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A FAST, RIGOROUS TECHNIQUE
FOR COMPUTING THE REGULATOR

OF A REAL QUADRATIC FIELD

R. DE HAAN, M. J. JACOBSON, JR., AND H. C. WILLIAMS

Abstract. We present a new algorithm for computing the regulator of a real

quadratic field Q(
√

D), based on an algorithm for unconditionally verifying the
correctness of the regulator produced by a subexponential algorithm, that runs
in expected time O(D1/6+ε) under the Generalized Riemann Hypothesis. The
correctness of our algorithm relies on no unproven hypotheses and is currently
the fastest known unconditional algorithm for computing the regulator. A
number of implementation issues and performance enhancements are discussed,
and we present the results of computations demonstrating the efficiency of the
new algorithm.

1. Introduction

Many problems in mathematics are related to determining the fundamental unit
η0 (> 1) of a related real quadratic number field K = Q(

√
D). Perhaps one of the

most well-known examples is the problem of solving the Pell equation x2−Dy2 = 1
in integers x and y for a certain nonsquare integer D, which is described in detail
in Williams [25], but other examples can be found in Lenstra [15] and Jacobson
et al. [9]. In most cases, the fundamental unit grows at an exponential rate as
the discriminant ∆ of K increases, and as a result, it is difficult to work with it
explicitly. Therefore it is often easier to work with the regulator R of K, which is
defined to be the natural logarithm of the fundamental unit, or with the (more or
less equivalent) base 2-logarithm of the fundamental unit, which we denote by R2.

A number of techniques have been developed that can be used to compute the
regulator of a real quadratic number field. In particular, there was an important
breakthrough in 1987, when A.K. and H.W. Lenstra introduced the basic idea
behind a method for factoring integers of subexponential run time complexity in
[12] and later in [13] based on properties of the class group of an imaginary qua-
dratic order. It should be mentioned that some of the ideas behind this technique,
which is essentially an index calculus method, were mentioned earlier by Pohst and
Zassenhaus [18]. This method depends on the assumption of a Generalized Rie-
mann Hypothesis (GRH) for its run time complexity. McCurley [17] and Hafner
and McCurley [7] first used the underlying idea of this algorithm to construct a
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subexponential technique for determining the structure of the class group of an
imaginary quadratic field. Buchmann [2] was the first to point out that the subex-
ponential technique can also be applied to the problem of computing a system of
fundamental units and class group of an arbitrary number field, after which his
ideas were modified and implemented by Cohen, Diaz y Diaz and Olivier [3, 4].
The complexity analysis of computing the regulator for a real quadratic field using
this technique was improved by Abel [1] in her doctoral thesis, after which the com-
plexity analysis was again improved by Vollmer [23]. Like previous versions, the
complexity of Vollmer’s algorithm is dependent on the truth of the GRH; under the
GRH, the expected time to compute the regulator is O(e(

√
2+o(1))(log D log log D)1/2

).
Unfortunately, the correctness of the output of these methods also depends on the

unproven GRH, and many mathematical problems that can easily be solved as soon
as a good approximation of the regulator of a related real quadratic field is computed
(see [9] for one such problem) require this computed value to be unconditionally
correct. For example, given the regulator, one can compute a representation of
the fundamental unit and use Lucas sequences to compute the coefficients of any
desired unit in the field. If the regulator is not unconditionally correct, there is no
guarantee that the corresponding unit is fundamental, and one cannot obtain all
units in the field.

Up to the publication of [9], the fastest known unconditional method for comput-
ing the regulator of a real quadratic number field was the algorithm with run time
complexity O(D1/5+ε) under the GRH that is described in Lenstra [14]. The first
step of the algorithm uses analytic techniques to obtain an approximation of hR,
where h is the class number of the field. Then, the ideal with distance closest to this
approximation is computed, and baby steps and giant steps are used to determine
an approximation R′ of a multiple of R. After this, baby steps and giant steps are
used to determine a lower bound for R. Finally, it is checked for all primes q that
can possibly divide the multiplier whether the ideal with distance closest to R′/q
is equal to the ring of integers OK , in which case q divides the multiplier. Using
these primes the full multiplier is determined, after which it is easy to determine
an approximation for R.

As observed in [9], the key to obtaining a run time complexity of O(D1/6+ε)
is that we can use subexponential techniques rather than baby steps/giant steps
to compute the multiple of R. The output of the subexponential algorithms is
unconditionally a multiple of R, and under the GRH is equal to R. Given this
multiple, one can use the second and third stages of the O(D1/5+ε) algorithm
to determine the multiplier and thus compute R, resulting in an unconditionally
correct algorithm for computing R with expected run time complexity O(D1/6+ε)
under the GRH.

In this paper, we describe in detail the O(D1/6+ε) algorithm for unconditionally
computing the regulator of a real quadratic field. We first state basic results on
ideals and infrastructure in real quadratic fields that are required for our algorithm
in Section 2. We use (f, p)-representations as described in [11] for arithmetic in the
infrastructure. This technique, which has the advantages of faster algorithms and
approximations of distances with relatively low precision, is briefly summarized
in Section 3, together with the relevant algorithms. The regulator verification
algorithm is described and analyzed in terms of run time complexity in Section 4
and a number of practical improvements described in detail in de Haan [5], including
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a parallelization of the baby step/giant step algorithm, are outlined in Section 5. In
order to make our algorithm truly rigorous, it is essential that we do a full precision
analysis on it, as the regulator is a transcendental number and can only be computed
up to some finite precision. This analysis has been performed in detail in [5], but
the main results are stated in Section 6. Finally, numerical results comparing the
performance of our algorithm to the O(D1/5+ε) algorithm and demonstrating its
efficiency are presented in Section 7. In particular, we were able to unconditionally
compute the regulator of a real quadratic field with a 65 decimal digit discriminant,
a significant improvement to what was previously possible.

2. Basics

We precede our discussion by listing some well-known facts about real quadratic
number fields. The information from this section can be found in greater detail in
Williams and Wunderlich [26] and in van der Poorten et al. [22].

2.1. Continued fractions. Every φ ∈ R>0 can be written as a regular continued
fraction

q0 +
1

q1 +
1

. . . +
1

qn−1 +
1
φn

with qi ∈ Z and qi ≥ 1 when i ≥ 1, which we denote by

φ = 〈q0, q1, q2, . . . , qn−1, φn〉 = 〈q0, q1, q2, . . . , qn−1, . . . 〉

for any n ∈ Z>0. We can compute the values for φi and ai recursively by putting
φ0 := φ, ai = �φi� and φi+1 := 1

φi−qi
> 1 when i ≥ 0. The variables qi (i ≥ 0) are

called the partial quotients and the Cn = 〈q0, q1, q2, . . . , qn〉 the convergents of the
continued fraction of φ. The convergents are given by Cn = An/Bn, where Ai and
Bi are defined by A−2 = 0, B−2 = 1, A−1 = 1, B−1 = 0 and

Ai = qiAi−1 + Ai−2,

Bi = qiBi−1 + Bi−2

for i = 0, 1, . . . .
Now, let D be a positive squarefree number and assume that we have P, Q ∈ Z

such that Q divides P 2 −D. Then we can determine the partial quotients qi of the
irrational number φ = φ0 = (P +

√
D)/Q = 〈q0, q1, . . . , qn−1, φn〉 by making use of

the formulas

Pi+1 = qiQi − Pi,

Qi+1 = (D − Pi+1
2)/Qi = Qi−1 − qi(Pi+1 − Pi),

qi+1 = �(Pi+1 +
√

D)/Qi+1� = �(Pi+1 + d)/Qi+1�,

where d = �
√

D�, P0 = P, Q0 = Q and q0 = �φ0�. Also,

φn = (Pn +
√

D)/Qn .
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If we put Ψ1 = 1 and define

Ψk =
k−1∏
i=1

ψi (k > 1)

where
ψi = (−φi)

−1 = (Pi +
√

D)/Qi−1,

then
Ψi = Ai−2 − φ0Bi−2 .

In addition, for i ≥ 1 we have that

N(Ψi) = ΨiΨi = (−1)i−1 Qi−1

Q0

and that

(2.1) Ψi+2 = qiΨi+1 + Ψi .

2.1.1. Reduced ideals and reduction. Let [α, β] denote the Z-module αZ + βZ =
{xα + yβ | x, y ∈ Z}. If we define ω to be (1 +

√
D)/2 when D ≡ 1 (mod 4) and to

be
√

D otherwise, then we have OK = [1, ω], where OK is the ring of integers in K.
In fact, we have that every ideal in OK can be written as a = [a, β], where β is of
the form b+ cω, a, b, c ∈ Z, c | a, c | b, (the norm of a) N(a) = ac and N(a) | ββ. If
c = 1, we call the ideal a primitive. A primitive ideal a is said to be reduced if N(a)
is a minimum in a, which is exactly when there is no nonzero element α ∈ a such
that both |α| < N(a) and |α| < N(a). We use the usual notation (α) to denote the
principal ideal generated by α ∈ OK .

From these observations we can deduce (see [26]) that every primitive ideal a

of OK can be written as [Q/σ, (P +
√

D)/σ] for some P, Q ∈ Z where σ = 2 if
D ≡ 1 (mod 4) and σ = 1 otherwise. Furthermore, we must have Q|(D − P 2). We
use the notation a = (Q, P ) from here on.

Now, if we put φ = φ0 = (P +
√

D)/Q, it can be shown that we can produce a se-
quence of primitive ideals (Qi, Pi) equivalent to a by applying the continued fraction
algorithm to φ. If we start this process with a (not necessarily reduced) primitive
ideal a1 = (Q0, P0) we eventually obtain a reduced ideal aj = (Qj−1, Pj−1) =
(Ψj)a1 in the sequence, after which all of the following ideals (Qi, Pi) are also re-
duced. It is easy to show that, for a reduced ideal ai, we have that ψi > 1 and
ψiN(ai) = |(Pi +

√
D)/Q0| <

√
∆, so that in particular ψi <

√
∆ and N(ai) <

√
∆.

If the initial ideal a1 is not reduced we find the first reduced ideal (Qj , Pj) after
O(log(Q0/

√
D)) steps, precisely when Qj > 0 and 0 < Pj <

√
D for the first

time. After this happens, these conditions are met for the subsequent Pi and Qi

as well, i.e., the subsequent Pi and Qi become bounded. Therefore, since
√

D is
an irrational number, the sequence {qi} must become periodic. In addition, it can
be shown that the corresponding cycle of ideals contains exactly all of the reduced
ideals in OK equivalent to a1, which means that the preperiod represents the steps
required to reduce the ideal.

If we start with a reduced ideal a1 (so that the cycle starts with the first ideal)
that is ambiguous, i.e., such that a1 = a1, we have a special symmetry property for
the ideals (see [22]) in the cycle that says that ai = aπ+2−i for all i with 1 ≤ i ≤ π,
where π is the length of the period. This turns out to be very useful later on.
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Finally, we state the following theorem, which can be used when we have two
reduced ideals ai = (Ψi)a1 and ai+m = (Ψi+m)a1 in the cycle of reduced principal
ideals. It is either used to determine an upper bound for Ψi or to determine a lower
bound for Ψi+m and will be employed frequently in the sequel, for example to get
an indication of how many steps need to be taken in the cycle before the generator
grows by a certain factor. The proof of this theorem and some other theorems in
following sections are omitted, but can be found in [5].

Theorem 2.1. Ψi+m > Fm+1Ψi, where m ≥ 1, F0 := 0, F1 := 1 and Fn :=
Fn−1 + Fn−2 for n ≥ 2.

2.2. Infrastructure. When the ideal a1 that we use as initial input for the con-
tinued fraction algorithm is equal to (1) = OK = [1, ω], which is principal and
reduced, we get ai = (Ψi)a1 = (Ψi), and the cycle of ideals contains all of the re-
duced principal ideals in OK . Since in this case ψi > 1 for all i ≥ 1, we can see that
{Ψi} is a strictly increasing sequence. After computing all of the ideals in the cycle
we find aπ+1 = a1 and (Ψπ+1) = (Ψ1) = (1), where π is again the length of the
cycle, which indicates that Ψπ+1 must be a unit. In fact, Ψπ+1 is the fundamental
unit of OK .

We define the distance δi from a1 to ai by δi = log Ψi when ai = (Ψi)a1. When
we discuss the distance of an ideal aj , this refers to the distance from (1) to aj ,
where we start our continued fraction algorithm with the ideal a1 = [1, ω]. The
distance is used as an indication of how far around the cycle of reduced principal
ideals an ideal is located.

By Levy’s Law (see [16]) we expect that limi→∞
i
√

Ψi = eτ with τ ≈ 1.186. If i
is relatively large and we take the natural logarithm on both sides, we find that

ln i
√

Ψi ≈ ln eτ ⇒ 1
i

ln Ψi ≈ τ

⇒ i ≈ ln Ψi

τ
≈ 0.843 ln Ψi .

Since ln Ψπ+1 = ln η0 = R, this shows us that we would expect that the regulator
would provide us with a fairly good estimate of the number of (reduced) ideals
in the cycle. Even though Levy’s Law is probabilistic, computations have tended
to confirm its accuracy, particularly when the regulator is large (see, for example,
[24]). Similarly, taking the base 2-logarithm on both sides, we have that

(2.2) log Ψi ≈ iτ log e ≈ 1.7i,

which shows us that there is an approximately linear relation between the subscript
of an ideal and its distance.

Assume that we have two ideals ai and aj as a result of applying the continued
fraction algorithm on a1 = [1, ω]. We want to investigate the product aiaj , which
by definition is the ideal generated by the products of elements in ai and aj . Both
ideals are principal, so if ai = ΨiOK and aj = ΨjOK it is easy to verify that
their product must be (ΨiΨj)OK = (ΨiΨj), which is principal as well. Even
though both ai and aj are reduced, their product need not be. However, it is
possible to write aiaj = (u)b1, where u ∈ Z and b1 is primitive, and if we apply
the continued fraction algorithm to b1 in order to produce a sequence bj of ideals
with bj = (Ψ′

j)b1, we eventually find a least index k where bk is reduced. Then
bk = (Ψ′

k)b1 = (Ψ′
kΨiΨj/u), and because bk is a reduced principal ideal we must
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have bk = am for some m ∈ Z>0. Furthermore,

δm = log(Ψ′
kΨiΨj/u) = δi + δj + δ

where δ = log(Ψ′
k/u). It can be shown that δ = O(log D) which, when compared

with δi and δj , is usually very small. Therefore, δm ≈ δi + δj . This almost gives us
a group operation on the ideals in the cycle and enables us to reach ideals at fixed
distances faster. As soon as we have an ideal aj with some large distance δ′, we can
use multiplications with aj followed by reduction instead of single applications of
the continued fraction algorithm. This structure in the cycle of equivalent reduced
ideals was called the infrastructure by its discoverer Shanks in [19].

3. (f, p) representations

In this section we introduce (f, p) representations, a technique for representing
ideals and their distances in such a way that computations in the infrastructure can
be done efficiently and with relatively low precision approximations of the distances.
To keep track of distances when performing computations in the infrastructure, we
would have to either store the distances with the ideals or their generators, as there
is a one-to-one relationship between the distances and the generators of ideals.
However, the coefficients of the generators grow exponentially in comparison to the
distances of the ideals. On the other hand, maintaining accurate approximations
of distances can be time-consuming.

The idea behind (f, p) representations, which were first introduced in Jacobson
et al. [10] and improved in [11] by these same authors, is to store approximations of
both the generator and the distance of an ideal. The approximations of generators
are solely used for updating approximations of distances.

Using (f, p) representations has a number of important advantages over using
other approaches for keeping track of distances. First of all, it is relatively easy to
analyze the numerical accuracy of different kinds of operations on (f, p) representa-
tions. Furthermore, the precision that is required in order to obtain a certain level of
accuracy tends to be lower than that required for other similar approaches. Finally,
all operations on (f, p) representations involve only integer arithmetic, which makes
algorithms that are implemented using (f, p) representations very fast compared to
algorithms involving floating point operations.

We now give the definition of an (f, p) representation.

Definition 3.1. Let p ∈ N, f ∈ R with 1 ≤ f < 2p and a a primitive ideal. An
(f, p) representation of a is a triple (b, d, k) where:

• b is an ideal equivalent to a, d ∈ N with 2p < d ≤ 2p+1, k ∈ Z,

• if θ ∈ Q(
√

∆) and b = (θ)a, then
∣∣∣∣2

p−kθ

d
− 1

∣∣∣∣ <
f

2p
.

We mainly look at the case when a = (1). In the definition it is easy to see that
when a = (1), 2k−pd is an approximation of the generator θ of b. Since 2p < d ≤
2p+1, we can also see that k ≈ log(2k−pd) ≈ log θ, which makes k an approximation
to the distance of the ideal b (from a).

Performing computations with approximations gives rise to errors. From the
definition we have that if a triplet (b′ , d′, k′) is an (f, p) representation of a, then
we have a relative error in storing the generator of b (relative to a) that is smaller
than f/2p.
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The following theorem, which can be found with proof in [11], shows how to
compute products of (f, p) representations. Here we denote by �y� the nearest
integer to y ∈ R. This is the integer for which −1/2 ≤ y − �y� < 1/2.

Theorem 3.2. Let (b′ , d′, k′) be an (f ′, p) representation of a primitive ideal a′ and
(b′′ , d′′, k′′) an (f ′′, p) representation of a primitive ideal a′′ . Put d∗ = �2−pd′d′′�,
d∗∗ = �2−(p+1)d′d′′�, k∗ = k′ + k′′, and

(d, k) =

⎧⎨
⎩

(d∗, k∗) if d∗ ≤ 2p+1,
(d∗∗, k∗ + 1) if d∗∗ ≥ 2p + 1,
(2p+1, k∗) otherwise.

Then (b′b′′ , d, k) is an (f, p) representation of the primitive part of the product ideal
a′a′′ where f = f∗ + 1/2 + 2−(p+1)f∗ and f∗ = f ′ + f ′′ + 2−pf ′f ′′.

In the cycle of ideals that we are interested in, all of the ideals are reduced.
When we take the product of two reduced ideals, this product may not be reduced,
so we have to apply the continued fraction algorithm to it in order to reduce it.
Instead of first performing the multiplication and then the reduction we can use
the algorithm NUCOMP in [11], which uses a more efficient method that almost
simultaneously performs these two operations.

Remember that we work in the cycle of the reduced principal ideals, where we
can consider distances modulo R2 to be approximations of base 2-logarithms of
generators of ideals. When we have an (f, p) representation of an ideal, it is clear
that we immediately have k as an approximation of its distance. The following
definition allows us, given such an approximation of a distance, to refer to an ideal
close to this distance.

Definition 3.3. Let a (= a1) be a given reduced ideal and let (ai, di, ki) be a
reduced (f, p)-representation of a. For x ∈ Z>0, we define a(x) to be an ideal aj

such that kj < x and kj+1 ≥ x.

From here on we refer to an ideal a(x), which represents an ideal ai with distance
approximately x from the ideal (1), instead of the full (f, p) representation (ai, di, ki)
that is used to define it. Clearly, the definition is not very precise, in that it depends
on k-values which are already approximations, and in that a(x) yields an ideal with
a k-value just smaller than x. So we need to know how close the distance of the
ideal that we obtain is to x. In order to determine this, we require for the results
in this paper that all (f, p) representations that are computed have f < 2p−4. In
[5] it is shown using techniques from [11] how p can be chosen to ensure that this
is the case.

Using this requirement we obtain the following propositions, which are required
for the results in the sequel. The first proposition can be used to determine how
close the distance of an ideal a(x) can be expected to be to x, while the second
proposition shows us how to quickly obtain an ideal with a distance that is greater
than or equal to x.

Proposition 3.4. If (ai, di, ki) is an (f, p) representation of a1 = (1) and ai = a(x),
then if f < 2p−4 we have

• Ψi < 17
8 2ki ≤ 17

162x,

• Ψi+1 > 15
162ki+1 ≥ 15

162x.
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Proof. We have x > ki, ki+1 ≥ x,∣∣∣∣ 2
pΨi

di2ki
− 1

∣∣∣∣ <
f

2p
<

1
16

and ∣∣∣∣ 2pΨi+1

di+12ki+1
− 1

∣∣∣∣ <
1
16

.

Hence,

Ψi <
17
16

· di

2p
2ki ≤ 2 · 17

16
2ki ≤ 17

8
2x−1 =

17
16

2x

and
Ψi+1 >

15
16

· di+1

2p
2ki+1 >

15
16

2ki+1 ≥ 15
16

2x. �

Proposition 3.5. For fixed p and f, if ai = a(x) and aj = a(x + λ), where
λ = 
 1

2 log ∆� + 1, then j > i.

Proof. By Proposition 3.4, Ψi < 17
162x and Ψj+1 > 15

162x+λ > 15
8

√
∆2x. Now Ψi+1 =

ψiΨi <
√

∆17
162x and therefore Ψj+1 > 15·16

8·17 Ψi+1 > Ψi+1 ⇒ j > i. �
3.1. Algorithms. In this section we list the names and workings of the relevant
algorithms that operate on (f, p) representations. To verify the regulator we only
need the algorithms ADDX and AX, but since these are built up from other algo-
rithms, we list these, too. Because the algorithms are already described in detail
in [11] and/or [5], we only give a brief description here and refer to where they can
be found.

The algorithm NUCOMP that we use, which is described extensively in [11], is
the fastest known algorithm that both performs the multiplication of two ideals and
the reduction of the result. On input of a reduced (f ′, p) representation (b′ , d′, k′) of
a primitive ideal a′ and a reduced (f ′′, p) representation (b′′ , d′′, k′′) of a primitive
ideal a′′ , it outputs a reduced (f, p) representation (b, d, k) of a′a′′ where f =
f∗ + 13/8 + 2−(p+1)f∗ with f∗ = f ′ + f ′′ + 2−pf ′f ′′. The version of NUCOMP
that is used here differs from the original version that was originally introduced by
Shanks [20] in that it operates on (f, p) representations rather than binary quadratic
forms.

The next algorithm, ADJUST, enables us to skip to an ideal a(x) through the
cycle of reduced principal ideals starting at another ideal, provided that the third
parameter k in the (f, p) representation of this ideal is such that k < x. On input
of x ∈ Z>0 and a reduced (f, p) representation (b, d, k) of a primitive ideal a with
k < x, it outputs a reduced (f + 9/8, p) representation (a(x), g, h) of a. It works
by applying the continued fraction algorithm (by taking one step through the cycle
at a time), but is more efficient because, like NUCOMP, it applies the algorithm
to a rational approximation of the irrational (P +

√
D)/Q, which gives the same

outcome for the required number of iterations of this algorithm. The algorithm,
which can be found in [5], is a slightly modified version of the algorithm NEAR
that can be found in [11].

Briefly put, the algorithm ADDX, which can be found in [5], gives us the ability
to multiply two ideals a(x) and a(y) and thereby obtain the ideal a(x + y). More
specifically, on input of a reduced (f ′, p) representation (a(x′), d′, k′) of the ideal
a = (1) and a reduced (f ′′, p) representation (a(x′′), d′′, k′′) of a, it outputs a
reduced (f, p) representation (a(x′+x′′), d, k) of a, where f = f∗+11/4+2−(p+1)f∗
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and f∗ = f ′ + f ′′ + 2−pf ′f ′′. This enables us to jump quickly through the cycle
using infrastructure.

Finally, we have the algorithm AX which, given a distance x ∈ Z>0, outputs
a certain (f, p) representation (a(x), d, k) of a = (1). Essentially, the algorithm
performs simple binary exponentiation for ideals and updates the corresponding
(f, p) representations. A complete description of this algorithm can also be found
in [5].

4. Regulator verification

As much of the work described here is intended for computer implementation, it
is more convenient to work with R2 instead of R. In the remainder of this paper we
therefore assume that we have been provided with a value R′

2 that is a sufficiently
close approximation to a multiple of R2, i.e., a value R′

2 for which |R′
2 − cR2| < 1

for some c ∈ Z>0. Such a value can be obtained using a subexponential method,
possibly after refining the original outcome (see Algorithm 5.10 in [5]). The goal of
the verification is to verify that c = 1 or, equivalently, that |R′

2 − R2| < 1.
As described in the introduction, the verification procedure consists of two main

parts. First, it uses a baby step/giant step technique to determine a lower bound
for R2. Then it uses a different technique to determine the multiplier in R′

2, i.e.,
the value c so that R′

2 is an approximation to cR2. For the latter technique we
need to check all possible prime divisors of c, but this collection of primes is limited
because of the lower bound that has been determined using the baby step/giant
step technique. The next two sections provide the mathematical results on which
these techniques are based.

4.1. Baby steps and giant steps. In Section 2.1.1 we described how we can
compute the fundamental unit and therefore, by looking at distances, compute the
regulator by computing all of the ideals in the cycle of reduced principal ideals using
the continued fraction algorithm. Furthermore, in Section 2.2 we showed how we
can skip steps of the algorithm using a combination of multiplication and reduction.
A single application of the continued fraction algorithm is also referred to as a baby
step and the combination of a multiplication and a reduction is also referred to as
a giant step.

Our version of the baby step/giant step technique is based on Theorem 4.3,
which states that if we store a list with a certain number of ideals (a baby step list)
from the starting ideal, where this number depends on the size of the giant steps,
then one of the ideals computed during the giant steps or one of their conjugates
has to end up in this baby step list after a certain number of iterations if 
R2� ≤ K
for some given K. The reason that we can also consider conjugates has to do with
the symmetry property that was described at the end of Section 2.1.1.

In order to prove Theorem 4.3 we require two preliminary results, both of which
partially determine the balance between the size of the baby step list and the
size of the giant steps that is required in order to end up in the baby step list
after completing the cycle of reduced principal ideals. Theorem 4.1 determines this
balance in the situation where we look at the ideal that we get after taking a giant
step, and Theorem 4.2 determines this balance when looking at the conjugate of
this ideal.
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Theorem 4.1. Let x = 
cR2�, where c ∈ Z>0, and let (aj , dj , kj) and (ai, di, ki)
be (f, p) representations of a1 = (1) such that aj = a(x + r) and ai = a(r) with
r ∈ Z>0. Then a(x + r) ∈ {amax{1,i−2}, . . . , ai+3}.

Proof. We have kj < x + r, bj+1 ≥ x + r, x = log η + ε for η = (2R2)c and some
ε with 0 < ε < 1. By Proposition 3.4, we have Ψj < 17

162x+r = η 17
8 2ε+r−1 and

Ψj+1 > 15
162x+r = η 15

162ε+r > 1 (as r ≥ 1 and η > 1).
Put Ψm = η−1Ψj+1. Then also Ψm > 1, so we must have m > 1, which implies

that m − 1 ≥ 1. Note that by Proposition 3.4, Ψm−1 = η−1Ψj < 17
8 2ε+r−1 and

Ψm > 15
162ε+r, and similarly we have Ψi < 17

162r and Ψi+1 > 15
162r = 15

8 2r−1.

Now Ψm > 15
172εΨi > 15

17Ψi ⇒ Ψm+2 > F3Ψm = 2Ψm > 2·15
17 Ψi > Ψi ⇒ m + 1 ≥

i ⇒ m− 1 ≥ i− 2. Also, Ψm−1 < 17
152εΨi+1 < 3Ψi+1 = F4Ψi+1 < Ψi+4 ⇒ m− 1 <

i + 4 ⇒ m − 1 ≤ i + 3.
By the definition of Ψm, we have am−1 = (η−1Ψj)a1 = (Ψj)a1 = aj which,

together with our determined bounds on m − 1, gives us the required result. �
Theorem 4.2. Put λ = 
 1

2 log ∆�+ 1. Let r ∈ Z<0, x = 
cR2� and x + r > 0. Put
aj = a(x + r) �= a1, ai = a(|r|), at = a(|r| + λ) and assume that f < 2p−4. Then
a(x + r) ∈ {amax{2,i−1}, . . . , at}.

Proof. Again we have that x = log η + ε, for η = (2R2)c and some ε with 0 < ε < 1.
By Proposition 3.4 we have Ψj < 17

162x+r = η 17
162ε+r, from which we can deduce

that Ψj |Ψj | = N(aj) ⇒ |Ψj | > N(aj)η−1 16
172|r|−ε ⇒ η|Ψj | > N(aj) 16

172|r|+ε > 1,
because N(aj) > 1 and |r| ≥ 1.

Since aj is reduced and �= a1, aj = am for some m such that m > 1 and
Ψm = η|Ψj | > 1. From this it follows that η|Ψj+1| = Ψm−1 because aj+1 = am−1.

Now by Proposition 3.4 and Theorem 2.1, Ψi < 17
162|r| < ( 17

16 )22εN(aj)−1η|Ψj | =
( 17
16 )22εN(aj)−1Ψm < 2Ψm = F3Ψm < Ψm+2. So i < m + 2 ⇒ m ≥ i − 1 and we

already had m > 1.
Also, again using Proposition 3.4, Ψj+1 = Ψjψj ⇒ Ψj = 1

ψj
Ψj+1 > 1

ψj

15
162x+r =

1
ψj

15
16η2r+ε ⇒ |Ψj | < ψj

16
15η−12|r|−εN(aj), and Section 2.1.1 tells us that ψjN(aj) <

√
∆, so that Ψm = η|Ψj | <

√
∆2|r|−ε 16

15 . Now Ψt+1 > 15
162|r|+λ > 30

16

√
∆2|r| >

30
16 · 15

162εΨm > Ψm and t + 1 > m ⇒ m ≤ t. �
With these results we can now prove the main theorem, which is required for

the baby step/giant step algorithm that is used for determining a lower bound for

R2�. Theorem 4.3 states that we can define our baby step list L to be the list
{a1, a2, . . . , at+2}, where at = a(s + λ) for some s ∈ Z>0, after which we can take
giant steps of size 2s. Here λ = 
 1

2 log ∆� + 1.

Theorem 4.3. Let x = 
cR2�, c ∈ Z>0 and suppose that x = 2qs − r (for 0 <
|r| ≤ s, s > 1 and r, s ∈ Z). Then a(2qs) or a(2qs) ∈ {a1, a2, . . . , at+2}, where
at = a(s + λ).

Proof. Assume that al = a(s) and ai = a(|r|). We distinguish between when r > 0
and when r < 0, but in both cases we have i ≤ l < t by Proposition 3.5 and the
fact that |r| ≤ s.

• If r > 0, we have ai = a(r), so that a(x + r) ∈ {amax{1,i−2}, . . . , ai+3}
by Theorem 4.1. Furthermore, {amax{1,i−2}, . . . , ai+3} ⊆ {a1, . . . , at+2},
because i < t.
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• If r < 0, then either a(x + r) = a1 or a(x + r) �= a1. If a(x + r) �= a1,
then a(x + r) ∈ {amax{2,i−1}, . . . , av} for some v ≤ t by Theorem 4.2 and
the fact that |r| ≤ s. So either way, a(x + r) ∈ {a1, amax{2,i−1}, . . . , av} ⊆
{a1, . . . , at+2}.

Because a(x + r) = a(2qs) this concludes our proof. �
If a(2qs) and a(2qs) are not in the list {a1, a2, . . . , at+2} for q = 1, 2, . . . , Q, then


cR2� > 2Qs + s > 2Qs for all c ∈ Z>0, i.e., 
R2� > 2Qs. Therefore, if we choose
s and Q large enough we can determine a lower bound K for 
R2� by verifying
membership of a(2qs) and a(2qs) for q = 1, . . . , Q. The algorithm that builds the
baby step list and performs these membership tests is described in more detail in
[5].

4.2. Determining the multiplication factor. When we have a value R′
2 such

that |R′
2 − cR2| < 1 for some c ∈ Z>0, there is an ideal at or near distance R′

2 that
is equal to a1. We only get ideals equal to a1 after precisely traversing a number
of cycles of reduced principal ideals starting at a1, which means that if an ideal
at distance near d = R′

2/q with q ∈ Z>0 is equal to a1, then d must be equal or
very close to tR2 for some t ∈ Z>0 where t | c (c ≈ R′

2/R2). In other words, we
can determine the multiplication factor of R′

2 by dividing by integers and checking
whether we can find an ideal near the resulting distance that is equal to a1.

Of course we want to make sure that we do not count any possible factors of
R′

2/R2 more than once. We can do this by continuing with the smaller multiple
R′

2/q after finding out that an ideal close enough to distance R′
2/q is equal to a1.

This way we get rid of the factors we already determined and cannot find them
more often then they occur. Naturally, it is best to let the tested values for q range
over the primes.

It is important to first investigate how close to a1 we end up when a distance is
close enough to a multiple of R2 and whether we can also get that close to a1 when
it is not. This way, we can precisely specify when we consider a distance R′

2/q to
be close enough to the ideal a1 to decide that q is a factor of R′

2/R2.

Theorem 4.4. Let y = 
log Ψj�+ γ, where γ ∈ {−1, 0, 1}. If ai = a(y) and y > 1,
then max{1, j − 3} ≤ i ≤ j + 3.

Proof. We first note that 0 ≤ y − 2 < log Ψj < y + 1. We have a(y) = (Ψi)a1,
Ψi < 17

162y and Ψi+1 > 15
162y by Proposition 3.4. Furthermore, by Theorem 2.1,

Ψi+4 > F4Ψi+1 = 3Ψi+1 > 3·15
16 2y > 2y+1 ≥ Ψj . Hence, i+4 > j ⇒ i+3 ≥ j. Also,

F5Ψi−4 < Ψi < 17
162y = 17

4 2y−2 ≤ 17
4 Ψj ⇒ Ψi−4 < Ψj ⇒ i − 4 < j ⇒ i − 3 ≤ j and

because y > 1 and Ψ1 = 1 we must have i ≥ 1. �
Corollary 4.5. If a1 = (1) and η (> ∆3/2) is any unit of Q(

√
D), then if x =


log η�+ γ ≥ 2 (γ ∈ {−1, 0, 1}), we must have that a(x) ∈ {a4, a3, a2, a1, a2, a3, a4}.
Proof. We know that aj = (η)a1, where η = Ψj . Hence, by Theorem 4.4, a(x) ∈
{aj−3, aj−2,aj−1,aj ,aj+1,aj+2,aj+3}. We have Ψj < (

√
∆)3Ψj−3 ⇒ Ψj−3 > 1 ⇒

j − 3 > 1, so j > 3 and furthermore aj = (Ψj)a1 = (η)a1 = a1 ⇒ aj−3 = a4,
aj−2 = a3, etc. �

The corollary above tells us that when we do not end up in one of the above-
mentioned seven ideals at approximate distance 
R′

2/q�, our prime q is not a factor
of the multiplier c, where |R′

2 − cR2| < 1. We would like this set of seven ideals
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to be exclusive, so that finding one of these ideals assures us that we have indeed
found a prime factor.

It appears that the converse of the corollary is only true once we impose some
restriction on the size of the primes we divide out. Intuitively, this makes sense, as
dividing out by a prime that is approximately equal to R′

2 is very likely to give us
an ideal with a small enough distance to be in the list, even though this prime does
not give us a factor of the multiplier.

Lemma 4.6. If x = y + γ, where x, y ∈ Z and γ ∈ {−1, 0, 1}, then 
x/q� =

y/q� + γ′ where γ′ ∈ {−1, 0, 1}, for any q ≥ 1.

Theorem 4.7. Put x = 
 log η+γ
q � where γ ∈ {−1, 0, 1}, η = η0

m (m ∈ Z) and η0

is the fundamental unit of Q(
√

D). If R2 = log η0 > q · (2 log ∆ + log 17
4 ), we must

have q | m when a(x) ∈ {a4, a3, a2, a1, a2, a3, a4}.

Proof. Let aj = a(x). If we do have aj = ai or aj = ai with i ≤ 4, then either
Ψj/Ψi = η0

k or Ψj/|Ψi| = η0
k for some i ≤ 4 and k < m.

Using Proposition 3.4 and Lemma 4.6, we can deduce that

(4.1) Ψj <
17
16

2

log η+γ

q � =
17
16

2

log η

q �+γ′
=

17
16

η0
m
q 2ε+γ′

and

Ψj+1 >
15
16

2

log η+γ

q � =
15
16

2

log η

q �+γ′
=

15
16

η0
m
q 2ε+γ′

⇒ Ψj >
1
ψj

15
16

η0
m
q 2ε+γ′

(4.2)

for some γ′ ∈ {−1, 0, 1} and some ε with 0 < ε < 1.
Now put ν = Ψi if aj = ai or ν = |Ψi| if aj = ai, so that Ψj = νη0

k. If ν = Ψi,

then ν ≤ Ψ4 < (
√

∆)3 as i ≤ 4. If ν = |Ψi|, then since Ψi|Ψi| = N(ai) and i ≤ 4
we get 1

ν ≥ 1
Ψ4

> 1
(
√

∆)3
. Hence, | log ν| < 3 log

√
∆ = 3

2 log ∆.

Using (4.1) we obtain

νη0
k = Ψj <

17
16

4η0
m/q

⇒ log ν + kR2 < log
17
4

+
m

q
R2,

and using (4.2) we get

νη0
k = Ψj >

1√
∆

15
16

η0
m/q 1

2
=

1√
∆

15
32

η0
m/q

⇒ log ν + kR2 > − log
√

∆ + log
15
32

+
m

q
R2 .

Hence,

− log ν − log
√

∆ + log
15
32

<

(
k − m

q

)
R2 < − log ν + log

17
4

,

∣∣∣∣
(

k − m

q

)
R2

∣∣∣∣ < 2 log ∆ + log
17
4

,

|(kq − m)|R2 < q ·
(

2 log ∆ + log
17
4

)
.
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So when R2 > q · (2 log ∆ + log 17
4 ), we must have (kq − m) = 0 ⇒ m = kq ⇒

q | m. �

It is clear that we can limit ourselves to testing only those primes below R′
2,

but this still involves an unnecessarily large number of checks. This is where the
determination of the lower bound during the baby step/giant step algorithm comes
in. If we have verified lower bound K, we know that c ≈ R′

2/R2 < R′
2/K. Because of

this, we need only check all primes below R′
2/K. In order to ensure that c < R′

2/δ
where δ = 2 log ∆ + log 17

4 (as is required by Theorem 4.7 when c is prime) we
now merely have to make sure that K >

√
R′

2δ, as then c ≈ R′
2/R2 < R′

2/K =
R′

2K/K2 < R′
2K/(R′

2δ) = K/δ < R2/δ.

4.3. Complexity results. We want to select a bound K for the verification algo-
rithm that gives us an optimal run time complexity. In order to do this we have to
select K such that the two main parts of the algorithm have the same complexity,
as otherwise the half with the largest complexity dominates the other half. We
start the analysis by looking at the run time complexities of the separate halves
of the algorithm. In the discussion we take the time needed for computing a baby
step as a time unit and use the fact that the ratio between the time for computing
a giant step as opposed to a baby step is asymptotic to log D. We also assume that
the time required for searching a table is constant.

4.3.1. Complexity of the baby step/giant step algorithm. The baby step/giant step
algorithm consists of the creation of the baby step list (BS) and computing the
giant steps (GS). During the baby step phase (BS) we compute all of the baby
steps up to distance s + λ plus an additional two. Because of equation (2.2), we
expect the number of baby steps that are computed during the baby step phase to
be proportional in size to s + λ. This gives us run time complexity O(s) for (BS).

During the giant step phase (GS) we perform Q giant steps, which gives us run
time complexity of O(Q) baby steps. Since we require that 2sQ > K, we see that we
get the best run time complexity for algorithm (BS+GS) when s = Q =

√
K. Thus,

the total complexity of the algorithm (BS+GS) is O(K1/2 + K1/2+ε) = O(K1/2+ε)
baby steps.

4.3.2. Complexity of determining the multiplier. The running time for determining
the value of c (FM) mainly depends on the time needed to locate the ideals at the
given distances, as the times needed to find the next prime and to check whether
the ideal found is in the list are extremely small by comparison.

Using the algorithm AX we can compute an ideal at a certain distance X using
O(log X) ideal multiplications that are each followed by a reduction step. The
largest distance that we have to check is 
R′

2/2�. Using the prime number theorem,
that states that limx→∞ π(x)/ x

ln x= 1, where π(x) stands for the number of primes
below x, we find that M/ lnM gives us an estimate of the number of possible prime
divisors below M. Because of the predetermined lower bound K for R2, we can use
M = R′

2/K.
Assuming the worst-case scenario R′

2 = R2, where neither the search space nor
the distances to check is reduced during execution of the algorithm (the upper
bound for the primes becomes M/q and R′

2 becomes R′
2/q after finding a prime

factor q), we can approximate the running time of (FM) by O( M
ln M log(R′

2/2)) =
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O( M
log M log R′

2) = O( R′
2/K

log(R′
2/K) log R′

2) = O(R′
2

K
log R′

2
log(R′

2/K)) giant steps, or equiva-

lently O(R′
2

K
log R′

2 log D
log(R′

2/K) ) baby steps.

4.3.3. Optimal complexity for the verification algorithm. Now that we have the run
time complexities of the two halves of the algorithm, we can determine the optimal
complexity for the entire algorithm. We know that the total running time can be
found by adding up the time for (BS+GS) and (FM), which is

O

(
K1/2+ε +

R′
2

K

log R′
2 log D

log(R′
2/K)

)
,

so we want K to be optimal for this formula.
To make the complexities of the two halves about equal, we want

√
K = R′

2/K

(ignoring log factors), which tells us that we should choose K = R
′ 23
2 . Thus, the

optimal running time for the entire algorithm ((BS+GS)+FM) is

O

⎛
⎝(R′ 23

2 )1/2+ε +
R′

2

R
′ 23
2

log R′
2 log D

log
(
R′

2/R
′ 23
2

)
⎞
⎠ = O

(
R

′ 13+ε
2 + R

′ 13+ε
2

)
= O

(
R

′ 13+ε
2

)
.

Now we look at the situation where we have combined the verification algorithm
with a subexponential algorithm, so that we get an algorithm that unconditionally
computes R2, and determine the complexity. Under assumption of the GRH, the
approximation R′

2 is close to R2 instead of close to a multiple of R2, and we expect
R2 to be approximately of size

√
D. Furthermore, under assumption of the GRH,

the subexponential algorithms have expected subexponential run time complexity.
Therefore, it is easy to see that under assumption of the GRH we have expected run
time complexity O(

√
D

1/3+ε
) = O(D1/6+ε) for the combination of a subexponential

algorithm and the verification algorithm.

5. Practical improvements

5.1. Memory issues. In practice, we only have a limited amount of storage space
available to store the baby step list L. Since we have a fixed set of ideals to compute
for the baby step list (all ideals up to distance s+λ and two beyond this distance),
we have to somehow limit the number of ideals that we are going to store, which
we do by introducing gaps in the baby step list. Note that equation (2.2) shows us
there are roughly t = (s + λ)/1.7 ideals with distance smaller than s + λ.

Assume that au = a(s + λ). Furthermore, assume that we have space for storing
N +4 ideals and that our approximation t of u (the number of ideals below distance
s + λ) is such that u < 1.05t.1 When 1.05t ≤ N, we have enough space to store the
entire baby step list L. However, as soon as 1.05t > N, we need to leave out part of
the baby step list. We represent the ratio of the ideals below bound s+λ for which
we have enough space using the variable l ∈ Z>0, where l is the smallest positive
integer for which we have that 1.05t/l ≤ N. Equivalently, l = 
1.05t/N�. Instead
of storing the entire list L, we store the sublist

L′ = {a1, al, a2l, . . . , au = a(s + λ), au+1, au+2},

1During our experiments, t turned out to be slightly larger than u already, which is most likely
(see Section 2.2) because τ log e ≈ 1.711 . . . , which is slightly larger than the value 1.7 that we
use.
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which contains every lth ideal before ideal au and the ideals a1, au, au+1 and au+2.
Because of the way in which we determined l, we know that we have enough space
to store these ideals. It is now fairly easy to show that if we have an ideal aj that
is in L, then at least one of the ideals in the list N := {aj , aj+1, . . . , aj+l−1} has to
be in L′, so that we can replace matching of the ideal aj with the ideals in the list
L with an iteration that tries to match the ideals in N with the ideals in L′. The
details for using this method with our verification method can be found in [5].

5.2. Improving the algorithm for determining the multiplier. We present
an improvement, first introduced by Jacobson et al. in [8], to the algorithm for
determining the multiplier. In our presentation, the original method has been
modified to work with (f, p) representations and is described in more detail than in
[8]. Furthermore, we accompany the description of this improvement by a theorem
that ensures the correctness of its use with our verification algorithm.

While trying to determine the multiplier c, we repeatedly have to compute an
ideal a(
R′

2/qi�) and determine whether this ideal is in the list from Theorem 4.7.
We start this procedure with the largest prime and proceed with the primes sorted
in a decreasing order, so that the distances R′

2/qj increase during the algorithm.
Instead of computing the ideal a(
R′

2/qi�) from scratch for every prime qi, we can
now use the fact that we have already computed the ideal a(
R′

2/qi−1�) in the pre-
ceding step (where qi < qi−1), which lies close to the new distance 
R′

2/qi�. Because
we already have this ideal, we can put δ′ := 
R′

2/qi−1�, determine the difference
δ := 
R′

2/qi� − δ′ between the distances of the ideals and use the infrastructure
to take a giant step from a(
R′

2/qi−1�) to a(
R′
2/qi�) using the ideal a(δ) and the

algorithm ADDX.
To make the process of computing the ideals a(δ) more efficient, we can further

optimize the algorithm by approximating these ideals using products of precom-
puted ideals. We first precompute all ideals at0 , at1 , . . . , atm

where ati
= a(δti

),
δti

= 2i(s′), s′ = s − 1 and m depends on which ideals we expect to use. Now,
after computing an ideal at distance δ′ ≈ 
R′

2/qi−1�, we compute δ and put
ρ := �δ/s′� + 1, so that δ < ρs′ ≤ δ + s′. We can use the binary expansion
br2r+br−12r−1+· · ·+b0 of ρ to get δ ≈ ρs′ = ρδt0 = 2rδt0+br−12r−1δt0+· · ·+b0δt0 =
brδtr

+ br−1δtr−1 + · · · + b0δt0 . So if asqi−1
= a(δ′), where δ′ ≈ 
R′

2/qi−1�, we can
find an ideal at approximate distance 
R′

2/qi� by computing the ideal a(δ′ + ρs′).
Here we can easily compute ideal a(ρs′) by applying ADDX to the ideals ati

for
which bi = 1, after which we can use a(ρs′) and a(δ′) to efficiently compute the
ideal a(δ′ + ρs′).

Because we actually add ρs′ to the distance δ′ of our ideal asqi−1
instead of δ, we

do not in general compute the ideal a(
R′
2/q1�) but obtain an ideal that is close by.

The relevance of the next theorem is that it shows us that we can use the technique
described above to quickly compute an ideal near distance 
R′

2/q� for each prime q
and know that the q does not divide the multiplier c for which |R′

2− cR2| < 1 when
the ideal that we compute does not end up in the list mentioned in the theorem.
As a result, we only need to compute the precise ideals a(
R′

2/qj�) using AX to
verify that q � c, when our approximated ideal ends up in the list.

Theorem 5.1. Suppose that c is a positive integer and |R′
2 − cR2| < 1. Let s

(> 1) and t be defined as in Theorem 4.3 and suppose that 0 < δ′ < 
R′
2/q� + s,

where q is a positive integer. Then if q | c, we must have that a(δ′ + ρs′) is an
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element of {a4, a3, a2, a1, a2, . . . , at+2}, where ρ = �δ/s′�+1 (> −1), s′ = s−1 and
δ = 
R′

2/q� − δ′.

Proof. Since ρ = �δ/s′�+ 1, we have δ < ρs′ < δ + s. Also, ρ > δ/s′ = 
R′
2/q�/s′ −

δ′/s′ ≥ 
R′
2/q�/s′−(
R′

2/q�+s′)/s′ = −s′/s′ = −1. Now δ+δ′ < ρs′+δ′ < δ+δ′+s
implies that 
R′

2/q� < ρs′ + δ′ < 
R′
2/q� + s.

By Lemma 4.6, we have 
R′
2/q� = 
cR2/q� + γ, where γ ∈ {−1, 0, 1}; hence,


cR2/q� ≤ ρs′ + δ′ ≤ 
cR2/q� + s. If q | c, then 
c′R2� ≤ ρs′ + δ′ ≤ 
c′R2� + s,
where c′ = c/q is an integer.

By Corollary 4.5, we have a(
c′R2�) ∈ {a4, a3, a2, a1, a2, a3, a4}. Furthermore, if
we put au = a(s), then u < t by Proposition 3.5. Hence, when aw = a(
c′R2� + s)
we have u − 2 ≤ w ≤ u + 3 ≤ t + 2 by Theorem 4.1. This shows that a(δ′ + ρs′) ∈
{a4, a3, a2, a1, a2, . . . , at+2}. �

In order to use the theorem we must have δ′ < 
R′
2/qi� after every step of the

algorithm. We show that this is the case if we put δ′ := 
R′
2/qi−1� after applying

AX (assuming that R′
2 is replaced by R′

2/qi−1 whenever we find a factor qi−1 of c)
and put δ′ := δ′ + ρs′ after using our approximation method.

After using AX we get a(
R′
2/qi−1�) for some qi−1 ≤ M and get δ′ = 
R′

2/qi−1� <

R′

2/qi� < 
R′
2/qi� + s. Now, when we continue with the next prime qi < qi−1

using our approximation method, we have δ′ < 
R′
2/qi−1� + s < 
R′

2/qi� + s, so
that the conditions of the theorem are still satisfied. In addition, the proof of the
theorem shows that for our new distance δ′ + ρs′ we have δ′ + ρs′ < 
R′

2/qi�+ s as
well. Therefore we know that we can use the theorem all the way throughout the
algorithm.

5.3. Parallelization. Because the computations required for the verification can
become very time-consuming, we need to have the ability to run the algorithm in
parallel. Being able to do this allows us to share the workload among multiple
machines and/or processors and thereby to handle verification for number fields
Q(

√
D) where the value for D is larger than the values that we can handle with a

non-parallelized version of the algorithm.
Dividing the workload for the parts of the algorithm can be done in a relatively

simple way, as all parts basically work with intervals that can simply be divided
into smaller, equally sized intervals. For example, while computing the baby step
list we work over an interval of distances with lower bound 1 and upper bound
s + λ, where we start at ideal a(1) and determine when we are done by checking
whether we encounter ideal a(s+λ). To divide this interval into y smaller intervals,
we introduce lower and upper bounds (i− 1)(s + λ)/y and i(s + λ)/y for each new
interval i = 1, . . . , y and compute the corresponding ideals with distances close to
these bounds using AX. If we work with gaps in the baby step lists (see Section 5.1),
we also need to ensure that the number of omitted ideals is not larger than l ideals
by storing the ideal corresponding with the lower bound in the list L′. Because this
may introduce additional ideals to store, we need to adjust l accordingly before
initiating the computation. Similar techniques can be used for the other parts of
the algorithm, for which identifying the intervals is more straightforward.

In order to run the algorithm in parallel, we employ two different techniques. The
first technique is called message passing, which can be used to make the program
run in parallel on multiple machines and/or processors using a separate process for
every machine and/or processor. The processes then communicate with each other
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by sending messages. The easiest way to implement a parallelized algorithm using
this scheme is to make one process control the division of the tasks over all other
processes and let this same process collect the results of the processes that are done
with their part of the computation.

The second technique, which is mainly useful for machines with more than one
processor, is called threading. It enables us to make a program run in parallel
on multiple processors of one machine using threads. Threads are processes that
cost the operating system very little overhead to create and execute and have the
additional advantage that all threads that we create during the execution of the al-
gorithm share the memory that is available for the algorithm, whereas the processes
that are created on a machine using message passing have to divide the available
memory among themselves. However, having threads share memory has the dis-
advantage that threads can also write to parts of memory that are simultaneously
being used by other threads and can thereby invalidate the computations of another
thread. Therefore, extra precautions have to be taken in order to prevent this from
happening. The implementation of the verification algorithm that we created gives
the user the option to choose between executing using only message passing, using
only threading (when run on a machine with more than one processor) and using
both message passing and threading, where each machine runs a separate process
that is subsequently split into a number of threads.

The part of the verification algorithm that computes the multiplier is easy to
parallelize, as each processor simply works on a different interval of primes. We
employed a heuristic method to roughly balance the time spent by each processor
by creating a large number of sub-intervals and supplying processors with a new
interval only after they finished checking the previous interval obtained. Because
an interval containing small primes takes longer to process than one containing the
same number of large primes, the intervals with small primes are distributed first.

The baby-step giant-step part of the verification algorithm is unfortunately dif-
ficult to parallelize optimally unless all processors have access to the same memory.
In that case, a straightforward parallelization in which each processor computes a
subset of the baby steps and a subset of the giant steps would work. This approach
will most likely fail in the message passing model because the communication over-
head would be too high. For example, in order to determine whether a giant step
ideal is in the list of baby steps, a machine would have to query every other machine
to determine whether the ideal is in that machine’s piece of the baby step list. As
a result, we have opted for a sub-optimal solution in which each machine computes
an identical copy of the baby step list. The disadvantage is that the number of
baby steps is confined to that which a single machine can store, but the advantage
is that there is no interprocessor communication other than the coordinating pro-
cessor sending initialization information to the other processors at the beginning
of the computation. If the network consists of a number of machines that each
have multiple processors, then the identical baby step lists on each machine can be
computed in parallel using threading within the machines.

In [5] we show that using n machines with r processors each and both techniques
for parallelization we can expect a speed-up of n2/3r. As mentioned above, the rea-
son that we cannot obtain an optimal speed-up nr here is due to the fact that every
machine has to compute its own baby step list in our approach. Most interesting is
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that this estimate shows that we can expect a speed-up of r using a shared memory
multiprocessor machine with r processors, but we have not yet experimented with
this approach.

5.4. Determining optimal values for s, Q and K. In order to make an imple-
mentation of the verification algorithm efficient, it is necessary to properly balance
the workload of the baby step/giant step part of the algorithm with that of the
part for determining the multiplier. For this purpose, we describe a fine-grained
optimization method in [5]. Here, we present an overview of this method.

Balancing the parts of the algorithm boils down to choosing values for the vari-
ables s, Q, and K that are described in previous sections. In order to get ap-
propriate values for these variables, we introduce some additional variables and
construct formulas that approximate the run times of the parts of the algorithm.
For instance, because we express the expected run times of the algorithms relative
to the (average) time required for computing a baby step, we need to introduce a
variable that expresses the ratio between the average time needed for computing a
baby step and the time needed for computing a giant step. This ratio differs for
every real quadratic number field for which we verify the regulator. Therefore, we
have to either perform heuristic measuring before every computation or perform
a range of heuristic measurements for a variety of number fields and use these to
extrapolate approximations for the other fields. In our implementation, we use the
former method.

After constructing the formulas that approximate the run times, which can be
found in detail in [5], we first optimize the running time for the baby step/giant step
part of the algorithm. We need to do this because the formula that approximates
the running time for computing the multiplier is quite complex and we cannot si-
multaneously determine values for all three variables s, Q and K. Since we only
require 2sQ ≥ K, we can put Q := K/(2s) and optimize s in terms of K. Af-
ter substituting this optimal value for s, we obtain formulas for the running times
of all parts of the algorithm that consist of constants and the variable K (recall
that we can pick M = R′

2/K while determining the value of the multiplier). We
then add these formulas to get a formula for the total running time of the algo-
rithm and determine the first and second derivative of this formula. Finally, using
Newton iteration, we can then (numerically) determine an optimal value for K by
determining the zero of the derivative, which corresponds to the minimum of the
formula.

6. Precision

We now give an overview of the results that specify which restrictions we need
to impose on the value of the precision p in order to have f < 2p−4 for all (f, p)
representations that are computed during the verification process. One of these
restrictions depends on the values that are chosen for the variables s and Q, and
we place some relative bounds on the values of s, Q and K in order to be able to
refine the results. The precisions that are recommended for the various phases of
the verification process are the following:

• For the baby step/giant step algorithm, if s > 16 and Q > max{16, log s},
then f < 2p−4 for all (f, p) representations computed during the algorithm
if p is chosen such that 2p ≥ 221Q2s.
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• While determining the multiplier we first assume that R′
2 > 106, R

′1/2
2 <

K < R
′5/6
2 and max{16, K2/5} < s < K3/5, which does not restrict the

choice for the values of the variables too much when R′
2 is large. It turns

out that, under these conditions, f < 2p−4 for all (f, p) representations that
are computed during the determination algorithm if 2p > 19R′

2 log R′
2.

• If the initial approximation R′
2 needs to be refined, as mentioned at the

beginning of Section 4, we assume that R′
2 > 106 and require that 2p >

21R′
2 log R′

2 in order to assure that the refined value has a relative error
smaller than 2p−4.

The proofs of these statements can be found in detail in [5], where they are
deduced using similar techniques to those employed in [11]. Since the proofs are
repetitive and not very distinct from those in [11], they are not provided here.

7. Results

We implemented and optimized the verification algorithm described in the pre-
vious sections using NTL version 5.3.1 [21] and made use of the subexponential
algorithm implemented in LiDIA version 2.0.1 [6]. For the results in this paper we
have further improved the fine-grained optimization of the parameters s, Q and K
that is described in [5] by incorporating into our optimization formulas the times
required for table-lookups and for storing to memory. After incorporating a similar
optimization into an implementation of the D1/5+ε algorithm, we have run both
algorithms on a machine with two Intel P4 Xeon 2.4 GHz processors and 2 GB of
RAM, where we have again only used 1 GB out of the 2 GB of RAM during our
computations so that the new results can be compared with our previous results in
[5]. The resulting run times are listed in Table 1, where we have incorporated the
time needed for the subexponential algorithm in the time needed for the D1/6+ε

algorithm, as the latter depends on the former for its input.
The data in Table 1 show that even though the D1/5+ε algorithm is initially

faster, the D1/6 algorithm becomes significantly faster as soon as D ≈ 1020 or
larger. In fact, the only reason why the D1/5+ε has this initial advantage is because
of the standard overhead of the subexponential algorithm, which for D ≈ 1015

can be seen to be the most costly part of the D1/6+ε algorithm. Furthermore,
we can see from the table that, even though the D1/6+ε algorithm is significantly
faster than the D1/5+ε algorithm for large D, it is still very slow compared to the
subexponential algorithm.

We also implemented a parallel version of the D1/6+ε algorithm. In [5], there is a
distinction between parallelization using message passing and parallelization using
both message passing and threading. Our latest experiments have shown that using
threading does not speed up the implementation under current conditions, so we
have discontinued our efforts in this area for now. Instead, because we know that
our current run-time estimation overestimates the time needed for determining the
multiplier, we performed some additional testing with formulas where the expected
balance between the two parts of the algorithm is modified.

We ran a parallel algorithm on 180 processors in a cluster of machines with two
Intel P4 Xeon 2.4 GHz processors and 2 GB of RAM, where we have only used
850 MB of RAM per processor. The times needed for verifying the regulator for
discriminants of different sizes can be found in Table 2, where the last column
lists the best run-times that we were able to achieve after repeatedly modifying the
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Table 1. Comparison of the running times for the subexponential,
D1/6+ε and D1/5+ε algorithms for computing the regulator of
Q(

√
D).

D ≈ 10... Subexponential D1/6+ε D1/5+ε

15 0.29 sec 0.42 sec 0.25 sec
20 0.45 sec 0.93 sec 3.65 sec
25 0.68 sec 3.20 sec 2 min, 20 sec
30 1.44 sec 14.60 sec 44 min, 26 sec
35 2.57 sec 1 min, 27 sec 2 days, 13 hrs
40 6.06 sec 6 min, 12 sec N/A
45 26.27 sec 1 hour, 10 min N/A
50 1 min, 27 sec 1 day, 9 hours N/A

Table 2. Comparison of the running times for the regular and
modified parallelized versions of the D1/6+ε verification algorithm.

D ≈ 10... Subexp. alg. D1/6+ε regular D1/6+ε modified
35 2.57 sec 1 min, 7 sec 2.35 sec
40 6.06 sec 1 min, 23 sec 11.02 sec
45 26.27 sec 3 min, 3 sec 1 min, 20 sec
50 1 min, 27 sec 25 min, 39 sec 12 min, 8 sec
55 5 min, 39 sec 5 hours, 41 min 2 hours, 39 min
60 21 min, 44 sec 7 days, 4 hours 4 days, 9 hours

Table 3. Comparison of the running times for the modified par-
allelized version of the D1/6+ε verification algorithm for large D.

D ≈ 10... R ≈ . . . × 1030 Subexp. alg. D1/6+ε

62 3.4 1 hour, 14 min 6 days, 3 hours
63 5.2 1 hour, 37 min 8 days, 2 hours
64 8.1 2 hours, 17 min 10 days, 13 hours
65 195.6 2 hours, 5 min 102 days, 7 hours

balance for each discriminant. The actual values of the discriminants and regulators
can be found in [5] and are not repeated here.

From Table 2, we can see that our unmodified optimization does not work well
for small examples. Also, adjusting the previously mentioned balance can make
the execution approximately twice as fast, which shows that there is also room for
improvement while optimizing for the verification of larger discriminants. More
details about these results can be found in [5].

Finally, we used the modified version to unconditionally compute the regulator
for a number of very large values of D, using 240 processors of the cluster. The
timings of the corresponding verifications can be found in Table 3, together with a
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rough approximation of the corresponding regulators.2 In particular, we were able
to unconditionally compute the regulator for a 65-digit value of D, which is far
beyond the capabilities of previous unconditional algorithms.
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