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JACOBI'S LAST GEOMETRIC STATEMENT
EXTENDS TO A WIDER CLASS OF LIOUVILLE SURFACES

ROBERT SINCLAIR AND MINORU TANAKA

ABSTRACT. Numerical evidence is presented which strongly suggests that “Ja-
cobi’s last geometric statement”—that the conjugate locus from a point has
exactly four cusps and the corresponding cut locus consists of only one topolog-
ical segment—holds for compact real analytic Liouville surfaces diffeomorphic
to S? if the Gaussian curvature is everywhere positive and has exactly six
critical points, these being two saddles, two global minima, and two global
maxima (as is the case for an ellipsoid). Our experiments suggest that this
is a sufficient rather than a necessary condition. Furthermore, for compact
real analytic Liouville surfaces diffeomorphic to S? upon which the Gaussian
curvature can be negative but has exactly six critical points, these being two
saddles, two global minima, and two global maxima, it appears that the cut
locus is always a subarc of a line given by x1 = const or zo = const, where
(z1,x2) are canonical coordinates with respect to which the metric has the
form (f1(z1) + f2(x2))(dz? +dz2). In the case of an ellipsoid, these curves are
lines of curvature.

The point of this paper is to present a conjecture, already contained in the
abstract, as a contribution to pure mathematical research in global Riemannian
geometry. The overwhelming bulk of the paper will however necessarily be devoted
to a description of the computational methods used to motivate the conjecture,
and, in particular, the checks which have been performed to verify that the software
(which has been written specifically for this study) is indeed performing correctly.
Such checks are vital in any experimental work. This paper is not intended to be a
contribution to computational science as such, since the algorithms we have used,
although perhaps combined in an unusual manner, are standard.

The conjugate locus from a point p (which we will often refer to as the starting
point) on a Riemannian manifold is the envelope of the geodesics emanating from
p. In two dimensions, it can also be defined analogously to the nodes of a vibrating
string as follows. A geodesic passing through p can be uniquely defined by the angle
0 it makes at p with one fixed (reference) geodesic also passing through p. Varying
this angle by a small amount (60) will cause the geodesic to deviate from its original
path. The distance between points on the geodesic with angle 6 (say gp) and the
geodesic curve with angle 6 + 66 (write gg450) can be written as a real function &s¢
of arclength s along gg, where s = 0 corresponds to the point p. Clearly £59(0) = 0,
since we are only considering geodesics which pass through p. The limit of £5¢(s)/06
as 00 approaches zero may have further zeros (the nodes of the string, where, to
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first order, the string does not move when plucked). The points at which these zeros
appear are said to be conjugate to p. In physics, one refers to the distance £ as the
“geodesic deviation” (Section 1.6 of [42]). See Section 2 of Chapter II of [54] for a
precise definition of conjugate points, where the theory of Jacobi fields generalizes
the simple notion of geodesic deviation as introduced above to dimensions greater
than two (see also Chapter 11 of [42]). From the point of view of geometrical optics,
one can imagine the set of focal points of rays emanating from the starting point p
(see, for example, Figure 8.1 of [22]).

The cut locus from a point p on a complete Riemannian manifold is the closure
of the set of points ¢ which have at least two minimal geodesic connections to p
[64]. Again, see Section 4 of Chapter III of [54] for more details. In a rough sense,
the cut locus corresponds to the boundary past which no path from the starting
point can be minimizing.

What is known as “Jacobi’s last geometric statement” originated in a discussion
of the principle of least action in the sixth of Jacobi’s Lectures on Dynamics [27],
delivered in the winter of 1842/1843. The example he used was an ellipsoid of
revolution. He stated without proof that the conjugate locus from a general point
has exactly four cusps, from which it would follow that the cut locus is a single
topological segment with two endpoints. Despite the importance of this result (see
Chapter 3 of [2], Section TOP 4 of [6], also [60] and references therein), it has only
recently been proven that the cut locus from a general point of an ellipsoid of rev-
olution does indeed have only two endpoints [61]. Actually, Jacobi’s last geometric
statement is commonly thought to have concerned general ellipsoids. This case was
also only dealt with recently [25]. In both cases, computational experimentation
[26] [60] provided some insights which were useful in the construction of the pure
mathematical proofs. We sincerely hope that this paper will also inspire further
mathematical proofs.

Jacobi integrated the geodesic flow on triaxial ellipsoids using a remarkable vari-
able substitution. Liouville was able to integrate the geodesic flow of a wider class
of surfaces (Liouville surfaces; see the references given below) containing the triax-
ial ellipsoids as special cases. The starting point of this investigation is the obvious
question as to whether (or, if so, how far) Jacobi’s statement applies to Liouville
surfaces which are not ellipsoids.

We have heard that Professors Jin-Ichi Itoh of Kumamoto University and Kazu-
yoshi Kiyohara of Okayama University (the authors of [25]) have, working inde-
pendently from us, already been able to prove theorems of a similar nature to our
conjecture, but for a class of Liouville surfaces defined differently from ours (and,
we believe, different from the class we consider despite the fact that there must be
some overlap). Their work is as yet unpublished.

We will consider only simply connected, compact, complete two-dimensional real
analytic Riemannian surfaces. Their conjugate and cut loci were first investigated
by Poincaré [48] and Myers [43] [44].

Real analytic Liouville surfaces have a Riemannian metric locally of the form

(0.1) ds® = [fi(z1) + fa(x2)] (dx% + dmg) ,
which can also be expressed as

(0.2) ds*> = (U —V) (U du® + Vi dv?) ,
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where U and U; are functions of u only, and V' and V; of v only (see Chapter I of
Book VI of [16], originally published in 1894). An example of such surfaces are the
triaxial ellipsoids. Their geodesic flows were first shown to be integrable by Jacobi
in the 28th of his Lectures on Dynamics [27]. Liouville was able to generalize this
result to the class of surfaces which bear his name (see Chapter XIV of Book IV of
[15], first published in 1915, and Chapters I and IT of Book VI of [16]).

We will call the coordinates (z1,22) with respect to which the metric assumes
the form of equation ([O.I]) canonical coordinates.

Liouville surfaces [32], 23], Kahler-Liouville manifolds [33], 24], and surfaces of
revolution (see Sections 2-2 and 4-2 of [62] and Chapter 7 of [58]) are the most
general classes of surfaces with linear or quadratic integrable geodesic flow (i.e. the
integrals of the geodesic flows are linear or quadratic with respect to the momenta
[10, [11]).

The computational method we will use to approximate the cut locus is a hybrid
approach, in which we actually approximate both the cut and conjugate loci, making
use of the fact that the endpoints of the cut locus are cusps of the conjugate locus
turned towards the starting point (called “foyers en pointe” in [48]).

We approximate the cut locus from a point p by first computing approximations
to the distance function d(p, -) on a regular grid using a level set approach [45], 311 [57]
and then applying a feature extraction operator based upon the Laplacian to these
values. The theoretical basis of this approach is that the set of limit vectors of
the gradient vector field of the distance function from p has at least two vectors
at any normal cut point of a point p on a Riemannian manifold of any number
of dimensions. Of course we consider the gradient vector field of the distance
function to be defined on the outside of the cut locus (and excepting the starting
point). The distance function is perhaps one of the most basic objects of global
Riemannian geometry, having deep connections with the heat kernel via Varadhan’s
result [40], and topology via Morse theory [12, [21]. It is also of practical relevance
in, for example, vehicle path planning [63]. Chapters 6 and 7 of [31] describe some
applications and contain a particularly clear introduction to the methods used. [29]
is a useful early reference in this field. Our computational approach borrows heavily
from this body of knowledge.

The cut locus is intimitely related to Voronoi diagrams [3, 52, [35], skeletons
(Section 6.4 of [31] and [66]), and the medial axis [9, [65] of bounded domains. See
[13, [14] and the references therein for a discussion of further related constructions.
The Voronoi diagram of a set of sites S is a subdivision of space into cells, each
consisting of the points closest to a particular site. The medial axis of a closed
bounded domain in E2, as it is typically defined, can be intuitively thought of as
the closure of the locus of centres of maximum-radius circles (touching the boundary
in at least two points) which may be inscribed within the domain [50]. One can
also define the medial axis of a closed bounded domain as the set of all centres of
maximal-radius balls in the domain. For example, consider the domain D bounded
by an ellipsoid #2/4 + y? = 1. The medial axis of D is [~b,b] x {0}, where b = 1/K
with K the curvature of the ellipsoid at the point (2,0). The maximal-radius ball
centred at (—b,0) is tangent to the ellipsoid at the “unique” point (—2,0), but
not at more than one point. It is of interest to note that it appears [37] that our
eyes are capable of “computing” the medial axes of objects we see, as an aid to
the higher-level recognition processes in our brains. On a compact surface, the
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(obvious generalization of the) medial axis of any geodesic circle of small enough
radius centred at a point p is the union of that point and that point’s cut locus.
See [65] for a more detailed discussion (and redefinition of) Blum’s medial axis
transform, Voronoi diagrams, and their relationship with the cut locus.

The main differences between our needs (in a pure mathematical context) and
those of applied mathematicians are that (i) we can essentially disregard “noise”
(although we must keep an eye on floating-point errors [I9], but these are or-
ders of magnitude smaller than the measurement errors typically met in real-world
applications) and (ii) our primary aim is to make reliable statements concerning
quantitative aspects of the cut locus, whereas an applied mathematician will more
typically be concerned with computational complexity (speed and memory use) and
interested in really useful algorithms which may only mirror qualitative aspects of
the mathematical cut locus. See the introduction of [30] for a discussion of the
latter style of approach.

1. COMPUTING THE DISTANCE MAP TO LOCATE THE CUT LOCUS

We wish to approximate the cut locus from a fixed point p. The distance from
p to any other point ¢ (i.e., d(p,q)) is a continuous function, but nondifferentiable
at ¢ = p and (see below for details) for ¢ on a dense set of points of the cut locus
of p.

Let the point ¢ have coordinates (x1,z2). Then we can define the distance
function

(1.1) t(z1,22) = d(p, (z1,72) ).
Wherever it is differentiable, the distance function obeys
(1.2) [Vt(z1, z2)ll2 = / fi(z1) + fo(22)

(as a consequence of the Gauss Lemma; see Section 3.2 of [47]), which is an Eikonal
equation for an isotropic medium, a special case of the Hamilton-Jacobi equation.
Such equations have been studied extensively in the context of acoustic wave prop-
agation in geophysics, where what we have called the distance function is known
as the traveltime, fluid flow, computer vision, semiconductor fabrication (etching
and deposition processes), and many more areas. See [28| 46| 5] 53] B6] for discus-
sions and comparisons of some of the methods used by applied mathematicians and
geophysicists to compute traveltimes. Of these, the fast marching level set method
[56] is a particularly efficient and robust algorithm.

We will work on a regular rectangular grid with distance Az; between neigh-
bouring points along the x; axis and Az, along the x5 axis. In all cases, the number
of grid points in each direction will be chosen to ensure that Ax; ~ Axs. Initially,
we assign the distance zero to the grid point closest to the starting point p (we are
interested in investigating cut loci from generic rather than specific starting points).
We can assign a distance from the starting point to a grid point with coordinates
(z1,x2) if at least one of this grid point’s neighbours has already been assigned a
distance. The following is an adaptation of the exposition in Section 2.3 of [28] to
Liouville surfaces. If only one neighbour, say the one at (z1 + Az, 22), has been
assigned a distance (1) to p, then we can use

(1.3) to = t1 + Axy / fi(z1) + fa(z2)
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to assign a distance (tg) to p from this grid point. If two neighbours, one in the
direction of the z; axis (forwards or backwards) and another in the direction of
the xo axis (forwards or backwards), have been assigned distances to p, ¢; and tq

respectively, then we can use
(1.4)

t152+t231+\/(t152+t251)2 + (s1+82) [s152 (fi(z1)+ fa(w2)) —tis2 —1351]
s1+ 82

where we have written s; for (Ax;)? and sy for (Azz)?. This process can be
repeated iteratively, using these two equations to update distances, always choosing
the smallest distance from p for any grid point. We did not implement the heapsort
structure so vital to ensuring efficiency in the fast marching level set method [56]
since we were more concerned with correctness than speed. In fact, we found our
implementation to be fast enough for our purposes.

We are now faced with the task of feature-extraction. We know that the closure
of the set of nonsmooth points of the distance function equals the cut locus of

the starting point along with the starting point itself [8]. At the starting point
p = (2}, 2%), we have

to

(1.5) t(x) = d(z,p) =/ fu(@]) + fa(a}) x |z = pl2.

At ordinary cut points of the cut locus (where there are two or more minimizing
segments from p) there are two different values of the gradient of the distance
function [§]. Also, the form of the distance function at a cut point is clearly that of
a ridge rather than a valley. See Figure[Ilfor an example of a distance map. We are
therefore dealing with what is known in the literature as a roof edge [38], but we are
in the enviable position of being able to compute an almost noiseless approximation
to the distance function. This means that we will not need the smoothing or fitting
procedures so common in image processing. We will make use of the idea that a
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FIGURE 1. Wavefronts (alternating light/dark) moving in the
plane with the corresponding caustic, shown on the left, and the
distance map shown on the right, where distances are measured
with respect to the wavefront at time ¢t = 0.
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roof edge can be located by using what is known as a Laplacian kernel. The idea is
that at points where the distance function is smooth, the standard finite-difference
approximation to the Laplacian on a regular square grid

(1.6) Vf o< ficij+ figo1—4fig+ fivr; + fijm

(note that we have discarded the denominator) scales as the square of the distance
between neighbouring grid points (the absolute value of the difference between
corresponding x; or xo values), whereas it scales linearly with this distance at a
roof edge point. In the limit of vanishing distance between grid points, values of the
absolute value of the Lapacian kernel at ordinary cut points or the starting point
itself will be infinitely greater than at any other points. In this limit, the cut locus
should therefore be immediately recognizable.

Of course we will have to make do with finite distances between neighbouring
points. We initially used

(L.7) LW (w1, 22) = |L (w1, w2, d((2F,28), () )],
where

L(zy,29,t) = t(ry — Axy,xa) — 2t(x1, 22) + t(x1 + Azy, 22)
(1.8) + t(xy, e — Axg) — 2t(z1, 22) + t(x1, T2 + Axs).

We found that values of L) varied so much over the cut locus that it was difficult
to construct a clear image from them, so we instead computed

(1.9) LO (21, 25) = |L (21, 22, d((z,28), (-, ))) [

at every grid point, scaled the values linearly to the range [0, 1], and then marked
those points at which the scaled values were larger than some constant (we used
0.4, but note that this constant can and should be lowered to zero as the number
of grid points tends to infinity).

One can also work with the distance squared d?(p, q), which has the advantage
that it is smooth at the starting point. For points ¢ joined by two minimal geodesics
to the starting point p, which are dense in the cut locus of p, we know that d?(p, -)
has no directional derivative at ¢ for vectors in the direction of these two minimal
geodesics [64]. We have therefore also used

(1.10) L(g)(fﬂl,@) = log, ‘L (151,5527 dQ((ff,fg)a (s ))) |;

mapping those grid points at which L) is at least 4 less than the maximum value
over all grid points to the range [0, 1], and then shading these points (only) using
their normalized values. Once again, this value of 4 is suited only to the typical
grid sizes we have used. It can and should be increased as the number of grid points
tends to infinity.

1.1. A generic model. The point of this section is to introduce an exactly solvable
but also truly representative model which can be used to check our software.

We know [12] that the structure of a generic (stable) cut locus for compact two-
dimensional manifolds is such that near a point ¢ the cut locus with respect to p
has one of three forms:

(i) a straight line through ¢ or
(ii) a straight line starting at g or
(iii) three straight lines meeting at gq.
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FIGURE 2. Approximations to the medial axis of the curve (IIT)
using grid sizes 100 x 100, 200 x 200, 400 x 400, 800 x 800 and 1600 x
1600. The Laplacian kernel L(® has been used. The intersections
of the dark diagonal grid lines indicate where the conjugate points
and vertex must be. These lines are always a least two pixels wide
with respect to the computational grid used.

FIGURE 3. Approximations to the medial axis of the curve (1))
using grid sizes 100 x 100, 200 x 200, 400 x 400, 800 x 800 and
1600 x 1600. The Laplacian kernel L) has been used. Contours
of the distance function have been plotted for the finer grids.
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It has been conjectured that, in some generic sense, the conjugate locus consists only
of folds and semi-cubical cusps [8]. We do know that in the two-dimensional plane
the only two types of stable singularities are the fold singularities (of the Lagrangian
map) and the cusps of the third canonical type of Lagrangian submanifold in two
dimensions (when projected onto the surface, the critical points appear as semi-
cubical cusps) [17), 5]

Consider the initial wavefront in E?

(1.11) { <x1,x§ - ;)

and its inward normal motion at constant speed 1. The distance map can be
computed exactly, requiring only the real roots of a cubic polynomial in x; and x5.
The conjugate locus (first caustic) is given by

(o () ) =)

(1.12) U{(ml,l—%)‘—4<x1<l}
u{(:m;) xlgl}.

Note that the first set of this union does indeed include a semi-cubical cusp at (0, 0)
which is turned towards the initial curve (and one can prove that it is indeed an
endpoint of the cut locus).

The conjugate locus and distance map are illustrated in Figure [l Note that it
is difficult to judge where the cut locus might be from a mere visual inspection of
the distance map.

The cut locus consists of a straight line segment from (0,0) to (0,3/4) and two
other curves which are not straight, all three meeting at the vertex (0,3/4). It has
two endpoints (at (0,0) and (1,1/2)). The cut points of our example can therefore
be said to be generic except for the cusp at (1,1/2).

Now we can apply our algorithm to this problem as a first check. The model
problem’s cut locus includes the straight line segment from (0,0), the generic con-
jugate point, to (0,3/4), the generic vertex. The direction of the x5 axis is thereby
given an artificial emphasis. If we check our algorithm using a grid aligned with the
x1 and o axes, we can expect nongeneric behaviour at exactly the points which
are most critical. Therefore, we used a grid rotated by arctan 3/4.

The results for various grid sizes are shown in Figures[2 and [3] for the Laplacian
kernels L) and L®), respectively. The nongeneric conjugate point creates most
problems for both kernels. The generic conjugate point at (0, 0) is captured better
by L), L) tends to “overshoot” past an actual conjugate point, making the cut
locus appear longer than it actually is. The vertex is located well by both kernels.




FIGURE 4. Convergence of the distance-map method using the
Laplacian kernel L(®) to locate the cut locus. From left to right,
the number of grid points in each direction is 100, 200, 400, and
800, respectively.

1.2. Tori: An example. We present an example of a Liouville surface diffeomor-
phic to the torus which is of elementary type (see Proposition 3.8 of [32]).
Let o = as = 27 and the functions f; and fa be given by

(1.13) fi(z1) =cos(4dx1) +1.05 and fa(ze) = cos(xz) + 1.05.

We will compute approximations to the cut locus from the point (1, 1) using regular
square computational grids.

One can see how the cut locus approximations do appear to converge in Figure
[d What one cannot tell from this is whether the convergence is actually toward the
cut locus at this level of graininess (i.e., we know that the algorithm should work
in the limit of an infinitely fine grid, and the convergence shown in the case of the
generic model is encouraging, but this does not mean that it will work for realistic
grid sizes on a real problem). Fortunately, we are able to make a comparison with

\

FIGURE 5. Part of a comparison of (i) an approximation of the
cut locus from a point on a Liouville surface diffeomorphic to 72
using the Laplacian kernel L(®) on a regular square grid of dimen-
sions 1600 x 1600 and (ii) the software tool Loki with input error
tolerance set to 10~° for most of the points, but also 10~7 for the
points defining the conjugate point near the lower left corner. The
points computed by Loki are white, each with a much larger grey
disk behind for highlighting purposes.
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the software tool Loki [59], which has shown itself to be reliable over a number of
years. A close-up of the pleasing result of the comparison is shown in Figure
Note that several components of the cut locus are straight line segments given by
x1 = const.

2. CONSTRUCTING LIOUVILLE SURFACES ON S2

2.1. Ellipsoids: An example. Here we will look at a single cut locus from a point
on the ellipsoid

2
(2.1) LIRNIY B

This example serves as a check of our software, since the general solution is known
for ellipsoids [25], and also illustrates the nature of the coordinates (x1,z2) on
surfaces diffeomorphic to S2.

In the notation of [32] we have by =6, by = 1, b3 =4 and 8 = (b3—b2)/(b1—b2) =
3/5. The ellipsoid may be parametrized by R/27Z x R/nZ = {61,602} as follows
(equation (4.5) of [32]):

2
y1(601,02), = V6 cos b, \/g cos? 0y + sin? 0,
3 ,
y2(01,602) = cosby R cos? 0y + sin” 01,
(22) Y3 (01, 92) = 2sin 01 sin 92.

See Figure [l With respect to these coordinates, we have the metric
(2.3)

2 cos2 6y + sin? 6, %

2 3
g= (— sin? 0; + = sin? 6,
5 5

) l4 cos? 0y +6sin”6;  , 4 cos®By +sin® by 402
5

cos2 By + sin? 6

which is of the form ([Q.2)).
We can define coordinates x1 and zs by

cos?t + sin®t

0
4 cos? in?
(2.4) 21(6) = / \/ ot Bamit
0

5

\ AN
\Qll JII""" 4 i

) m“""l 7 77
e 47;;’& ,“‘fum’,z,":,';l,,/li‘r
2y )
4 \\§‘§éa%4((/

FIGURE 6. The nature of the transformation from [0, 27) x [0, )
to the surface of an ellipsoid.
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which can be expressed when |0] < 7/2 as
(2.5)

tan 6 tan 6

N dx _@/ dx

B ae I T R

(a sum of elliptic integrals of the first and the third kinds respectively; see Chapter
17 of [1] and also [49]), and

0
4 cos2t + sin? ¢
2.6 29(6 :/M—dt,
(2:6) 2(6) §c082t+sin2t
0

and their inverses 0 (x) and 65(x), respectively.
With respect to these coordinates, the metric is now

2
(2.7) g= (g sin? 0y (x1) + g sin? 92(1’2)) (dz? + da3),

which is clearly of the form (0.1)).
Using the starting point (67, 60%) defined by

251 2+/51 24/51

which is the point
(2.9) (2, 28) =~ (2.74126, 1.44446 ),

we can compute the cut locus using both Thaw [26] and our present algorithm.
As was discovered in [26] and proven in [25], this cut locus is a subarc of a line
of curvature (63, and therefore also x5 constant). Figure [1 shows that there is
quantitative agreement. It is interesting to note that Thaw took two orders of
magnitude longer to compute this approximation, although the errors made by the
two computational tools seem to all intents and purposes equal, and despite the
fact that we have not attempted to optimize the implementation of our present
algorithm.

FicUure 7. Comparison of approximations to the cut locus from
a point on an ellipsoid computed by Thaw (dark central curve,
fading to light grey) and the present algorithm (white curve).
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F1cURE 8. An approximation to the cut locus from a point on an
ellipsoid computed by the present algorithm. The grey curves are
geodesic circles centred around the starting point, located near the
lower left corner. The horizontal black line diametrically opposite
is the cut locus.

With respect to the coordinates (x1,z2), the fundamental parallelogram is given
by

(2.10) [0, 21(27)) x [0, wa(7))  ~ [0, 15.75669) x [0,6.22718),
and the cut locus from the point (27, z5) is a segment of the line
(2.11) { (u,v) |v=as(m) —ab }.

See Figure[8l Its rectangular shape is of course related to the surface of the ellipsoid
as suggested by Figure [6

We wish to emphasize that the cut locus is a simple straight line segment in
the natural coordinates (z1,z2). It is precisely this type of behaviour which we
have already seen for surfaces diffeomorphic to T2, and will meet again on general
Liouville surfaces diffeomorphic to S2. Our conjectures derive from these simple
observations.

2.2. More general compact analytic surfaces diffeomorphic to S?. In the
following we will frequently refer to the paper “Compact Liouville Surfaces” [32].

Our aim is to describe practical numerical methods for constructing quadruples
of two positive real constants and two real analytic functions (a1, ag, f1, f2) which
define real compact analytic Liouville surfaces whose underlying manifold is S2.
Note that the same quadruple defines the double covering of a Louville surface whose
underlying manifold is the real projective plane RP? (Corollary 3.7 of [32]). The
conditions which must be met are conditions (3.1) and (3.2) of [32]. We will assume
that the pair (a7, aq) is given, and provide a basis for the set of suitable functions
f1 and fa. fo is completely determined by f; in the analytic case (Corollary 3.6 of
52)).

f1 is identified with a C'™ even periodic function on R with period «;/2 such
that f1(0) > 0, f1(0) = 0, and f1(¢) > 0 if t # 0 (mod (ay/2)Z). Corresponding
conditions apply to fa, which has the period as/2.



JACOBI’'S LAST GEOMETRIC STATEMENT: LIOUVILLE SURFACES 1791

The formal Taylor expansions around ¢ = 0 (denoted by ~) of f; and fo must
be related via

(2.12) A~ ant?t e fot) ~ D (D ag

E>1 E>1

This condition can be satisfied using a suitable holomorphic function j : C — R if
we identify

(2.13) ) =41 and fot) = —j(vV—11),

since, formally,

(2.14) D ap (V=11)?F == ap (—1)F R
E>1 E>1
See Corollary 3.6 of [32].

We are therefore looking for doubly periodic (elliptic) functions. Since the first
Liouville theorem (Theorem 1 of Section 9 of Part II of [34]) tells us that there is
no nonconstant doubly periodic entire function, it is not immediately clear which
functions to use as the basis of our construction. Although it is certainly the case
that any doubly periodic function can be expressed in terms of rational functions of
the Weierstrass function and its derivatives (Theorem stated in Section 2.3 of [49]),
we have found it more convenient to take the route of Jacobian elliptic functions.

The function
) 1 —sn(nt+ K(m)|m)
2.15 n(t) =
(2.15) Jn(t) 5

(using the notation of [I], where sn is a Jacobian elliptic function, K is the complete
elliptic integral of the first kind, 0 < m < 1 is the parameter, and n is a positive
integer) is doubly periodic, and both j,(t) and —j,(yv/—1t) are real-valued and
bounded (for fixed m). Indeed,

_ en(nt|m)

2.16) (1) = 1—Sn(ﬂt;K(m)lm) _ dn(2nt|m) _ 1—cd(2nt|m)
with
(2.17) ) = 8K(m)7
and

)y L=sn(V=Int+K(m)|m) nd(nt|l—m)—1
(2.18) () = — a _ 2
with
(2.19) as = 4K(1—m)

satisfy the conditions (3.1) and (3.2) of [B2] for all 0 < m < 1, as can easily

be verified. Note that the fl(n) are normalized to have the range [0,1]. Since
these conditions are linear, and since the functions fl(") are a basis for the set of
analytic functions f; satisfying these conditions, we may write any suitable analytic

functions as

(2.20) RO =30 md BH=3 600,

n=1
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FIGURE 9. fl(l)(:cl) + f2(1)(a:2) plotted for a; = ay & 12.6604.

where the real coefficients ¢, must be chosen such that F;’(0) > 0, F3(0) > 0,
Fi(t) > 01if t # 0 (mod (a1/2)Z), and also Fa(t) > 0 if ¢ # 0 (mod (a2/2)Z). A
necessary condition is that

oo
(2.21) (>0 A 0<Y 0Pl <o
n=1
Given a pair of positive constants a; and ase, we can construct valid quadruples
(a1, aa, f1, f2) by choosing the unique value of the parameter m, which satisfies

2 K(mgy,) a1
2.22 — = —
(2.22) K(l1—mq) o
and defining the positive constant ¢, by

aq
2.23 .= ———.
(2:23) = K (ma)

Then we can make use of the equivalence of quadruples (a1, aq, f1, f2) and (caq, cas,
f1/c2, fa/c?) with ¢ > 0 to write
(Bca K(ma), dca K(1—ma), (1/c3) Fr, (1/c;) Fr) = (a1, 02, fi, f2)

and

(2.24) (a1, e, f1, f2) is equivalent to (8 K(my,), 4 K(1 —my), Fi, F»).

2.3. Computing K(m,), K(1 —m,), and m, from the ratio a;/as. The
following computations will only need to be done once for any given ratio of oy /as.
From equation ([Z22]), we can write the nome

—WK(1—m)>

(2.25) q(m) = exp ( K



JACOBI’'S LAST GEOMETRIC STATEMENT: LIOUVILLE SURFACES 1793

in terms of ay /a:

(2.26) q(ma) = exp ( 27 Z—j) .

We can then compute K(m,) and K(1 —m,) using this and equation 17.3.22 of

[

(2.27) K(ma) =27

i kZ+q2k ]: §i<

k=1 cosh [ 2k —)
aq

and

2 K(mg
(2.28) K(1—my) = 2E(ma)az
Qg
To compute m, from K(m,), we can use bisection to solve for m in K(m) =
K(m,,), where K (m) is calculated using the arithmetic-geometric mean (see Section
17.6 of [1]). In our case, we have

(2.29) apg = 1, bo =V 1-— m, ai+1 = & _2|— Z, bi+1 =1\ a; bl

for all nonnegative integers ¢. This process will quickly converge. When ay_1 = ay
and by_1 = by (to numerical precision), then

(2.30) K(m) =

2.4. Trigonometric series expansions. While there are many well-known algo-
rithms for the rapid computation of elliptic functions (see [I] and Section 5.3 of
[39] for an overview), we have decided to instead make use of trigonometric series
expansions to avoid catastrophic cancellation in the differences 1 — cd(nt|m) and
nd(nt|1—m) — 1. The series expansions will provide high accuracy even close to
zeros of these functions.

In the following, we will use the abbreviations K = K(m), K/ = K(1 —m), and
q = q(m), where ¢ is the nome. Note that 0 < m < 1 implies 0 < ¢ < 1.

We have the series expansion

n n+1/2 1 Tu
2.31 — | —
(2.31) cd(u|m) = Z 1—q2”+1 cos{<n+2> K}

from [I]. Using the fact that c¢d(0|m) = 1, we have
(2.32)

2 Sl —1)" n+1/2 e n n+1/2 K
cd(0|m) = il Z (-1)"q -1 = Z q _ vm .
n=0

\/_K o 1_q2n+1 1_q2n+1 27
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Now
1 —cd(u|m)
2
0 n+1 n+1/2 1 1
T q U
(2.33) = Z 5 COS {( —) —}+—
\/EKn ‘ 1—q + 2) K 2
(oo}
-1 n+1,n+1/2 1 K 1
- = z< PG (ol (g 1) T ) VK
vVmK o 1 — g2ntl 2 K 2m 2
n n+1/2 T
- e T { (v ) i)
(2.34) = —— Z (=b" s d (n4l) T4
' - JmK . ((n—|—1/2)7rK’) 2) 2K [
n=0 ginh | ——————
K
Let us now turn to fo. We also have the series expansion
™ 27 (D)™ g nmwu
2.35 d = + { }
(2.35) nd(u | m) VT K Vl—man:; r e UK

from [I]. Since nd(0|m) = 1, we have

(2.36) nd(0]m) = o = — e+ Zm 3 CU ey

from which it follows that

= (-D"¢" VI-mK 1
Z( )"q"

2. =
(2:37) 14 ¢2n 27 4’

and therefore

nd(u|m)—1 = (-D"¢"  nmu 1
2. _ = _Z
(2.38) 2 \/1771( 2 I+ K |2
_1\n+1
(2.39) Z (=D sin? L=

m
, .
\/1—7nK'n:1 COSh(nZ(K> 2K

2.5. Numerical evaluation of fl(") and fén) and their derivatives. We have
(2.40)

0 = 7 i sinh<(k+1(/_2lf)()7(]:f<)(l—m)> st { (++3) 2k

and
n nd
() =

(2.41) 71' = (—1)k+1 ., nkwt
:\/EK(I—m); ‘ my m
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Expansions (Z34)) and ([Z39) do not depend upon any cancellation of terms to
become zero, and are therefore preferable in comparison with (2.33) and ([2.38). We
use the expansions ([2.40) and (241]) to compute fl(") and f, (n) , respectively, when
the nome ¢g(m) and its complement ¢(1 — m) are both small.

For first and second derivatives of fl(") and fz("), the expansions (2.33)) and (Z38))
are easier to deal with. We find that

(242())
dfy"(t) nm? = (-D* (k+3) “in 1\ nmt
T~ TmRm) it Dk ) 1(++3) %)
(2.43) 2
PEOG e S COSERD' (1)
dt? 2\/ﬁK3(m)kZ_OSinh(kz+%)7rK(l—m) {(k 2) K(m)}’
K(m)
dfy" () nm? = (=DFYE  knwt
(244) T 2\/ﬁK2(1—m); |k K(m) MRA—m)
=1 cos K= m)
and
RO 2 (—1)k+1 2 knmt
(2.45) d2t2 2\/—K3 1—m zjl hkﬂK(m) COSK(l—m)'
(¢0)] m

If we wish to have 18 significant figures (considering truncation error only), it
suffices to require that 0.02 < m < 0.98 and only add up to & = 35 in all of
the above expansions, since this ensures that both ¢(m) and ¢(1 —m) are less than
0.23. This range allows us to deal with ratios o /ag € [0.9414,4.2491] (see equation
@),

For m outside this range, the descending Landen transformation (also known
as Gauss’ transformation) or the ascending Landen transformation [I] can be re-
peated until m, which we assume to always be in the open interval (0, 1), is within
[0.02, 0.98].

(7NN

N~

FIGURE 10. A sample 8 x 4 computational grid showing border
connectivity. The grid covers the domain [0, 1) x [0, aa/2).
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2.6. Computational grid. We use a regular rectangular grid of Ny and Ny points
in the directions of the z; and x5 axes, respectively. The grid covers the domain

(2.46) [0, a1 ) x [0, %) — [0,8K(ma)) x [0,2K(1—ma)).

To ensure that the grid cells are almost square, we set

a1 1

2.47 Ny = |2Ny— + —|.
( ) ! L 2 (6] * QJ

We have

8 K(ma) C2K(1—myg)

(248) A,Tl = Tl and Al‘g = T

For 41 € {0,1,...,N; — 1} and iy € {0,1,..., Ny — 1}, we define the mapping to
canonical coordinates by

_ 8K(my) (i1 +3)

(2.49) 2y = ¥
and

_ i 1
(2.50) Ty = 2K(1 mOé) (12 + 2) .

No
Note that care has been taken not to map any grid point to any of the four points
at which the metric is singular (Fy(z1) + Fa(x2) = 0).

In accordance with Section 3 of [32] (and Figure [f)) the edges are identified as
illustrated in Figure 10l

2.7. First “generic” experiments. Now we have a set of computational tools
which allow us to approximate the cut loci from points on compact Liouville surfaces
diffeomorphic to S2.

As a first experiment, let us take the “generic” surface given by
(2.51)

Fy(z) = 0.1 £ (2) +0.25 £ (2) + 0.111 £ () — 0.0625 £P () +0.01 £ (2)

(from which Fy is uniquely determined, having the same numerical coefficients in
its expansion), and

@
(2.52) —L—16,

a2

FIGURE 11. The cut locus from the point (4,3) on the sur-
face given by Fi(z) = 0.1 £V (z) + 0.25 12 () + 0.111 f¥(z) —
0.0625 f1(4) (x)+0.01 f1(5) (x) with oy /as = 1.6, computed on a grid
of dimensions 2560 x 800.
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from which we compute m,, ~ 0.27051, K(m,) ~ 1.69703, K(1 — m,) ~ 2.12129,
a1 = 13.57627 and as ~ 8.48517. This surface has points of both positive and
negative Gaussian curvature. For the starting point (4,3), the Laplacian kernel
L (equation (I9)—the starting point will be visible), and using 2560 grid points
in the x; direction and 800 grid points in the x5 direction, we obtain Figure [Tl
Note that one part of the cut locus consists of a line segment with x5 = const, but
there is no further structure which would motivate a conjecture.

A second experiment with another “generic” surface, which also has points of
both positive and negative Gaussian curvature (Figure [[2]), shows some shortcom-
ings of our method to approximate the cut locus using the Laplacian kernel L(2)
alone. The cut locus appears to consist of a number of disjoint arcs. This is not
what one would like. Of course we know that the cut locus must be a connected
1-dimensional complex [43]. The experimental difficulty arises from the fact that
the two geodesics meeting at an ordinary cut point may be almost tangential to
each other (they can never actually be tangential where they intersect, since then
they would have to be the same geodesic). In this second example, the starting
point and curvature conspire to induce a sequence of subarcs of the cut locus whose
points are each the result of two geodesics meeting at some very small angle.

It must however be the case that we can capture the cut locus by using a fine
enough grid. The grid used in Figure [I2] was 1600 x 800. In Figure [I3] we can see
the result, computed on a grid of dimensions 6400 x 3200, where we have used the
Laplacian kernel

(2.53) L (2122, d2((ah,25), (- ))) [~

NN

NN\

7\

FIGURE 12. A plot of the cut locus (black) from a point (large
black spot with crosshairs) with equidistant curves (very dark grey)
and Gaussian curvature (white for very negative, light grey for
negative, grey for positive, and dark grey for very positive) on the
surface given by Fi(x1) = 0.1f1(1)(:01) —|—0.2f1(2) (1) —|—f1(3)(:1:1) with
a1 = ag ~ 12.6604 and the starting point at (1, 5.3302). Note that
the cut locus appears to consist of a number of disjoint arcs. This
is an artifact of the approximation method used, which attempts
to deduce the position of the cut locus using only local operations
on the distance map.
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FicUreE 13. Recomputation of the cut locus approximation of
Figure using a finer computational grid (6400 x 3200 in-
stead of 1600 x 800) and a less selective Laplacian kernel
|L(z1, 22, d*((z],25), (-,+)))[°°*. The contrast of the computed
image has also been enhanced in a post-processing step. The en-
tire cut locus is now visible.

with no threshold on which points are shaded (all points are shaded according to
their normalized values). One can now see the cut locus as a connected tree.

From an experimental point of view, this is still an unpleasant situation to be
in, since one is left with the choice of either having to use large grids, or having to
deal with possible confusion concerning which points are endpoints of the cut locus
and so on. It is for this reason that we have included a routine which computes an
approximation to the conjugate locus. We can then see which points are endpoints,
since they must each coincide with a cusp of the conjugate locus.

2.8. Computing an approximation to the conjugate locus. Here we will
use a Lagrangian method, since it offers high accuracy at precisely the cusps of
the conjugate locus (where the geodesics are converging) which will give us the
positions of the endpoints of the cut locus. Robust Eulerian methods do also exist
[4), which are more efficient but less suited to our particular needs.

Our experience from earlier work [60] was, perhaps surprisingly, that it can be
cumbersome to make use of the equations of geodesics in their integrated forms
in numerical software. This is due to the necessity of having to determine when
one should change direction or coordinates, or both. Instead, we make use of the
standard geodesic equations (equation (2.2) of Section 2 of Chapter II of [54]) which
take the form

S h)i+ fo(ye) i de — 5 fi(y) 93
(254) Yy = )
Ji(yr) + f2(y2)

%fz(yz)y'g + fily1) 91 G2 — %fz(yz) U3
filyr) + fa(y2)

in the case of a Liouville surface, where dots denote differentiation (with respect to
arclength in the case of y; and ys).

(2.55) i =
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These can be integrated using the classical fourth-order Runge-Kutta method
(Algorithm (9.76) in [55]). We found it useful to have an adaptive step-size.

It is a well-known fact that one way to find conjugate points is to look for zeros
of Jacobi fields, which are solutions of the Jacobi equation (see equations (2.19)
and (2.20) in Chapter IT of [54]). Since we are dealing only with two-dimensional
surfaces, we have actually used this equation’s simpler predecessor, the Gauss equa-
tion (contained in Section 19 of his “General Remarks on Curved Surfaces” [I8],
published in 1827; it appears as equation (3.9) in [7] and equation (4) in [51], which
also includes a detailed description of its derivation and meaning, as well as his-
torical detail concerning its generalization to the modern form referred to above):

d?Y (s)
ds?

where 7y is a geodesic parametrized by arclength s and initial angle 6, G the Gaussian
curvature, and the function Y : R — R is the geodesic deviation which satisfies

(2.57) Y(0)=0 and d¥(s) =1
& s=0

(2.56) +G(v(5,0))Y(s) =0,

One can then integrate these equations along a geodesic, returning the location of
the first zero to the position of the (first) conjugate point along that geodesic.
On a Liouville surface, the Gaussian curvature is

dfi(@)\’ | (dfa(@)\*  Efile) | Ehr(rs)
dzq + dzo dz? + dz2
(258) G($1,1‘2) = 3 — 1 2 3 -
2 (f1(z1) + fa(22)) 2 (f1(z1) + fa(22))
Figure [[4l shows a computation performed with the same grid size as used for

Figure 2 but with the conjugate locus marked. The four endpoints of the cut locus
are now clearly identified.

FI1GURE 14. Recomputation of the cut locus approximation of Fig-
ure [I2 using the same computational grid (1600 x 800) and the
less selective Laplacian kernel used for Figure Here conjugate
points (white) have been added. This clearly helps in locating the
four endpoints of the cut locus.
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FIGURE 15. The surface given by Fi(z) = 1(1)(35) +
0.00002 fP (), ma = 0.02, a1 ~ 12.62992, and as ~ 13.41656
with cut locus (horizontal dark line segment) and conjugate locus
(in white) from the point (3,2). The computational grid used has
the dimensions 3012 x 1600. This example is typical, and clearly
shows the straight cut locus and four cusps of the conjugate locus.

3. EXAMPLES LEADING TO THE MAIN CONJECTURE

Here we will present the results of a few of the many experiments we have per-
formed, concentrating first on surfaces of the form F)(z) = 1(1) (z)+ “small, higher-
order perturbations”.

A very representative example, illustrated in Figure [0, is of the conjugate
and cut loci from the point (3,2) on the surface given by Fi(z) = fl(l)(x) +
0.00002 ff3)(x) with m, = 0.02, a1 &~ 12.62992 and ay ~ 13.41656. The Gaussian
curvature is everywhere positive and has exactly two saddles, two global minima
and two global maxima. It therefore satisfies the conditions stated in the abstract.

Now let us relax the condition that there should be exactly two global minima and
two global maxima of the Gaussian curvature, but still demand that the Gaussian
curvature should be everywhere positive. The surface given by Fy(z) = 1(1)(%) +
0.001 f1(2) (z), ma = 0.7, aq ~ 16.60291, and as =~ 6.85556 is such a Liouville
surface. The cut locus from the point (6, 1) is depicted in Figure The cut locus
is still a straight line segment (with xo = const), and the conjugate locus still has
four cusps. The grid size used was 3875 x 800. It is important to stress that we
have tried many different starting points on this surface, but all gave straight cut
loci and conjugate loci with four cusps.

The next surface we wish to discuss is given by Fi(x) = fl)(ac) +0.01 ffz) (x),
me = 0.7, a1 = 16.60291, and oy =~ 6.85556. This surface has points of nega-
tive Gaussian curvature, and the Gaussian curvature has many local maxima and
minima. The cut locus is depicted in Figure [[7, approximated using a grid of size
3875x800. It clearly has more than two endpoints. The conjugate locus also clearly
has more than four cusps. See Figure [I§ for a comparison of corresponding ends of
the cut loci on these two surfaces. In the former case, the cut locus has exactly two
endpoints (one is shown in the figure). In the latter case, the presence of regions of
negative Gaussian curvature has caused the forking of the corresponding endpoint
into two endpoints.
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FIGURE 16. The cut locus from a point on a Liouville surface
with many local minima and maxima of the Gaussian curvature,
but which still has cut loci with two endpoints and conjugate loci
with four cusps. The surface, which is given by F(z) = fl(l)(x) +
0.001 £2(z), ma = 0.7, ay ~ 16.60291, and as ~ 6.85556, does
not have points of negative Gaussian curvature.

FIGURE 17. The cut locus from the starting point (6,1) on the
surface given by Fj(z) = 1(1)(56) +0.01 fl(z)(x), me = 0.7, a1 =~
16.60291, and as ~ 6.85556, with a close-up of the forked cut locus.

x2

10.9 11 111 112 11.3 114
x1

FIGURE 18. Close-ups of the conjugate loci from the point (6, 1) on
the surfaces given by F}(z) = fl)(x) +0.001 f1(2)(a:) and Fy(x) =

1(1) (2)40.01 f1(2) (2) (on the left and right, respectively) with m,, =
0.7, a3 ~ 16.60291, and as = 6.85556. The squares indicate the
approximate location of the cut locus.
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These examples illustrate what we have seen throughout our investigations of
Liouville surfaces of the above-mentioned type. At this stage it would appear that
a surface with points of negative Gaussian curvature does not (in general) have
cut loci consisting of straight line segments of the form x; = const or x5 = const,
neither do they (in general) have conjugate loci with exactly four cusps.

3.1. Remarks concerning how far these examples are from ellipsoids. We
have of course been assuming that the examples which exhibit conjugate loci with
four cusps and cut loci with exactly two endpoints are not “just” ellipsoids. If they
were, then we would have been doing nothing but confirming what has already been
proven in [25]. The appearance of an elliptic integral of the third kind in equation
[23), however, makes this extremely unlikely in that one specific case, since that
would require a relationship between elliptic integrals of the third and lower kinds,
although it is well known that one cannot reduce an elliptic integral of the third
kind to an expression involving the sum of only elliptic integrals of the first and
second kinds [49].

Note also that the space of ellipsoids is three dimensional (parametrized by
the lengths of the axes), but we are dealing with the infinite-dimensional space
generated by the fl(z). Therefore, we can easily generate examples, which are not
ellipsoids.

None of the surfaces we have constructed which have points of negative Gaussian
curvature, more than six critical points of the Gaussian curvature, or critical points
of Gaussian curvature which are neither global maxima, global minima, nor saddles,
can be ellipsoids.

We have attempted to discover which (if any) ellipsoid the surface given by
Fi(z) = fl(l)(x) represents, using Section 4 of [32] as our starting point. There are
many equations which can be written down, involving for example the ratio of the
respective maxima of Fy and Fy (it is (1/,/mq — 1)/2), which can be related to a
ratio of differences between squares of the lengths of the semi-axes (which is £ in
[32]). All such equations must be satisfied for equivalence to hold. In practice, we
have not been able to establish any equivalence, but rather find (experimentally)
that the surface given by Fj(z) = fl(l)(x) has properties which are incompatible
with an ellipsoid.

3.2. Negative Gaussian curvature: A surface of revolution. We now refer to
an example from [61] (see Figure[Id)). Tt is of a surface of revolution with regions of
both positive and negative Gaussian curvature. One may choose to include surfaces
of revolution in the definition of Liouville surfaces (see Exercise 19 in Section 4-2 of
[62], for example) or not [32]. What we wish to demonstrate with this example is a
property which does apply to Liouville surfaces which are not surfaces of revolution
but “very close”. This property is the disconnectedness of the conjugate locus [41]
on a surface with points of negative Gaussian curvature.

One more interesting point concerning this example is that the cut locus is a
subarc of a meridian. One must assume that this would translate into a straight
line segment of the form x; = const or xo = const for a “close” Liouville surface.
This strongly suggests that the cut locus of a Liouville surface can indeed be a
straight line segment, even if the Gaussian curvature is not everywhere positive.
The remaining examples we will present have been designed to test exactly this
conjecture.
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F1cURE 19. The cut and conjugate loci from a point on a surface
of revolution with both positive and negative Gaussian curvature.
The conjugate locus (the loops near the poles) is not connected.
The cut locus is a single arc, a subarc of a meridian.

3.3. Alternative constructions. The Fourier-like set { fl(i)} has a number of dis-
advantages. The least of these is a certain lack of symmetry between the sets { fl(z)}

and { f2i)}. This asymmetry has led to the cut loci in all of our examples being
horizontal (zg = const) rather than vertical (zq = const). This asymmetry can be
removed to a large extent by instead using (see Section 16.3 of [I] for notation)

(3.1) ) (#) = sd®(nt|m) with a; = 4K (m)
and

(3.2) Fm) =sd®(nt|1—m) with s =4K(1—m),
where

(3.3) Sd2(¢ | m) = sn’(t|m) _ sn®(t|m)

do’(t|m) 1—msn2(t|m)’

However, one practical problem remains, since any Fourier-like basis makes it dif-
ficult to control the number of critical points of the Gaussian curvature (the same
problem is met by anyone wanting to approximate smooth functions with Fourier
series—the more terms used, the more critical points the resultant function tends
to have).

We can, however, easily construct few-parameter families of Liouville surfaces
making use of the fact that the sum, difference, product, and quotient of two
doubly periodic functions are also doubly periodic (Theorem 2 of Section 9 of Part
IT of [34]). Take, for example, the one-parameter family given by

2
(3.4) Fi(on) = (V@) + & [ ()]
and, recalling the relation (2.13]),
2
(35) Falea) = 1§ (@) = [0

This family defines analytic compact Liouville surfaces diffeomorphic to S? for
-1<k<O.
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FIGURE 20. The cut and conjugate loci (black and white, re-
spectively) from the point (4,4) on the Liouville surface given by
Fi(z) = f(2) =08 [ (2)]2 with a; = ap ~ 12.66041. The sur-
face has points of both positive (dark) and negative (light) Gauss-
ian curvature. The conjugate locus does not appear to be con-
nected (conjugate points have been computed only up to a given
distance from the starting point). The cut locus is a single straight
line segment, given by x5 = const.

What one notices is that for small negative values of k, up to —0.5 say, the
cut loci are straight line segments of the form x; = const or x5 = const and the
conjugate locus has four cusps, just as we have seen in so many other examples (see
Figure [[5]). These are surfaces with points of positive and negative curvature with
exactly two saddles, two global minima, two global maxima, and no other critical
points of the Gaussian curvature.

When k becomes closer to —1, the cut locus remains as before, but the conjugate
locus stretches out in one direction, until two of the cusps disappear, leaving only
the two cusps corresponding to the two endpoints of the cut locus. Figure 7 of [41]
also illustrates this phenomenon.

We have (computationally) studied the case for which k = —4/5 and a1 = as =
12.66041, and with the starting point (4,4), in some detail. Figure 20 only includes
conjugate points up to a certain distance from the starting point. We have followed
the conjugate locus out to distances very far from the starting point. The conjugate
locus appears to consists of two disjoint components, each becoming more vertical
(21 becomes more and more constant) as we consider conjugate points further and
further from the starting point. Due to the boundary conditions, this asymptotic
behaviour would actually present itself as a discrete set of vertical lines in Figure
Our experiments indicate that these vertical lines are given by z; ~ 1.05828,
r1 &~ 5.27192, 1 ~ 7.38849, and x; =~ 11.60213, where the first and fourth belong
to the one component of the conjugate locus, and the second and third to the other.

4. CONCLUSIONS

The main result of this work is that Jacobi’s last geometric statement applies to
a wider class of compact Liouville surfaces than just the ellipsoids.
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Every compact Liouville surface of the type Fi(x) = fl)(x) + --- that we have
studied which has had positive Gaussian curvature everywhere has had, from all
starting points we have evaluated, a cut locus of the form x5 = const (there is

some asymmetry in our definitions of fl(l) and fQ(Z)7 which explains why x1 = const
has not appeared) and a conjugate locus with exactly four cusps. We hesitate to
make this a conjecture, since one can easily imagine a surface of positive Gaussian
curvature containing a very small region of very large Gaussian curvature, large
enough to induce a conjugate point that a very similar surface without the small
region of large curvature would not have.

We have therefore decided, on the basis of both our raw data and also theoret-
ical considerations (from our experience in [20] and [61]), to make the conjecture
contained in the abstract.

It does not appear to be possible to deduce the location of the cut locus by local
operations on the distance map alone when the map is approximated by values
on a finite-sized grid. We have found it necessary to simultaneously compute the
conjugate locus, and make judgements only on the basis of both loci.
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