

d2
− 1

2
1
36

log2 d

d4

=
1
6

log d

d2
(1 − 1

2
1
6

log d

d2
)

≥ 1
6

63
64

log d

d2
,

since for d ≥ 2 the function d−2 log d is decreasing and log 2 < 3/4. �

We note that the lower bound approaches 0 as the field degree grows to infinity
so that the bound can be improved if we know that all units belong to a (totally
real) subfield of F of small degree.

4. Deciding dependency

In [9], the following algorithm is given to decompose a positive definite quadratic
form Q(x) = xtrBx as Q(x1, . . . , xl) =

∑l
i=1 qi,i(xi +

∑l
j=i+1 qi,jxj)2:

Algorithm 4.1 (Quadratic supplement).

Input: A positive semi-definite matrix B ∈ Rl×l of rank ≥ l − 1.
Output: A matrix Q and a permutation π ∈ Sl such that

(4.1) xtrBx = Q(x) =
l∑

i=1

qi,i(xπ(i) +
l∑

j=i+1

qi,jxπ(j))2

and q1,1 ≥ q2,2 ≥ · · · ≥ ql,l.
Initialization: Set Q := B and π := IdSl

, the identity permutation.
Main loop: For i = 1, . . . , l − 1 do

Pivot: Find i ≤ i0 ≤ l such that qi0,i0 = maxj≥i qj,j.
Swap: Set π := π · (i, i0) and swap the ith and i0th row and column

in the lower right minor starting at (i, i), also for k �= l set
ql,k := qk,l.

Divide: For j = i + 1, . . . , l set qj,i := qi,j and qi,j := qi,j/qi,i

Add multiple of row: For k = i+1, . . . , l and for l := k, . . . , l set qk,l := qk,l−qk,iqi,l

End for: return Q and π.

Proof. In each step of the main loop, the algorithm only operates on the lower right
minor starting at (i, i) and performs a quadratic supplement on the corresponding
quadratic form. �

We note that the pivot and swap steps are only neccessary to get error estimates
[9, 5]:
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Theorem 4.2. If we replace Q(x) = xtrBx by Q̃(x) = xtr(B + ∆)x for some
matrix ∆ ∈ Rl×l and if qi,i ≥ 1 for 1 ≤ i < l, then Algorithm 4.1 will compute

(4.2) Q̃(x1, . . . , xl) =
l∑

i=1

q̃i,i(xπ(i) +
l∑

j=i+1

q̃i,jxπ(j))2

with |q̃i,j − qi,j | ≤ 4l−1‖∆‖∞.

Since the rank of B is at least l−1, the condition on the size of the qi,i can easily
be achieved by replacing B by λB for some λ > 1.

Together with the lower bound on the conjugates, the following lemma together
with Theorem 4.2 will give us a test for dependency.

Lemma 4.3. Let Q be a positive definite quadratic form and let qi,j be the decom-
position as computed by Algorithm 4.1. Then we get

d(Q)2 =
r∏

i=1

qi,i

for the discriminant d(Q) of the lattice with quadratic form Q.

Combining the last lemma with Algorithm 4.1 we can decide whether a given
system ε1, . . . , εl (2 ≤ l ≤ r) is multiplicatively independent.

Algorithm 4.4 (Dependency test).
Input: Units εi (1 ≤ i ≤ l) containing at least l−1 independent units,

and the field degree d.
Output: true if the units are multiplicatively independent; false, oth-

erwise.
s: Compute an upper bound s for ‖L(εi)‖∞ (1 ≤ i ≤ l).
δ: Set δ := γ−l

l ( 21
128

log d
d2 )l

Log Matrix: Compute Ã := (L(ε1), . . . , L(εl)) + ∆ with

‖∆‖∞ ≤ 1
3ns

δ

l(1 + s)l−122l−1
.

Quadratic Form: Use classical matrix multiplication to compute B̃ := ÃtrÃ.
Cholesky: Use Algorithm 4.1 to compute Q̃ = (q̃i,j) as in (4.2).

Finish: If
∏l

i=1 q̃i,i < δ/2, then return false; otherwise, return true.

Proof. We have to justify that the numerical errors are small enough throughout
the algorithm. At the beginning we have

B̃ = (A + ∆)tr(A + ∆) = AtrA + ∆trA + A∆tr + ∆tr∆.

Assuming ‖A‖∞ ≥ ‖∆‖∞ and using classical matrix multiplication, we immediately
see

‖B − B̃‖∞ ≤ 3n‖A‖∞‖∆‖∞ ≤ 3ns‖∆‖∞ ≤ δ

l(1 + s)l−i22l−1
.

An application of Algorithm 4.1 computes q̃i,j with an absolute error

|qi,j − q̃i,j | ≤ 4l−1 δ

l(1 + s)l−122l−1
=

δ

2l(1 + s)l−1
.

Suppose now that all the units are multiplicatively independent. In that case,
the matrix A := (L(ε1), . . . , L(εl)) will be of full rank so that Q(x) := xtrAtrAx is
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a positive definite quadratic form. Application of Algorithm 4.1 to Q while fixing
the same permutation π as obtained for Q̃, we get

d(Q) =
l∏

i=1

qi,i.

Theorem 2.1 applied to Q gives

d(Q)2 ≤
l∏

i=1

Mi(Q) ≤ γl
ld(Q)2.

Now, Corollary 3.5 shows M1(Q) ≥ 21
128

log d
d2 and thus

(4.3) δ = γ−l
l (

21
128

log d

d2
)l ≤ γ−l

l M1(Q)l ≤ γ−l
l

l∏
i=1

Mi(Q) ≤ d(Q)2.

Therefore, if the units are independent we obtain d(Q)2 ≥ δ; otherwise, we get
d(Q) = 0. Since

∏l
i=1 q̃i,i is an approximation to d(Q)2, all we have to do is to

estimate the error in the product:

|
l∏

i=1

q̃i,i − d(Q)2| = |
l∏

i=1

(qi,i + εi) −
l∏

i=1

qi,i|

≤
l∑

i=1

(
l

i

)
‖ε‖i

∞sl−i ≤ ‖ε‖∞l(1 + s)l−1

≤ δ

2l(1 + s)l−1
(1 + s)l−1 ≤ δ

2

(using ‖ε‖∞ ≤ 1 and qi,i ≤ s).
Hence, d(Q) = 0 exactly when

∏l
i=1 q̃i,i < δ/2. �

Up to now we have not been explicit on step Log Matrix as it depends on the
representation of the units. In applications, the following two representations are
equally frequent:
• The units are given with respect to a fixed basis of the number field. In this

case, using standard techniques for the computation of zeros of the defining
polynomial of the number field, it is easy to get error estimates for the con-
jugates of each unit and thus for the logarithms (assuming no loss of relative
precision in the computation of logarithms).

• The other representation that occurs frequently during computations is the so
called product representation or compact representation. Here the units are
given as a formal product of “small” algebraic integers, possibly with large
exponents. In this situation, the procedure outlined above will give the loga-
rithms of the “factor base” to any precision required. The logarithms of the
units are then obtained simply as linear combinations—with obvious precision
control.

Remark 4.5. (1) Algorithm 4.4 together with classical methods to test for depen-
dencies (MLLL) can already be used to get proven results: After the depen-
dency of the system of units is established with Algorithm 4.4 the MLLL pro-
cedure is performed with increasing precision until the dependency is detected.
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(2) If l = r − 1, that is if a maximal set of independent units is already known,
better bounds that are based on lower estimates for the regulator can be used
[11, p. 366].

5. Finding dependencies

In this section, we give an alternative to the real MLLL to find dependencies
between units. It is based on Belabas’ [1] notion of lattice reduction: Suppose
A ∈ Rl×l is of full rank. Then there is some positive number µ such that 
µA� is
also of full rank where 
µA� ∈ Zl×l is the matrix obtained by rounding each entry
to the nearest integer: 
x� := �x+1/2�. By applying an integral LLL reduction on
the basis of the lattice spanned by 
µA�, we obtain an approximation to the real
LLL reduction of A. Of course, the quality of the reduction, i.e., the distance from
the true LLL reduction, depends on µ.

We start by collecting results on scaled matrices µA:

Lemma 5.1. Let µ > 0 and set (µQ) := µ2AtrA. Then

(1) (µQ)(x) =
∑l

i=1 µ2qi,i(xi +
∑l

j=1+i xjqi,j)2.
(2) If the rank of A is l, then the lattice with the quadratic form (µQ) has discrim-

inant

d(µQ)2 = µ2l
l∏

i=1

qi,i.

In order to avoid rounding errors in the subsequent LLL computations, we would
like to work with exact forms over the integers rather than over the reals. Unfortu-
nately, rounding a positive definite symmetric matrix will in general not produce a
positive definite one. However, we have the following lemma.

Lemma 5.2. Let Q ∈ Rl×l be a positive definite symmetric matrix. Then for all
λ > l/2,


Q� + λIl

is positive definite.

Proof. As usual, we write 
Q� = Q + ∆ with ∆ ∈ [−1/2, 1/2]l×l. Then xtr
Q�x =
xtrQx + xtr∆x. We now conclude that

|xtr∆x| ≤ ‖x‖2‖∆x‖2 = ‖x‖2

√√√√ l∑
i=1

(
l∑

j=1

∆i,jxj)2

≤ ‖x‖2

√√√√ l∑
i=1

(‖(∆i,j)1≤j≤l‖2‖x‖2)2 ≤ ‖x‖2
2l/2.(5.1)

Therefore, for λ > l/2, we see that 
Q� + λIl is positive definite. �
In what follows A = (L(ε1), . . . , L(εl)) is the exact real matrix containing the

logarithm vectors of the units. We know that the units are dependent, in fact we
assume that the rank of A is l − 1 and that there is some 0 �= z ∈ Zl such that
Az = 0 or, equivalently, Q(z) = ztrAtrAz = 0.

Let us denote by 
µQ� the integral quadratic form defined by


µQ� := 
µ2AtrA� + 
l/2�Il.

We then get
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Lemma 5.3. (1) 
µQ�(x) ≤ (2l + 1)/2‖x‖2
2 for any x ∈ Zl such that Ax = 0.

(2) d(
µQ�)2 ≤ (2 + l)22l−3µ2l−2
∏l−1

i=1 qi,i + O(µ2l−4) for µ → ∞.
(3) For any x ∈ Zl such that Ax �= 0, we get


µQ�(x) ≥ µ2(
21
128

)2
log2 d

d4
− O(1)

for µ → ∞.
Thus, if µ is large enough, the first basis vector z of a LLL reduced basis will be

the shortest vector in the lattice with scalar product induced by 
µQ�.

Proof. We write 
µ2AtrA� = µ2AtrA + ∆, where ‖∆‖∞ ≤ 1/2, depending on µ.
This, together with (5.1) immediately yields


µQ�(z) = (µQ)(z) + ztrIn∆z + ‖z‖2
2
l/2� ≤ (2l + 1)/2‖z‖2

2,

as required.
Applying Algorithm 4.1 to 
µQ� gives for x such that Ax = 0


µQ�(x) =
l∑

i=1

q̃i,i(xi +
l∑

j=i+1

xj q̃i,j)2

with

|q̃i,i − µ2qi,i| =: |δi| ≤ 4l−1 l + 2
2

= 22l−3(l + 2)

for the diagonal entries and

|q̃i,j − qi,j | ≤ 4l−1 l + 2
2

= 22l−3(l + 2)

for all the others. For the discriminant, we therefore get

d(
µQ�)2 =
l∏

i=1

(µ2qi,i + δi) = µ2l
l∏

i=1

qi,i + µ2l−2δl

l−1∏
i=1

qi,i + O(µ2l−4)

as the error terms are uniformly bounded independently of µ. Since A is singular
by assumption, ql,l = 0.

If Ax �= 0, then
∏l

i=1 εxi
i =: ε is a nontorsion unit, so by Corollary 3.5 we have

Q(x) = ‖L(ε)‖2
2 > (

21
128

)2
log2 d

d4
.

Therefore, 
µQ�(x) = (µQ)(x) + xtr∆x ≥ µ2( 21
128 )2 log2 d

d4 − 2l+1
2 ‖x‖2

2. �

Minkowski’s Theorem 2.1 on successive minima now gives:

Theorem 5.4.

M1(
µQ�) ≤ γl
l(2 + l)((

128
21

)2
d4

log2 d
)l−122l−3

l−1∏
i=1

qi,i

for all sufficiently large µ.

Proof. Minkowski’s theorem on successive minima states

M1(
µQ�)M2(
µQ�)l−1 ≤
l∏

i=1

Mi(
µQ�) ≤ γl
ld(
µQ�)2,
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and thus M1(
µQ�) ≤ M2(
µQ�)1−lγl
ld(
µQ�)2. Using Lemma 5.3, we see that for

µ → ∞ we get

M1(
µQ�) ≤ γl
l(2 + l)((

128
21

)2
d4

log2 d
)l−122l−3

l−1∏
i=1

qi,i.

Since the right hand side is independent of µ, the theorem is proved. �

Therefore, if we choose µ such that

M1(
µQ�)2l ≤ γl
l(2 + l)((

128
21

)2
d4

log2 d
)l−123l−3

l−1∏
i=1

qi,i < µ2(
21
128

)2
log2 d

d4
,

the LLL reduction on 
µQ� will find z corresponding to the first basis vector.

6. Easy independencies

An easy way for recognizing the independence of few units (with respect to the
unit rank r) is based on the fact that nontorsion units have conjugates which are
larger than one and others which are smaller than one in absolute value.

We assume that we are given k < r independent units ε1, . . . , εk and that we
want to test whether the unit εk+1 is independent of those. We assume that the
logarithmic vectors L(εi) (1 ≤ i ≤ k+1) are also given with sufficient precision such
that row echelon form A = (aij) ∈ Rk×r of the matrix with rows L(εi) (1 ≤ i ≤ k)
could be computed satisfying

aii > 0 (1 ≤ i ≤ k), aij = 0 (1 ≤ i, j ≤ k, i �= j).

For this, we note that any of these units can be replaced by its multiplicative inverse,
and that we can change the order of the conjugates. For error estimates we refer
to the usual methods from numerical analysis [13]. If we insert (b1, . . . , br+1) :=
L(εk+1) as (k+1)-st row of A, Gaussian elimination turning bj into 0 for 1 ≤ j ≤ k
yields the new diagonal element

ak+1,k+1 = bk+1 −
k∑

i=1

bi
ai,k+1

aii
.

This is guaranteed to be nonzero (and therefore the new unit independent of the
previous ones) if we can achieve by a suitable arrangement of the conjugates that
(1) bk+1 �= 0, and
(2) − sign(bk+1) = sign(biai,k+1) for all indices i ∈ {1, . . . , k} for which the product

biai,k+1 is nonzero.
This procedure is usually efficient if the number k is small with respect to r.

7. An upper bound

If we are just interested in a (rough) upper bound for the absolute values of the
entries of a relation vector z ∈ Zl for the columns a1, . . . ,al of a matrix A ∈ Rm×l

of rank l − 1 we can proceed as follows. We note that we must assume that those
columns belong to a lattice Λ in Rm for which we know a lower bound C > 0 for the
Euclidean norm of a shortest vector of Λ. This properties are certainly satisfied for
the vectors of logarithms of units. Also, we note that it suffices to consider vectors
with l − 1 coordinates appropriately chosen from the m original coordinates. The
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relation m = l − 1 will be of importance later on. (A somewhat worse estimate in
a special case of this is already contained in [10].)

To obtain such a bound, we introduce a much larger lattice Λ̄ in Rl+m with basis
vectors

āi :=

⎧⎨
⎩

(
ei

2λai

)
(1 ≤ i ≤ l),

4λēi (l + 1 ≤ i ≤ l + m).

(Here ei and ēi denote the ith unit vector in Rl, repectively Rl+m, and λ is a
positive constant to be specified later.) Clearly, the lattice Λ̄ is of rank l + m and
has determinant D := 4λm. Therefore, the first basis vector, say ā of a LLL-reduced
basis of Λ̄ satisfies

(7.1) ‖ā‖2 ≤ 2(l+m−1)/4D1/(l+m) =: U1.

If ā is even a shortest vector of Λ̄ we get the much better estimate

(7.2) ‖ā‖2 ≤ √
γl+mD1/(l+m) =: V1

in which γl+m again denotes Hermite’s constant. Besides λ introduced above we
need a second constant ε > 0. For these two constants we now require that they
satisfy

U1 ≤ 2λε,(7.3)

ā =
l∑

j=1

mj āj with mj ∈ Z, i.e., mj = 0 for j > l.(7.4)

ε < C.(7.5)

The first condition will be used to guarantee that in the representation of

ā =
l+m∑
i=1

miāi

of ā by the basis vectors of Λ̄ the coefficients of the last m basis vectors are 0.
To satisfy condition (7.3), we choose λ (in dependence of ε) subject to U1 = 2λε.

This is tantamount to

(7.6) λ =
l + m

l − m

(
l + m − 1

4
− log ε

log 2

)
.

Choosing λ in this way we know that ‖ā‖ ≤ 2λε. We write ā = b̄1 + b̄2 with

b̄1 =
l∑

i=1

miāi, b̄2 =
l+m∑

i=l+1

miāi.

We recall that

‖b̄1‖2
2 =

l∑
i=1

m2
i + 4λ‖

l∑
i=1

miai‖2
2 ≤ U2

1

and therefore

(7.7)
l∑

i=1

m2
i ≤ 4λε2.
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Let s denote an upper bound for the Euclidean norms of the vectors ai (1 ≤
i ≤ l). So, if we assume that b̄2 has at least one nonzero coordinate we have the
following estimates which will eventually yield a contradiction:

2λε ≥ ‖ā‖2 ≥ ‖b̄2‖2 − ‖b̄1‖2

≥ 4λ − ‖2λ
l∑

i=1

miai‖2.(7.8)

To estimate ‖
∑l

i=1 miai‖2
2 requires more work: Let ‖A‖2,∞ the norm of A as a

linear operator from the Rl with the ‖.‖2-norm to Rm with the ‖.‖∞-norm. Then
we have

‖
l∑

i=1

miai‖∞ = ‖Am‖∞ ≤ ‖A‖2,∞‖m‖2.

We can compute ‖A‖2,∞ as maxl
i=1 ‖ai‖2 and further estimate ‖.‖∞ ≤

√
m‖.‖2 to

finally get

(7.9) ‖
l∑

i=1

miai‖2 ≤
√

ms‖m‖2.

Combining this with (7.8) and (7.7) we see

2λε ≥ 4λ −
√

ms2λ‖m‖2 ≥ 4λ −
√

msε4λ.(7.10)

If we then choose ε small enough we get a contradiction, so b2 = 0 as claimed.
In particular it suffices to choose ε as

(7.11) ε <
1

1 + s
√

m
≤ 1

2−λ + s
√

m
.

In practice, it usually suffices to choose ε < C satisfying (7.11) and then determine
λ according to (7.6).

Proposition 7.1. Choosing ε and λ as described yields a presentation of 0 by the
ai for which the coefficient vector has a Euclidean norm bounded by 2λε.

8. Example

All the algorithms developed in this article have been implemented in Magma [2].
The program code as well as electronic versions of the input used can be obtained
from the first author.

We consider the following example that constitutes part of a computation related
to class fields. Starting with the cyclic cubic field k := Q(α), where α is a root
of x3 + x2 − 292x + 1819 with discriminant 769129 and class number 7, we use
K := k(ζ7) which is an abelian CM-field of degree 18 over Q. During a (conditional)
class group computation using a factor basis containing prime ideals of norm < 1000
a total of 331 relations were found. The analysis of the relation matrix found 105
units which are all given as power products of the 331 original relations (algebraic
integers). We used our algorithms to compute a (multiplicative) basis for the free
group generated by the 105 units: Starting with an empty set, we checked for each
new unit if it is dependent on the already computed basis. If the unit is dependent,
we used the integral LLL techniques to find the dependency and to compute a basis
for the new subgroup. If the new unit proved to be independent, we simply add it
to the list. The largest relation found had a 2-norm of size 1052, while the largest
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precision used was 10−245. The total running time was easily dominated by the
computations of the logarithms of the relations. On average, the size of the first
basis vector was over estimated by a factor of 1070 which means that the precision
was (probably) over estimated by a factor of 2.

9. Conclusions

We demonstrated that our new approach to reliably detect and compute depen-
dencies between units works well in practice and the precision bounds obtained are
not too large to be useful. On the other hand, realistic a priori bounds on the
precision are still missing.

The worst results are obtained when the whole unit group is already known. In
this case, the estimate predicts a relation of the size of the smallest sublattice while
in practice the relation is usually very small.
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