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STATISTICAL PROPERTIES
OF GENERALIZED DISCREPANCIES

CHRISTINE CHOIRAT AND RAFFAELLO SERI

Abstract. When testing that a sample of n points in the unit hypercube

[0, 1]d comes from a uniform distribution, the Kolmogorov–Smirnov and the
Cramér–von Mises statistics are simple and well-known procedures. To en-
compass these measures of uniformity, Hickernell introduced the so-called gen-
eralized Lp-discrepancies. These discrepancies can be used in numerical in-
tegration through Monte Carlo and quasi–Monte Carlo methods, design of
experiments, uniformity testing and goodness-of-fit tests. The aim of this pa-
per is to derive the statistical asymptotic properties of these statistics under
Monte Carlo sampling. In particular, we show that, under the hypothesis of
uniformity of the sample of points, the asymptotic distribution is a complex
stochastic integral with respect to a pinned Brownian sheet. On the other
hand, if the points are not uniformly distributed, then the asymptotic distri-
bution is Gaussian.

1. Introduction

The Koksma–Hlawka inequality (see [Nie92], p. 18) is a well-known bound on
the error of Monte Carlo and quasi–Monte Carlo integration: it majorizes the error
through the variation of the integrand in the sense of Hardy and Krause times
the star discrepancy of the random or quasi-random points ([Nie92], Definition
2.1). The star discrepancy has a remarkable statistical interpretation since, when
the integrand is defined on the real hypercube [0, 1]d, it has the same form as the
Kolmogorov–Smirnov statistic to test uniformity.

In a series of important papers, Hickernell ([Hic96] and [Hic97], [Hic98a, Hic98b])
has introduced the generalized Lp-discrepancies Dp (Pn) based on the sample of n
points Pn:1 they extend the star discrepancy and allow for measuring the degree
of nonuniformity of the sample and the efficiency of the numerical integration pro-
cedure. The links of these figures of merit with goodness-of-fit statistics and with
optimal design of experiments have been pointed out by Hickernell ([Hic99]) and
Fang et al. ([FMW02]).

Liang et al. ([LFHL01]) have started an investigation of the asymptotic properties
of Dp (Pn) in the case p = 2: they show that, under the hypothesis of uniformity,
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D2 (Pn) converges almost surely to 0, but they do not derive its asymptotic distribu-
tion. Then, they obtain two alternative statistics, strictly linked to this one, which
can be used to statistically test the efficiency of numerical integration procedures.2

The aim of this paper is to complete the analysis of [LFHL01] and to develop some
further properties of the test statistics proposed by Hickernell ([Hic98a, Hic98b]).
The interest of these results is more theoretical than practical: indeed, the asymp-
totic distributions that we obtain are quite difficult to compute (except in the case
p = 2; see [CS05b]), but these results yield precise information about the rate of
convergence of these statistics to 0 when the sample Pn is uniformly scattered and
the rate of divergence when the sample is not uniformly scattered.

As concerns the generalized discrepancy Dp (Pn), we show that Dp (Pn) con-
verges almost surely to 0 if and only if the sample Pn is uniformly scattered (as
defined below) on the unit hypercube [0, 1]d. Under this distributional hypothesis,
we obtain a rate of convergence towards zero: first of all, we show that Dp (Pn) is
OP

(
n−1/2

)
,3 that is,

√
n ·Dp (Pn) converges in distribution to a nontrivial random

variable whose form is provided in terms of a stochastic integral; moreover, we
prove that a Law of the Iterated Logarithm holds for the generalized discrepancy.

We show that, in the case p = 2, the asymptotic distribution [D2 (Pn)]2 can
be written as a weighted infinite mixture of χ2 distributions and is a particular
instance of what is called Gaussian Chaos. While the asymptotic distribution for
p �= 2 is difficult to obtain, in this special case it can be computed using the
algorithm presented in [CS05a]. However, it can be shown that this result holds for
a much more general class of discrepancies (the generalized L2-discrepancies, the
classical and the dyadic diaphonies, the weighted spectral test, the serial and the
overlapping serial test, etc.). This is the object of a companion paper ([CS05b]).

Moreover, we derive the asymptotic distribution of Dp (Pn) under the hypothesis
that the sample Pn does not come from a uniform distribution. In this case, for finite
values of p, the asymptotic distribution is Gaussian, but an alternative representa-
tion can be given as a stochastic integral. A limited simulation study, in Section 4,
confirms these theoretical findings for the case of generalized L2-discrepancies.

The results shown in this paper can be generalized along several lines. A partic-
ularly interesting topic would be the extension to sequences of points that are not
independent and identically distributed, but of particular relevance to Numerical
Analysis, such as scrambled digital nets (see [HHW03] for simulation results). This
will be left to future work.

Since the results make large use of statistical and probabilistic tools, we need to
introduce some notation. In what follows, the term uniformly scattered is used in
the sense of Fang and Wang ([FW94], p. 18, see also Remark 1.3) to indicate that
the points are uniformly distributed in the sense of Niederreiter ([Nie92], p. 13)
(we use the new definition in order to avoid confusion with the related statistical
concept). We introduce a notation that is typical of empirical process theory: for

2Other authors have recently investigated similar discrepancies (Leeb in [Lee96a, Lee96b,
Lee02], Hoogland and Kleiss in [HK96a, HK96b, HK97], James et al. in [JHK97], Hoogland et al.
in [HJK98], and van Hameren et al. in [vHKH97]).

3We say that Xn is OP (rn) if, for each ε > 0, there exists M > 0 such that

P

{ |Xn|
rn

> M

}
< ε ∀n,

where M and ε do not depend on n.
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a probability space (X ,B, P) and a measurable function f : X → R
k, we write

Pf =
∫
X f dP to indicate the integral of f with respect to P. If there is any doubt,

we write the variable of integration in capital letters (Pf (X) =
∫
X f (x) P (dx)).

Unless otherwise stated, we will assume that P is the Lebesgue measure on the unit
hypercube [0, 1]d, also written as λ⊗d.4 In the following, for a n-sample Pn, we
define the empirical measures λ⊗d

n and the associated integrals as5

λ⊗d
n =

1
n

∑
z∈Pn

δz,

λ⊗d
n f =

∫
f dλ⊗d

n =
1
n

∑
z∈Pn

f (z) ,

where δz is the Dirac measure concentrated in z. Moreover, we define as |A| the
number of points in the set A and as Vol ([0,x)) the volume of the rectangular solid
[0,x). For any index set u ⊆ {1, . . . , d}, we denote by |u| its cardinality, by [0, 1]u

the |u|-dimensional unit hypercube and by xu a |u|-dimensional vector containing
the elements of x indexed by the elements of u.

2. Asymptotic results for Lp
-discrepancies under uniformity

The generalized discrepancies Dp (Pn) have been introduced in Hickernell
([Hic96, Hic98a, Hic98b]) as a generalization of some figures of merit that have
arisen in the literature. In the case 1 ≤ p ≤ +∞ (see equation (3.8b) in [Hic98a])
they are defined by the equation

Dp (Pn)=

⎡
⎣∑

u �=∅

∥∥∥β|u| · Dp,u (Pn,u)
∥∥∥p

Lp

⎤
⎦

1/p

=

⎡
⎣∑

u �=∅

∫
[0,1]u

∣∣∣∣∣∣β|u| ·

⎧⎨
⎩

∏
j∈u

µ′ (xj)

− 1
n

∑
z∈Pn

∏
j∈u

[
µ′ (xj)+xj−1{xj>zj}

]⎫⎬⎭
∣∣∣∣∣∣
p

dxu

⎤
⎦

1/p

,

(2.1)

where u is a subset of the set {1, . . . , d}, Pn,u denotes the projection of the sample
Pn on the unit cube [0, 1]u, β is an arbitrary given positive constant and µ (·) is an
arbitrary function satisfying

µ ∈
{

f :
df

dx
∈ L∞ ([0, 1]) and

∫ 1

0

f (x) dx = 0
}

.

4The ⊗ sign is used to remind us that it is the d-dimensional product Lebesgue measure.
Strictly speaking, the uniform distribution should be written as λ⊗d

∣∣
[0,1]d

, the d-dimensional

Lebesgue measure restricted to [0, 1]d, but with a small abuse of notation we will prefer to write
λ⊗d.

5The subscript n reminds us that the measure is the empirical counterpart of λ⊗d.
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We remark that in the case p = +∞, the previous formula becomes

D∞ (Pn) = max
u

∥∥∥β|u| · D∞,u (Pn,u)
∥∥∥
L∞

= max
u

ess sup
xu∈[0,1]u

β|u|

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) −
1
n

∑
z∈Pn

∏
j∈u

[
µ′ (xj) + xj − 1{xj>zj}

]∣∣∣∣∣∣ .
Most of our results can be easily extended to weighted Lp-discrepancies in the spirit
of [SW98] and [LP03], replacing β|u| with

∏
j∈u γj , and in the spirit of [SWW04],

substituting β|u| with γd,|u| (refer to these papers for definitions).6 When the
sample Pn is uniformly scattered, it is crucial to remark that a recurrent element of
the previous formulas can be written as the deviation of the empirical distribution
from the uniform one:∏

j∈u

µ′ (xj) −
1
n

∑
z∈Pn

∏
j∈u

[
µ′ (xj) + xj − 1{xj>zj}

]

= λ⊗d

⎧⎨
⎩
∏
j∈u

[
µ′ (xj) + xj − 1{xj>Zj}

]⎫⎬⎭
− λ⊗d

n

⎧⎨
⎩
∏
j∈u

[
µ′ (xj) + xj − 1{xj>Zj}

]⎫⎬⎭
=

(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u

[
µ′ (xj) + xj − 1{xj>Zj}

]⎫⎬⎭ .

This helps understanding the forthcoming asymptotic results and justifies this no-
tation that will be used frequently in the following:

gu (x, z) =
∏
j∈u

[
µ′ (xj) + xj − 1{xj>zj}

]
.

In the general case of equation (2.1), the choices

µ (x) = −1
2

(
x2 − x +

1
6

)
, β = 2, M =

4
3
,

µ (x) = −1
2

(∣∣∣∣x − 1
2

∣∣∣∣
2

−
∣∣∣∣x − 1

2

∣∣∣∣ +
1
6

)
, β = 1, M =

13
12

,

µ (x) =
1
6
− x2

2
, β = 1, M =

4
3
,

yield the symmetric, the centered, and the star discrepancy, respectively (see
[LFHL01]).

6The only problem is that, if the weights
∏

j∈u γj or γd,|u| are zero for some u, then weighted

Lp-discrepancies can converge to 0 even if the sample Pn is not uniformly scattered. However, if
the weights are bounded away from zero, the asymptotic theory is exactly the same.
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In particular, the star Lp-discrepancies can be written more simply as

D∗
p (Pn) =

⎡
⎣∑

u �=∅

∥∥∥∥ |Pn,u ∩ [0,xu)|
n

− Vol ([0,xu))
∥∥∥∥

p

Lp

⎤
⎦

1/p

=

⎡
⎣∑

u �=∅

∫
[0,1]u

∣∣∣∣ |Pn,u ∩ [0,xu)|
n

− Vol ([0,xu))
∣∣∣∣
p

dxu

⎤
⎦

1/p

.

The special case

D∗
∞ (Pn) = sup

x∈[0,1]d

∣∣∣∣ |Pn ∩ [0,x)|
n

− Vol ([0,x))
∣∣∣∣

(see, e.g., [Hic98a], p. 316, equation (5.1b), or [Nie92], Definition 2.1) is also called
star discrepancy (remark that this definition does not coincide with that of [FW94],
p. 33, equation (1.4.2)) and coincides with the Kolmogorov–Smirnov statistic for
testing uniformity on [0, 1]d. On the other hand, D∗

2 (Pn) and D∗
1 (Pn) yield, re-

spectively, the Cramér–von Mises statistic (see [Hic99]) and the L1-test of Schmid
and Trede ([ST96]; see also [SW86], p. 149).

It is well known that, when n → +∞, the star discrepancy D∗
∞ (Pn) converges to

0 if and only if the sample Pn is uniformly scattered. Moreover, under the hypoth-
esis of uniform distribution,

√
nD∗

∞ (Pn) converges in distribution to a well-defined
random variable: this means that the average-case error of a Monte Carlo integra-
tion procedure decreases (in a certain average sense) as 1√

n
. A worst-case error

is given by a Law of the Iterated Logarithm (LIL) for the discrepancy D∗
∞ (Pn),

stating that

D∗
∞ (Pn) = O

(√
ln lnn

n

)
P − as

([FW94], p. 19). Similar results holds also for the Cramér–von Mises statistics (e.g.,
the LIL has been proved by [Fin71]).

In this section, we prove that these results also hold for the generalized dis-
crepancies Dp (Pn). Then, we derive the asymptotic distribution of Dp (Pn) as a
function of a stochastic integral with respect to a pinned Brownian sheet (for the
definitions see, e.g., [AS87], pp. 1345–1346).

Proposition 2.1. Let Pn be given by independent and identically distributed ran-
dom variables. Then, the following three facts hold:

(i) Dp (Pn) → 0 P−as if and only if Pn is drawn from P (the uniform measure
on [0, 1]d); on the other hand, Dp (Pn) � 0 P

∗ − as if and only if Pn is
drawn from P

∗ �= P.
(ii) Under the probability measure P (the uniform measure on [0, 1]d),

Dp (Pn) = OP

(
1√
n

)
.

(iii) Under the probability measure P (the uniform measure on [0, 1]d), there
exists P − as a finite constant K > 0 such that Dp (Pn) satisfies the limit
inequality

lim sup
n→∞

√
nDp (Pn)√

ln lnn
≤ K.
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This can be restated saying that the inequality

Dp (Pn) > K

√
ln lnn

n
,

holds only for a finite number of indexes n.

Remark 2.2. In the special case p = 2, the Law of the Iterated Logarithm could
also be proved using the results of [Deh89] or [GKLZ01].

The following proposition yields an asymptotic distributional result for√
nDp (Pn) under the null hypothesis of uniform distribution of the sample.

Proposition 2.3. Under the probability measure P (the uniform measure on
[0, 1]d), the statistic Dp (Pn) given by (2.1) has the asymptotic distribution

√
nDp (Pn) D−→

⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣p dxu

⎤
⎦

1/p

,

where
{
Z
|u| (xu) , u ⊆ {1, . . . , d}

}
is a collection of centered Gaussian processes in-

dexed by the subset u ⊆ {1, . . . , d}. Any Z
|u| (xu) is defined as the stochastic integral

Z
|u| (xu) =

∫
[0,1]d

gu (x,y) dB (y) ,

where B is a d-dimensional pinned Brownian sheet. The processes Z
|u| (xu) are

characterized by the covariance functions:

Cov
[
Z
|u| (xu) , Z|u| (zu)

]
=

∏
j∈u

[µ′ (xj) µ′ (zj) − xjzj + xj ∨ zj ]

−
∏
j∈u

[µ′ (xj)µ′ (zj)] ,

Cov
[
Z
|u1| (xu1) , Z|u2| (zu2)

]
=

∏
j∈u1\u2

µ′ (xj) ·
∏

j∈u2\u1

µ′ (zj)

·

⎧⎨
⎩

∏
j∈u1∩u2

[µ′ (xj)µ′ (zj) − xjzj + xj ∨ zj ]

−
∏

j∈u1∩u2

µ′ (xj)µ′ (zj)

⎫⎬
⎭ ,

for u, u1, u2 ⊆ {1, . . . , d}.

Remark 2.4. (i) This result can be used as follows to assess uniformity of points.
Suppose we observe a set of points Pn believed to come from a uniformly distributed
sample. In this case,

√
nDp (Pn) D−→

⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣p dxu

⎤
⎦

1/p
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and

P
{√

nDp (Pn) ≤ x
}
≈ P

⎧⎪⎨
⎪⎩
⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣p dxu

⎤
⎦

1/p

≤ x

⎫⎪⎬
⎪⎭ .

Therefore, if we want to test that Pn is uniform, we verify whether
√

nDp (Pn) falls
into the interval [0, γα], where γα is defined by

1 − α = P

⎧⎪⎨
⎪⎩
⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣p dxu

⎤
⎦

1/p

≤ γα

⎫⎪⎬
⎪⎭

≈ P
{√

nDp (Pn) ≤ γα

}
and α is 1% or 5%. In this case, if the points are indeed uniformly distributed, we
asymptotically make an error only with probability α.

(ii) A particularly interesting case arises when p = 2. In this case

n [Dp (Pn)]2 D−→
∑
u �=∅

β2|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣2 dxu

=
∑
u �=∅

β2|u| ·
∫

[0,1]u

∫
[0,1]d

∫
[0,1]d

gu (x,y) gu (x, z) dB (y) dB (z) dxu

=
∫

[0,1]d

∫
[0,1]d

⎧⎨
⎩

∑
u �=∅

β2|u| ·
∫

[0,1]u
gu (x,y) gu (x, z) dxu

⎫⎬
⎭ dB (y) dB (z)

=
∫

[0,1]d

∫
[0,1]d

h (y, z) dB (y) dB (z)

(2.2)

where we have set

h (y, z) �
∑
u �=∅

β2|u| ·
∫

[0,1]u
gu (x,y) gu (x, z) dxu.

Since

0 <

∫
[0,1]d

h (y,y) dy < ∞,

0 <

∫
[0,1]d

∫
[0,1]d

h (y, z) dydz < ∞,

the spectrum of the integral operator A defined as

Am (y) =
∫

[0,1]d
h (y, z)m (z)λ⊗d (dz) ,

for y, z ∈ [0, 1]d, m ∈ L2, consists of a sequence of nonnegative eigenvalues (λj) with
λ1 ≥ λ2 ≥ · · · ≥ 0 and

∑∞
j=1 λj < ∞, and corresponding eigenvectors (φj) that can

be taken orthonormal. Therefore, h (y, z) can be written as
∑∞

j=1 λj · φj (y)φj (z)
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in L2, and (2.2) becomes

∑
u �=∅

β2|u| ·
∫

[0,1]u

∣∣∣Z|u| (xu)
∣∣∣2 dxu =

∞∑
j=1

λj ·
∫

[0,1]d

∫
[0,1]d

φj (y)φj (z) dB (y) dB (z)

=
∞∑

j=1

λj ·
(∫

[0,1]d
φj (y) dB (y)

)2

.

Now, the quantities defined by Xj =
(∫

[0,1]d
φj (y) dB (y)

)
, for j = 1, . . . ,∞, are

independent standard Gaussian random variables. Therefore, we can write

n [Dp (Pn)]2 D−→
∞∑

j=1

λj · X2
j ,

where (λj) and (Xj) are defined as above. The random variable
∑∞

j=1 λj · X2
j is

a linear combination of chi-squared random variables and is called a second order
Gaussian chaos. This result has also been obtained in [CS05b] in a completely
different way (using the properties of degenerate V -statistics). The eigenvalues
(λj) and the distribution of the random variable

∑
λjX

2
j can be approximated

through the algorithms exposed in [CS05a].

3. Asymptotic results for Lp
-discrepancies under nonuniformity

A centered and scaled version of Dp (Pn) converges to a well-defined random
variable under the alternative too, that is, when the sample Pn does not come from
the uniform distribution on [0, 1]d. While for p = ∞ the asymptotic distribution
is very complicated, in the case p < ∞ the limit distribution reduces to a normal
random variable with a complex variance (see [Ang83] for the case of the Cramér–
von Mises statistic, i.e., p = 2 and [Rag73] for the case of the Kolmogorov–Smirnov
statistic, i.e., p = ∞). We give an explicit formula for the variance and we provide
an alternative representation as a function of Brownian sheets.

Proposition 3.1. Under the probability measure P
∗ �= λ⊗d (i.e. P

∗ is not the
uniform measure on [0, 1]d), we have

Dp (Pn) −→
n→∞

Dp (P∞) , P
∗ − as,

where

Dp (P∞) =

⎡
⎣∑

u �=∅

β|u|p ·
∫

[0,1]u
|(P − P

∗) gu (x,Z)|p dxu

⎤
⎦

1/p

.

Proposition 3.2. If p < ∞, under the probability measure P
∗ �= λ⊗d (i.e. P

∗ is
not the uniform measure on [0, 1]d) with cdf F ∗, we have

√
n [Dp (Pn) − Dp (P∞)] D−→ N

p [Dp (P∞)]p−1 ,
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where N is a centered Gaussian random variable with variance given by

σ2 = P
∗

⎡
⎣p

∑
u �=∅

β|u|p ·
∫

[0,1]d
[(P − P

∗) gu (x,Z)]p−1 · [gu (x,y) − P
∗gu (x,Y)] dxu

⎤
⎦

2

= p2
∑
u �=∅

∑
v �=∅

β(|u|+|v|)p ·
∫

[0,1]d

∫
[0,1]d

[(P − P
∗) gu (x,Z)]p−1

· [(P − P
∗) gv (x,Z′)]p−1

· {P
∗ [gu (x,y) gv (x,y)] − P

∗gu (x,Y) P
∗gv (x,Y)}dxudxv.

(3.1)

N can be expressed alternatively as the following stochastic integral:

N = p ·
∑
u �=∅

β|u|p ·
∫

[0,1]d
[(P − P

∗) gu (x,Z)]p−1 · Z
|u|
F∗ (xu) dxu,

where
Z
|u|
F∗ (xu) =

∫
[0,1]d

gu (x,y) dBF∗ (y)

and BF∗ is the centered Gaussian process characterized by the variance

Cov [BF∗ (x) , BF∗ (z)] = F ∗ (x ∧ z) − F ∗ (x) · F ∗ (z) .

Remark 3.3. (i) The asymptotic distribution when p = ∞ is nonstandard and could
be obtained as in [Rag73] and [SW86] (p. 177).

(ii) We go back to the framework of Remark 2.4(i). Suppose, now, that the
points are not uniformly distributed. Then, the probability that

√
nDp (Pn) falls

into the interval [0, γα] is approximately given by

P
{√

nDp (Pn) ∈ [0, γα]
}

= P
{√

nDp (Pn) ≤ γα

}
= P

{√
n [Dp (Pn) − Dp (P∞)] ≤ γα −

√
nDp (P∞)

}
≈ Φ

(
γα −

√
nDp (P∞)
σ

)
,

where σ2 is the asymptotic variance of
√

n [Dp (Pn) − Dp (P∞)]. Since Dp (P∞) >
0, as n → ∞, we get

Φ
(

γα −
√

nDp (P∞)
σ

)
→ 0,

and the test rejects the null hypothesis with probability converging to 1.
(iii) Equation (3.1) can be used to derive the variance of the Cramér–von Mises

statistic under the alternative, as in [Ang83]. Since the Cramér–von Mises statistic
is the star discrepancy with p = 2 and d = 1, we have β = 1, M = 4

3 and
g1 (x, z) = −1{x>z}, and we recover the formulas (stated for a general choice of P)
on page 2480 of [Ang83].

4. A simulation study

In the following we will show some of the previous results using the generalized
L2-discrepancies as an example. We just consider the L2-case since this is the
framework of [LFHL01]. We will let n ∈ {25, 50, 100, 200, 400} and d ∈ {1, 2, 5}.7

7The simulations have been performed using Ox Professional 3.0 (see [Doo01]).
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4.1. Finite sample distribution of n·[D2 (Pn)]2. The following simulation study
shows some characteristics of n · [D2 (Pn)]2 for several sample sizes. For every
graphic, we have drawn 10, 000 times a sample Pn of size n of uniform independent
random variables on [0, 1]d. We have calculated n · [D2 (Pn)]2 for each of the 10, 000
samples and for the three statistics proposed by [Hic98a]; that is, the centered, the
star and the symmetric one. Then we have represented the density (as a histogram
and a kernel estimator) and the Q − Q plot with respect to a Gaussian random
variable with the same mean and the same variance (see Figures 4.1, 4.2, 4.3, 4.4,
4.5, 4.6 and 4.7). For d = 1, we have represented just the centered discrepancy
since the others are equal up to a scalar multiplication, the constant being 1 for
the star and 4 for the symmetric discrepancy.

For n varying and d fixed, the distribution of n · [D2 (Pn)]2 is remarkably stable:
apart from some fluctuations in the upper tail of the distribution, the overall form
is almost the same, especially when the behavior is compared with what happens
under the alternative hypothesis of nonuniformity. Moreover, another feature of the
finite sample distributions is the fact that, as long as d increases, the distribution of
n · [D2 (Pn)]2 appears to be less skewed: this is compatible with the fact that, when
both n and d go to infinity at suitable rates, the asymptotic distribution of the
scaled discrepancy is a Gaussian distribution. These two stylized facts are reflected
by the results of [CS05b], for the case of L2-discrepancies and related quantities.
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Figure 4.1. Centered n · [D2 (Pn)]2 for d = 1
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Figure 4.2. Centered n · [D2 (Pn)]2 for d = 2
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Figure 4.3. Star n · [D2 (Pn)]2 for d = 2
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Figure 4.4. Symmetric n · [D2 (Pn)]2 for d = 2
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Figure 4.5. Centered n · [D2 (Pn)]2 for d = 5
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Figure 4.6. Star n · [D2 (Pn)]2 for d = 5
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Figure 4.7. Symmetric n · [D2 (Pn)]2 for d = 5
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4.2. [D2 (Pn)]2 under the alternative. The following simulated example shows
that [D2 (Pn)]2 approaches a normal distribution when the points are not uniformly
distributed on [0, 1]d (see Figure 4.8). For each graphic, we have drawn 10, 000
samples Pn of size n of Beta(2, 2) independent random variables on [0, 1]. Therefore,
we expect to have

√
n

(
[D2 (Pn)]2 − .004762

.01810

)
D→ N (0, 1) .

The graphics are similar to the previous ones, but we have subtracted the true
mean from the values of the discrepancies, divided by the true standard deviation
and multiplied by

√
n. We have represented only the centered discrepancy, since

the others are equal up to a scalar multiplication.
The convergence towards a Gaussian random variable is evident, but slower

than the convergence towards a second order Gaussian Chaos under the null (this
is compatible with the convergence rates expressed by the Berry–Esséen bounds of
[CS05b]).
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Figure 4.8. Convergence of [D2 (Pn)]2 towards a normal random variable
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5. Proofs

Proof of Proposition 2.1. We start with a general majorization result for Dp (Pn)
that will be used several times in the remainder of the proof. Using Theorem 5.2 in
[Hic98a], it is possible to show that any Lp-discrepancy Dp (Pn) can be majorized
by a constant K times the corresponding Lp-star discrepancy D∗

p (Pn) (see [Hic98a],
Section 5.1, for a definition). Indeed, taking β1 = β, µ1 = µ, β2 = 1, µ2 = 1

6 − x2

2 ,
we have

Dp (Pn) ≤ K

(
q, 1, β,

1
6
− x2

2
, µ

)
· D∗

p (Pn) ,

where q−1 + p−1 = 1. Moreover, from the fact that µ ∈ X∞ (see [Hic98a], equation
(2.4)), µ′ is bounded and K = K

(
q, 1, β, 1

6 − x2

2 , µ
)

is finite. Writing D∗
p (Pn) as

in [Hic98a] (page 316, equation 5.1a), we have

(5.1)
[
D∗

p (Pn)
]p =

∑
u �=∅

∥∥∥∥ |Pn,u ∩ [0,xu)|
n

− Vol ([0,xu))
∥∥∥∥

p

Lp

,

where Pn,u denotes the projection of the sample Pn on the unit cube [0, 1]u. There-

fore, from Lyapunov’s inequality,
∥∥∥ |Pn,u∩[0,xu)|

n − Vol ([0,xu))
∥∥∥
Lp

can be majorized
by the L∞ distance. This leads to the majorization formula

(5.2) Dp (Pn) ≤ K · D∗
p (Pn) ≤ K ·

⎧⎨
⎩

∑
u �=∅

[D∗
∞ (Pn,u)]p

⎫⎬
⎭

1
p

.

Using this result, the first part of (i) is trivial, since Pn,u is a uniform sample on
[0, 1]u, for any u, and the Glivenko–Cantelli Theorem implies that D∗

∞ (Pn,u) → 0
almost surely. As concerns the second part of (i), using Theorem 5.2 in [Hic98a] it
is possible to show that any Lp-discrepancy Dp (Pn) can be minorized by a constant
times the corresponding Lp-star discrepancy D∗

p (Pn) (see [Hic98a], Section 5.1, for
a definition). Indeed, taking β1 = 1, µ1 = 1

6 − x2

2 , β2 = β, µ2 = µ, we have

D∗
p (Pn) ≤ K

(
q, β, 1, µ,

1
6
− x2

2

)
· Dp (Pn) ,

where q−1 + p−1 = 1. K
(
q, β, 1, µ, 1

6 − x2

2

)
is strictly positive since it is greater

than max {β, βs}. Moreover, the generalized Lp-star discrepancy can be minorized
as D∗

p (Pn) ≥
∥∥∥ |Pn∩[0,x)|

n − Vol ([0,x))
∥∥∥
Lp

, and the latter converges to a strictly
positive constant as long as n → ∞.

To prove (ii), we just need to show that for any δ there exists a λ such that

sup
n∈N

P
{√

nDp (Pn) ≥ λ
}
≤ δ.
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This derives from the application of (5.2)

P

{
Dp (Pn) ≥ λ√

n

}
≤ P

⎧⎨
⎩

∑
u �=∅

[D∗
∞ (Pn,u)]p ≥

(
λ

K
√

n

)p
⎫⎬
⎭

≤
∑
u �=∅

P

{
[D∗

∞ (Pn,u)]p ≥ 1
(2d − 1)

(
λ

K
√

n

)p}

≤
∑
u �=∅

P

{
D∗

∞ (Pn,u) ≥ m√
n

}
,(5.3)

where we have set m = λ/
[(

2d − 1
) 1

p K
]
. Here, an inequality of Kiefer and

Wolfowitz (see [KW58]) (indeed a multivariate extension of the Dvoretzky–Kiefer–
Wolfowitz or DKW inequality) implies the existence of positive constants c and c′

such that

(5.4) P

{
D∗

∞ (Pn,u) ≥ m√
n

}
≤ c′ · exp

{
−cm2

}
for all n > 0, m ≥ 0 and u. Therefore, from (5.3) and (5.4)

P

{
Dp (Pn) ≥ λ√

n

}
≤ c′ ·

(
2d − 1

)
· exp

{
− cλ2

(2d − 1)
2
p K2

}
,

and the RHS is independent of n.
As concerns (iii), recall that

√
n · D∗

∞ (Pn,u) is exactly the empirical process of
the sample Pn,u on [0, 1]u and then, by the LIL (see, e.g., [Kie61], [FW94], p. 19)
we have

lim sup
n→∞

√
n · D∗

∞ (Pn,u)√
ln lnn

≤ 1√
2
.

This yields the result.

Proof of Proposition 2.3. First of all, we recall the definitions of the empirical mea-
sures λ⊗d

n and λ
⊗|u|
n for u ⊆ {1, . . . , d} and the associated integrals:

(5.5)
λ⊗d

n = 1
n

∑
z∈Pn

δz, λ
⊗|u|
n = 1

n

∑
z∈Pn

δzu
,

λ⊗d
n f =

∫
f dλ⊗d

n = 1
n

∑
z∈Pn

f (z) , λ
⊗|u|
n f =

∫
f dλ

⊗|u|
n = 1

n

∑
z∈Pn

f (zu) ,

where δz is the Dirac measure in z and zu is the projection of z on [0, 1]u. Recalling
that ∏

j∈u

µ′ (xj) = λ⊗dgu (x,Z) =
∫

[0,1]d
gu (x, z) dz,

(2.1) can be written as

(5.6) Dp (Pn) =

⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]d

∣∣(λ⊗d − λ⊗d
n

)
gu (x,Z)

∣∣p dx

⎤
⎦

1/p

.
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Since, by Proposition 2.1(ii)
√

nDp (Pn) = OP (1), (5.6) becomes

√
nDp (Pn) =

⎡
⎣∑

u �=∅

βp|u| ·
∫

[0,1]d

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Z)

∣∣p dx

⎤
⎦

1/p

,

and we are led to consider the asymptotic behavior of the empirical process (see
[vdV98], p. 266)

Z
|u|
n (xu) =

√
n
(
λ⊗d − λ⊗d

n

)
gu (x,Z) .

We need to show that, uniformly in x ∈ [0, 1]d and for any u ⊆ {1, . . . , d},
Z
|u|
n (xu) converges in the space of bounded functions towards a stochastic integral

with respect to a |u|-dimensional pinned Brownian sheet. In order to do so, we
show that the class of functions

F =
{

gu (x, ·) , for any x ∈ [0, 1]d , u ⊆ {1, . . . , d}
}

is λ⊗d-Donsker (see [vdVW96], p. 81). The elements of F are linear combinations
of a finite number of elements of the form∏

j∈u1

(µ′ (xj) + xj) ·
∏

j∈u2

1{xj>·j}

for u1 ∩ u2 = ∅ and u1 ∪ u2 = u ⊆ {1, . . . , d}. From Example 2.1.3 in [vdVW96],⎧⎨
⎩

∏
j∈u2

1{xj>·j},xu2 ∈ [0, 1]u2 , u2 ⊆ {1, . . . , d}

⎫⎬
⎭

is a λ⊗d-Donsker class; the property is preserved by multiplication with the class⎧⎨
⎩

∏
j∈u1

(µ′ (xj) + xj) ,xu1 ∈ [0, 1]u1 , u1 ⊆ {1, . . . , d}

⎫⎬
⎭

(we remark that µ′ (·) ∈ L∞ ([0, 1]) and is therefore bounded by a constant) and by
linear combination.

Therefore, Z
|u|
n (xu) converges uniformly over F to the stated limit, and simple

manipulations show that Z
|u| (xu) can be expressed as

Z
|u| (xu) =

∫
[0,1]d

gu (x,y) dB (y) ,

where B denotes a pinned Brownian sheet (the multi-dimensional analogue of a
Brownian bridge). The Gaussian process Z

|u| (xu) is characterized by the same
mean and covariance of Z

|u|
n (xu).

Now, for finite p, the function

‖(fu)‖ : f �→

⎡
⎣∑

u �=∅

βp|u|
∫

[0,1]d
|fu|p dx

⎤
⎦

1/p

([Hic98a], p. 300) is continuous, and therefore the result is derived from the Con-
tinuous Mapping Theorem (see [Kal97], Theorem 3.27). When p = ∞, on the
other hand, we have to apply the Argmax Continuous Mapping Theorem ([vdV98],
Corollary 5.58). The limiting process has continuous sample paths, and maxima of



438 CHRISTINE CHOIRAT AND RAFFAELLO SERI

Gaussian processes are unique by Lemma 2.6 in [KP90]. As concerns the uniform
tightness of the maximum of

(
Z
|u|
n (xu)

)
n
, it means that

sup
x

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Y)

∣∣ = OP (1) ;

that is, for any ε there exists an M such that

(5.7) sup
n∈N

P

{
sup
x

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Y)

∣∣ > M

}
≤ ε.

First we decompose gu (x,y) as

gu (x,y) =
∏
j∈u

[
µ′ (xj) + xj − 1{xj>yj}

]

=
∑

u′⊆u

⎧⎨
⎩

∏
j∈u\u′

µ′ (xj)

⎫⎬
⎭ ·

⎧⎨
⎩

∏
j∈u′

[
xj − 1{xj>yj}

]⎫⎬⎭ ,

and we write

sup
x

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Y)

∣∣
= sup

x

∣∣∣∣∣∣
∑

u′⊆u

⎧⎨
⎩

∏
j∈u\u′

µ′ (xj)

⎫⎬
⎭ ·

√
n
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
xj − 1{xj>yj}

]⎫⎬⎭
∣∣∣∣∣∣

≤
∑

u′⊆u

sup
xu\u′

∣∣∣∣∣∣
∏

j∈u\u′

µ′ (xj)

∣∣∣∣∣∣ · sup
xu′

∣∣∣∣∣∣
√

n
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
xj − 1{xj>yj}

]⎫⎬⎭
∣∣∣∣∣∣

≤
∑

u′⊆u

m|u\u′| ·

∥∥∥∥∥∥
√

n
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
xj − 1{xj>yj}

]⎫⎬⎭
∥∥∥∥∥∥
L∞

,

where we have used the fact that supxj
|µ′ (xj)| ≤ m. Therefore (5.7) becomes

sup
n∈N

P

{
sup
x

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Y)

∣∣ > M

}

≤ sup
n∈N

P

⎧⎨
⎩

∑
u′⊆u

m|u\u′| ·

∥∥∥∥∥∥
√

n
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
xj − 1{xj>yj}

]⎫⎬⎭
∥∥∥∥∥∥
L∞

> M

⎫⎬
⎭

≤ sup
n∈N

∑
u′⊆u

P

⎧⎨
⎩
∥∥∥∥∥∥
√

n
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
·j − 1{·j>yj}

]⎫⎬⎭
∥∥∥∥∥∥
L∞

>
M

2|u|m|u\u′|

⎫⎬
⎭ .
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Using inequality (5.4), we get

sup
n∈N

P

{
sup
x

∣∣√n
(
λ⊗d − λ⊗d

n

)
gu (x,Y)

∣∣ > M

}

≤ sup
n∈N

∑
u′⊆u

P

⎧⎨
⎩
∥∥∥∥∥∥
(
λ⊗d − λ⊗d

n

)⎧⎨⎩
∏
j∈u′

[
xj − 1{xj>·j}

]⎫⎬⎭
∥∥∥∥∥∥
L∞

>
M

2|u|m|u\u′|√n

⎫⎬
⎭

≤
∑

u′⊆u

c′ · exp
{
−c · M2

22|u|m2|u\u′|

}

≤ c′ · 2|u| · exp

{
−c · M2

22|u| max
{
1, m2|u|

}
}

.

Setting

M =
2|u| max

{
1, m|u|}

√
c

·

√
ln

(
2|u|c′

ε

)

we get the uniform tightness required.

Proof of Proposition 3.1. The proof is trivial and uses repeated application of the
as version of the Slutsky Theorem (see [Dav94], p. 286, Theorem 18.8(i)), starting
from the fact that, under the alternative, P

∗-almost surely:

1
n

∑
z∈Pn

gu (x, z) = P
∗
ngu (x,Z)

−→
n→∞

∫
[0,1]d

gu (x, z) dP
∗ (z) = P

∗gu (x,Z) .

Proof of Proposition 3.2. Our strategy of proof is to link the asymptotic distribu-
tion of Dp (Pn) to that of [Dp (Pn)]p using the standard delta method, then to
express the asymptotic distribution of [Dp (Pn)]p in terms of an empirical process
using the functional delta method (see [vdV98], Chapter 20) and then to derive
the asymptotic distribution of this empirical process. We divide the proof into six
steps.

(1) We rewrite (2.1) as

(5.8) Dp (Pn) =

⎡
⎣∑

u �=∅

β|u|p ·
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗
n)

∣∣∣∣∣∣
p

dxu

⎤
⎦

1/p

,

where

Z (xu; P∗
n) =

1
n

∑
z∈Pn

gu (x, z)

=
∫

[0,1]d
gu (x, z) dP

∗
n (z) .
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From Proposition 3.1, as long as n → ∞, Dp (Pn) converges P
∗-almost surely to

Dp (P∞) with Z (xu; P∗) =
∫
[0,1]d

gu (x, z) dP
∗ (z):

(5.9) Dp (P∞) =

⎡
⎣∑

u �=∅

β|u|p ·
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗)

∣∣∣∣∣∣
p

dxu

⎤
⎦

1/p

.

We remark that Z (xu; P∗
n) is a random perturbation of Z (xu; P∗) and

√
n [Z (xu; P∗

n) − Z (xu; P∗)] =
√

n (P∗
n − P

∗) gu (x,Z)

is an empirical process.
(2) First of all, applying the standard delta method to the function φ (x) = xp,

we get
√

n ([Dp (Pn)]p − [Dp (P∞)]p)

=
√

np [Dp (P∞)]p−1 · (Dp (Pn) − Dp (P∞)) + oP (1) ,
√

n (Dp (Pn) − Dp (P∞))

=
√

n ([Dp (Pn)]p − [Dp (P∞)]p)
p [Dp (P∞)]p−1 + oP (1) .

(5.10)

Therefore, we are led to study the behavior of ([Dp (Pn)]p − [Dp (P∞)]p). Using
(5.8) and (5.9),

√
n ([Dp (Pn)]p − [Dp (P∞)]p) becomes

√
n ([Dp (Pn)]p − [Dp (P∞)]p)

=
∑
u �=∅

β|u|p ·
√

n

∫
[0,1]u

⎧⎨
⎩
∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗
n)

∣∣∣∣∣∣
p

−

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗)

∣∣∣∣∣∣
p⎫⎬
⎭dxu.

(5.11)

(3) Then, we use the functional delta method (see [vdV98, Chapter 20]) to
approximate the previous formula. Define the statistical functional φu as

φu (G) =
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

dxu.

The difference φu (Z (xu; P∗))−φu (Z (xu; P∗
n)) appears in (5.11), and it is interest-

ing to approximate it through a simpler one (the objective is to obtain a functional
that is linear in (P∗

n − P
∗); that is, an empirical process). The right way to sim-

plify this formula is to show that this functional is Hadamard differentiable at
G = Z (xu; P∗), and the same holds for any u �= ∅.8 Therefore, we have to show

8We say that map φ : Dφ → E, defined on a subset Dφ of a normed space D containing θ, is
Hadamard differentiable at θ if there exists a continuous, linear map φ′

θ : D → E such that∥∥∥∥φ (θ + tht) − φ (θ)

t
− φ′

θ (h)

∥∥∥∥
E

→ 0

as t ↓ 0 and for every ht → h (such that θ+tht is contained in the domain of φ for all small t > 0).

Loosely speaking, this means that the difference 1
t
· [φ (θ + tht) − φ (θ)] can be approximated by

the linear function φ′
θ (h), whose asymptotic behavior is often much simpler to study.
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that, for every gt → g, when t ↓ 0, there exists a function φ′
u (g) such that

(5.12)
∥∥∥∥φu (G + t · gt) − φu (G)

t
− φ′

u (g)
∥∥∥∥ → 0.

In this formula, the reader can identify

t =
1√
n

,

G (xu) = Z (xu; P∗) ,

(G + t · gt) (xu) = Z (xu; P∗
n) ,

gt (xu) =
√

n [Z (xu; P∗
n) − Z (xu; P∗)] .

Moreover, ‖·‖ is the uniform norm ‖·‖L∞ and

φ′
u (g) = −p ·

∫
[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠

p−1

g (xu) dxu.

Now, φu (Z (xu; P∗)) − φu (Z (xu; P∗
n)) becomes

∫
[0,1]u

⎧⎨
⎩
∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗
n)

∣∣∣∣∣∣
p

−

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − Z (xu; P∗)

∣∣∣∣∣∣
p⎫⎬
⎭dxu

=
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − (G + t · gt) (xu)

∣∣∣∣∣∣
p

dxu

−
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

dxu

=
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

·
[∣∣∣∣1 − (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu))

∣∣∣∣
p

− 1
]

dxu

=
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

·
[(

1 − (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu))

)p

− 1
]

dxu,

(5.13)

where we take t small enough to have

(t · gt) (xu) ≤

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠ .
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Now, using (5.13), (5.12) can be majorized as

∥∥∥∥∥∥
∫
[0,1]u

{∣∣∣∏j∈u µ′ (xj) − (G + t · gt) (xu)
∣∣∣p − ∣∣∣∏j∈u µ′ (xj) − G (xu)

∣∣∣p} dxu

t

+ p ·
∫

[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠

p−1

g (xu) dxu

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

· t−1

[(
1 − (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu))

)p

− 1
]

dxu

+ p ·
∫

[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠

p−1

g (xu) dxu

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

· t−1

(
−p (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu)) + Et (u,x)
)

dxu

+ p ·
∫

[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠

p−1

g (xu) dxu

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥p ·
∫

[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − G (xu)

⎞
⎠

p−1

· (g (xu) − gt (xu)) dxu

+ t−1 ·
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

· Et (u,x) dxu

∥∥∥∥∥∥
≤ p ·

∥∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p−1

· |g (xu) − gt (xu)|dxu

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥t−1 ·
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

· Et (u,x) dxu

∥∥∥∥∥∥ ,

(5.14)

where Et is defined as

Et (u,x) �
(

1 − (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu))

)p

− 1 + p (t·gt)(xu)

(∏j∈u µ′(xj)−G(xu)) .
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Now, (5.14) converges to 0, since∥∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p−1

· |g (xu) − gt (xu)| dxu

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p−1

dxu

∥∥∥∥∥∥∥ · ‖g (xu) − gt (xu)‖ → 0

and ∥∥∥∥∥∥t−1 ·
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

· Etdxu

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∫

[0,1]u

∣∣∣∣∣∣
∏
j∈u

µ′ (xj) − G (xu)

∣∣∣∣∣∣
p

dxu

∥∥∥∥∥∥ · t−1 ‖Et (u,x)‖

→ 0.

This means that (5.11) becomes

√
n ([Dp (Pn)]p − [Dp (P∞)]p)

=
∑
u �=∅

β|u|p ·
√

n [φu(Z (xu; P∗
n))− φu (Z (xu; P∗))]

=
∑
u �=∅

β|u|p ·
√

n

[
φu

(
Z (xu; P∗)

+
√

n [Z (xu; P∗
n) − Z (xu; P∗)]√

n

)
− φu (Z (xu; P∗))

]

= −p ·
∑
u �=∅

β|u|p ·
∫

[0,1]u

⎛
⎝∏

j∈u

µ′ (xj) − Z (xu; P∗)

⎞
⎠

p−1

·
√

n [Z (xu; P∗
n) − Z (xu; P∗)] dxu + oP (1) .

(5.15)

(4) Let F ∗ be the cdf of P
∗. Then, we show that

(5.16)
√

n (Z (xu; P∗
n) − Z (xu; P∗)) D−→ Z

|u|
F∗ (xu) ,

for any u ⊆ {1, . . . , d}, where

Z
|u|
F∗ (xu) =

∫
[0,1]d

gu (x,y) dBF∗ (y) ,

and BF∗ is the centered Gaussian process characterized by variance:

Cov [BF∗ (x) , BF∗ (z)] = F ∗ (x ∧ z) − F ∗ (x) · F ∗ (z) .

The method is the same used in the proof of Proposition 2.3 with the same class of
functions F and, indeed, Z

|u| can be obtained setting P
∗ = λ⊗d.

(5) Combining (5.10), (5.15) and (5.16), we get the final distribution.
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(6) The variance of N can be computed, substituting the expression of Z
|u|
F∗ (xu)

into N and exchanging the order of integration:

N = p ·
∑
u �=∅

β|u|p ·
∫

[0,1]d
[(P − P

∗) gu (x,Z)]p−1

·
[∫

[0,1]d
gu (x,y) dBF∗ (y)

]
dxu

=
∫

[0,1]d

[
p
∑
u �=∅

β|u|p

·
∫

[0,1]d
[(P − P

∗) gu (x,Z)]p−1 · gu (x,y) dxu

]
dBF∗ (y) .

This is a stochastic integral with respect to a Gaussian process, and V (N) can be
computed as in [vdV98], p. 269.
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Dipartimento di Economia, Università degli Studi dell’Insubria, Via Ravasi 2, 21100

Varese, Italy

E-mail address: rseri@eco.uninsubria.it

http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1488791
http://www.ams.org/mathscinet-getitem?mr=1488791

	1. Introduction
	2. Asymptotic results for Lp-discrepancies under uniformity
	3. Asymptotic results for Lp-discrepancies under nonuniformity
	4. A simulation study
	4.1. Finite sample distribution of n[D2(Pn)]2
	4.2. [D2(Pn)]2 under the alternative

	5. Proofs
	References

