MATHEMATICS OF COMPUTATION

Volume 77, Number 262, April 2008, Pages 1199-1221

S 0025-5718(07)01956-4

Article electronically published on November 15, 2007
1l y eut pourtant, dans 1’ vieux Paris
Un honnéte homme sans malice
Brilant d’ contempler le nombril
D’ la femme d’un agent de police..El

To Frangois and Pierrick

FAST CONVOLUTIONS MEET MONTGOMERY

PREDA MIHAILESCU

ABSTRACT. Arithmetic in large ring and field extensions is an important prob-
lem of symbolic computation, and it consists essentially of the combination of
one multiplication and one division in the underlying ring. Methods are known
for replacing one division by two short multiplications in the underlying ring,
which can be performed essentially by using convolutions.

However, while using school-book multiplication, modular multiplication
may be grouped into 2M(R) operations (where M(R) denotes the number of
operations of one multiplication in the underlying ring), the short multiplica-
tion problem is an important obstruction to convolution. It raises the costs in
that case to 3M(R). In this paper we give a method for understanding and
bypassing this problem, thus reducing the costs of ring arithmetic to roughly
2M(R) when also using fast convolutions. The algorithms have been imple-
mented with results which fit well the theoretical prediction and which shall
be presented in a separate paper.

1. INTRODUCTION

Let R be a commutative ring and (v) C R an ideal. The problem we are
interested in is the efficient reduction of arithmetic in R/(v) to arithmetic in R.
The base operation is assumed to be multiplication in R, and we denote its run-
time by M(R). For simplicity, we explicitly restrict our attention to the cases
R=Z,v=nand R=Z/(n-2Z)[X], v =p(X), with n > 1 an integer. However
the analysis and solutions we provide are generic and allow for generalizations, e.g.
in towers of extensions.

The multiplication in Z can be performed efficiently with the help of various
procedures sharing the idea of fast convolutions. In Z/(n - Z), multiplications are
followed by a division, and no algorithms are known which allow one to accelerate
a division to a similar performance as convolution does for multiplications. It is
thus interesting to trade divisions for multiplications. A similar problem is posed
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for the ground ring R = Z/(n - Z)[X], assuming the operations in r = Z/(n - Z) as
given. Several algorithms are known which do exactly this: they trade one division
for two short (half-) multiplications.

When using the naive (or: school-book) multiplication method, the short multi-
plications can be combined to the (run time-) equivalent of one single long multipli-
cation. This is not possible with fast multiplication, and the total time required for
a modular operation is in this case equivalent to three long multiplications. Recent
research on the problem of short multiplication [Mul, [HZ] showed that it is encoun-
tered in various algorithmic contexts and it is hard to improve upon. This opens
the question as to whether modular multiplication is dependent on this problem
or not. In other words: is it possible to obtain a fast modular multiplication which
costs essentially two long multiplications, rather than three?

The present paper answers this question affirmatively, by providing a modifica-
tion of the setting in which multiplications are traded for divisions. The new algo-
rithm is generic and can be combined with various fast convolutions; as examples,
we treat the FFT and Toom-Cook convolutions in detail. We show in particular
a range of applications in which the second is preferable. Plainly: asymptotically
optimal algorithms have been known for decades, and improving upon constants
is still an open problem in the field. This paper improves a constant (by a fac-
tor of roughly 1/3) which is correlated to the above mentioned problem of short
multiplication.

The cases R = Z and R = Z/(n - Z)[X] have been traditionally addressed
independently, yet it shows that the respective solutions for one of them can be
adapted to the other one. In the year 1973, Volker Strassen [St] indicated how
to reduce polynomial division to power series division, and this was later shown
independently by Sieveking [Si] and Kung [Ku| to admit an efficient solution based
on formal Newton iteration: the Sieveking-Kung algorithm. The main ingredient
consists in a precomputation (which can be done using Newton iteration) of X ¢
mod p(X), where d = deg(p(X)) and (v) = (p(X)) as above. This trades divisions
for multiplications and—not trivial, as we shall see—truncations modulo X?.

More than ten years after Strassen’s seminal paper, Montgomery [Mo] gave an
algorithm for multiplication in rings Z/(n - Z) with large n € N, in which modular
division is replaced by two short multiplications, using an alternative representation
of remainder classes, described below. This is currently the state of the art for
modular reduction in long integer arithmetic. As shown in [GG], Sieveking-Kung
may also be used for long integer arithmetic (Corollary 9.9) while Montgomery may
be adapted for polynomial arithmetic (exercise 9.12, Algorithm 9.35)Eg

The long integer multiplication (R = Z) has complexity

M(R) = O(lognloglogn).

In the case of polynomial arithmetic, when both d,n — oo, the ring multiplication
can be performed for instance with FFT methods in

M(R) = O (dlog(n) - log(dlog(n)))

2Since both algorithms can be used in either case (integer and polynomial ring modular mul-
tiplication), the title might as well have used the names of Sieveking and Kung. Our choice is
connected to the fact that Montgomery is more explicit in suggesting a modified representation
of ring elements, an idea which we push in some contexts further than he did.
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[GG]. In practice, with two parameters, various relations between n and d can lead
to different optimal solutions. For instance, one will not use the same techniques in
a field of characteristic two and high degree as in a field of very large characteristic
and relatively small degreeE

Both algorithms perform a modular multiplication in 3 - M(R), where M(R)
is the time for one multiplication of integers of the size of n—for long integer
multiplication—and the time for multiplication of two polynomials of degree at most
d, for extension rings. This is a general bound [GG], independent of the particular
implementation of the base multiplications. It is however true for both algorithms
that when combined with school-book multiplication, an adequate data treatment
reduces the time to only 2 - M(R).

When using the very setting of Sieveking and Kung, resp. Montgomery, while
fast convolution techniques are speeding up the base multiplication, it is hard to
obtain the same factor 2. The core problem may be seen as connected with the
truncation. This problem is also called the short product problem: given two poly-
nomials f(X), g(X) of degree < d, compute f(X)-g(X) mod X% using fast convo-
lutions. Performing this task faster than the mere product f(X) - g(X) appears to
be a hard problem [Mul, [HZ]. There is little hope to reduce the time of the short
multiplication to half of the time of the full one. This obstruction is common for
modular long integer and for polynomial multiplication, when using convolutions.

The central idea of this paper is to investigate methods for adapting the Mont-
gomery representation for polynomial modular reduction, which are more efficient
than the Sieveking-Kung algorithm. It turns out that replacing truncation mod-
ulo X¢ by one which is adapted to the special type of convolution used for the
polynomial multiplication is a the key idea for achieving the goal announced in the
abstract. This leads to a generic algorithm for Montgomery reduction with convo-
lutions: we call this the ConvREDC procedure, in analogy to Montgomery’s initial
REDC. We show that the algorithm is very useful for long integer arithmetic too,
when this is done using FFT.

The idea was first proposed in the thesis [Mi], and the core of the algorithms we
shall present is in that thesis. McLaughlin noticed in the context of long integer
multiplication using Montgomery, that the choice R = 2V + 1 is preferable when
used together with small Winograd convolutions and derives some explicit Frame-
works, corresponding to various convolution polynomials of this kind. The FFT
method is also mentioned, in the context of polynomial multiplication.

Our generic procedure allows the use of any linear convolution, but here we
investigate the FFT and Toom-Cook convolutions explicitly. The fact that the last
algorithm is preferable to FFT in a quite large range of magnitudes for (d,n) is
also in some respects a new result. The extensions occurring in primality proving
typically belong to this range of magnitude: this was the initial motivation in [Mi].

The plan of the paper is as follows. In the second section we give a general treat-
ment of fast polynomial multiplications using fast convolution techniques, following
Winograd [Wn| and Blahut [Bl]. In the third section we describe Montgomery’s
procedure REDC in a generalized form (see also [GG], Exercise 9.12) and derive
ConvREDC, our generic adaptation to fast convolutions. In the fourth section we

3The latter is frequent in primality testing and can be treated efficiently with the Toom-Cook
algorithm [Mi].
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consider the specialization of this generic procedure to the Fast Fourier transform
and show that it improves upon Shoup’s implementations [NTL], [Li] of modular
polynomial arithmetic with FFT. In the fifth section we investigate long modu-
lar integer arithmetic with FFT and ConvREDC. In section six we consider the
convolution of Toom-Cook, first with its classical spectral transforms [Kn|, which
are quadratic in d, but very simple. Asymptotically fast multi-point evaluation—
which is the spectral transform for Toom-Cook—was first developed by Borodin and
Moenck in [BM]. It was recently studied by Bostan, Lecerf and Schost [BLS| in a
more general frame, which both improves upon the constants in the asymptotically
best version and allows performing multi-point evaluation with any convolution.
Consequently, this enables gradual transition from naive evaluation to fast convo-
lution.

1.1. The problem-setting. Let n > 2 be an integer and R a commutative ring,
which may be thought of as either R = Z or as being a finite Z/(n - Z)-algebra,
not necessarily different from Z/(n - Z). In particular, if n is a prime, R may be
the prime field F,, or a finite extension thereof: the algorithms which we develop in
this paper apply to these rings as particular cases. As already mentioned, we shall
restrict for simplicity our attention to the two cases R =Z and R =Z/(n - Z)[X]
and start with the focus on the second; thus let r = Z/(n - Z) and R = r[X].

Let p(X) € R be a polynomial of degree d and A = R/(p(X)). If a € R, we use
the notation of von zur Gathen [GG|] and denote by a rem p the unique polynomial
of minimal degree in the residue class of a; likewise a < b denotes the Euclidean
quotient of the polynomial a divided by b. We assume that arithmetic in r is optimal
in some sense and give the design of efficient algorithms for the arithmetic in A.
Let us consider the elementary operations in r as complexity-units and denote by
M(r), A(r) respectively the times required for a multiplication and an addition in
r; the multiplication of an element of r by a short integer (one machine word) will
take S(r) operations. From a certain distance, one may consider that A(r) and S(r)
can be neglected with respect to M(r). We shall take this perspective in section
six, in order to give crude estimates for a new variant of the Toom-Cook algorithm.

Typical elements a,b € A are represented in a minimal representant system
by polynomials a(X) = a rem p(X),b(X) = brem p(X) with coefficients in R
and degree < d — 1. The minimality of these representants is with respect to the
degree, naturally; other representants of residue classes are possible and may be
useful. The product ¢ = a x b € A can be computed by building the product
co(X) = a(X) x b(X) and then reducing it modulo p(X); the question of how to
best avoid the modular reduction by additional multiplications is the central topic
of this paper.

2. FAST POLYNOMIAL MULTIPLICATION USING CONVOLUTIONS

Let R be a commutative, euclidean ring and a,b € R[X]. For reasons of trans-
parency we consider in this section the problem of efficiently computing the prod-
uct a(X) x b(X) separately. We shall see however in the next section that im-
portant additional gains can be achieved, when considering the modular product
a(X) x b(X) rem p(X) as one single operation, rather than splitting it into a mul-
tiplication and a modular reduction step.
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Let a(X) =Y ya;- X and b(X) = >~ b; - X7, with a;,b; € R and m,n < d.
Then
n+m k

C(X): ch~Xk with Ck:Zal'bk—l~
k=0 =0

Methods allowing a fast simultaneous computation of all the coefficients ¢, are called
fast convolution algorithms. A large class of such algorithms share the following
fundamental scheme, such as initially described by Winograd [Wnl; see also [BI].
Let C(X) be a polynomial of degree 2D > m—+mn. Since the degree of C(X) is larger
than that of ¢(X), it follows that ¢(X) = a(X) x b(X) = a(X) x b(X) rem C(X).
One thus knows ¢(X) if its image modulo C'(X) is known. The idea of fast convo-
lutions is to split C(X) = Hi:l Cs(X), I < 2D, then compute

(1) as(X) =a(X) rem Cs(X) and bs(X) =0b(X) rem Cs(X), s=1,2,...,1,
and multiply
(2) cs(X) = as(X) x bs(X) rem Cy(X).

Finally, ¢(X) can be retrieved by using the Chinese Remainder Theorem:

(3)
!
cS(X):ZeS(X)-cS(X) where es(X)=0s; mod Cy(X), ¢t=1,2,...,1

We denote the operations ([Il) and (@B]) by direct and and inverse spectral transforms,
in accordance with the roots of these ideas in the theory of Fourier and Laplace
transforms. If the spectral transforms are cheap, then the I multiplications in (2))
are the main step of the convolution algorithm—they trivially are so if C(X) is
irreducible. The aim is thus to choose highly composite C(X) for which the cost of
the spectral transforms is minimal to some respect. Certainly, good convolutions
are expected to use linear polynomials C'(X). Some important convolution methods
are the Fast Fourier Transform [GG], Winograd’s small convolutions [Wn], and the
Toom-Cook convolution [Co], [To]. We refer the reader wanting to know more
about the large variety of convolution techniques designed for various contexts to
the magnificent book of Blahut [BI].

In this paper we concentrate on two particular convolution methods which both
share the property that C(X) splits into linear factors, albeit in different rings:

2D

(4) ox) =TT (X —n).

s=1

We designate convolutions for which C'(X) splits into linear factors by linear con-
volutions. As a consequence of (), the direct spectral transform amounts to the
simultaneous evaluation of the 2D (constant) values

(5) as(X) =a(us), bs(X)=0bus), s=1,2,...,2D.

The values ps can thus be considered as interpolation points.
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3. THE MODULAR REDUCTION

Again we let R =r[X] =Z/(n-Z)[X] and A = R/(p(X)). One multiplication
in A consists of a polynomial multiplication followed by the reduction of the result
modulo the polynomial p(X). The second operation may well be the more time
consuming: divisions are mostly so.

Here we present in a general frame the algorithm of Montgomery, which trades
in multiplications for divisions. Based on this, we describe in the second part
of this section a new, generic algorithm, which combines fast convolutions with
Montgomery modular reduction.

3.1. Montgomery’s REDC. Let R be a commutative Euclidean ring endowed
with an order relation and let v € PR. The aim is to perform modular multiplications
in M = R/(vR) avoiding divisions for the modular reduction. For this, let R € R
with R > v,(R,v) = 1. The elements a € 91 will be represented by p(a) =
a- R rem v. Thus

p(a-b) = p(a)-p(b) - R™" rem v.

The core problem is now to compute Z - R~! rem v for inputs Z < R-v. Assuming
that V € M with V- v = —1 mod R is precomputed, this is done by the following
procedure of Montgomery, which takes an input 0 < Z < R - v and outputs T =
Z-R7! rem v

REDC(Z) (* Montgomeryf] *)
Z—A. B,

M = ((Z rem R)-V) rem R,
T=(Z+M-v)+R,

3. f T >v,then T =T —v. Return T.

M=o

Here is a brief review of the proof of integrity of this procedure. By definition of
V,Z-V.w=-Z mod R. Thusv- M= -(Zrem R)-V)rem R=2Z-V.v=-Z7
mod R, and Z+ M -v =0 mod R. It follows that 7" is indeed an integer. The
definition of T also yields: T-R = Z+ M -v,ie. T = Z-R™' mod v. Finally
we have to show that T is indeed a remainder, so T < v. But Z < R - v while
by definition M < R and thus Z + M -v < 2- R-v. The value of T in point 2
is consequently T' < 2v. Step 3 finally assures that the output is T < v. Note
that this holds when R = Z and v = n € N, the purpose for which the algorithm
was designed. We shall show below that when v, R are polynomials, step 3 can be
avoided, since the condition for the input is stronger.

The algorithm replaces the reduction modulo v by two short multiplications and
three divisions by R. Compared to an implementation of modular reduction using
division, this is a gain in the case in which divisions by R are practically for free.
In the initial setting for long integer arithmetic (thus R = Z), one took R = 2%,
where w is the machine word length, as an adequate choice.

4The original procedure REDC consists of steps 1-3; step 0 is added in order to make it more
precise that, in most contexts, one has to think of Z as being the product A - B. This will also
allow a transparent operation count for various applications.
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3.2. An optimized REDC for fast convolutions. The cost of a modular mul-
tiplication using Montgomery is in general 3M(fR), i.e. three multiplications in R
[GG]. An appropriate goal would be however 2M(fR), which is achieved in com-
bination with school-book multiplication. One wishes to exploit the fact that the
multiplications in steps 1 and 2 of REDC are partial and leave place for some
savings—ideally, they should be performed at the cost of one single operation.

The choice of an adequate value for R plays an essential role. With naive poly-
nomial multiplication, a good choice is R = X!, used by Sieveking and Kung:
division by the polynomial X%t is easy. It is also the analog of division by R = 2%
in Montgomery’s choice for binary arithmetic. The choice is not very useful when
the polynomial multiplication is done with convolutions. Indeed, in this case, it is in
the spectral space that truncation has to be effective, if one wishes to reduce the cost
for truncated multiplications. Thus by adapting truncation to the spectral space,
one avoids the short multiplication obstruction mentioned in the introduction. We
present a method for choosing R in combination with convolution techniques, which
is adapted in the above sense. We define for this purpose a special representation
of the data which is directly connected to the particular convolution polynomial
C(X) that one uses for long multiplication.

Definition 1. Let R, p(X) and A be as before and let
2D
CX)=]][(X-p)eX with D>d, (C(X)pX)) =1
s=1
be a polynomial defining a linear convolution.

Let C(X) = R (X)- RT(X) be a splitting of C'(X) in two coprime factors, such
that deg(R*+(X)) = deg(RT(X)) =D >d and let R = {1,...,pop} = R*URT
be the partition such that

REX) = [ (X—pe) and RT(X)= [ (X -n).
nsERL HsERT

For g(X) € r[X] we define

o(g) = {g(ps):ps € R} and

(6) ot(9) = {gns) i ps € RTY,

o'(9) = {9(us):ns €RTY.
We may also write, for simplicity o(g)s = g(us). If deg(g) < 2(d+1) this set of data
uniquely determines g(X) by interpolation%l Furthermore, we let R = R+(X) in
REDC and define the Montgomery representation of the class a(X) + (p(X)) € A
by
(7) pla) = a(X) R*(X) rem p(X) € A, Va(X) € R[X].
Finally we define o’ = gop. We say that the elements of A are in ¢’ representation,

if they are given by the set of data o/(a). One easily verifies that this set uniquely
defines an element of A. The elements a € A thus have the combined representation

a— p(a)(X) € R o'(a) = o (p(a)(X)).
5 The choice of the degree of C is good for most applications; in a context in which sparing

single multiplications may be relevant, it is possible with more care to reduce this degree by units.
This would uselessly complicate our general presentation.
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A final important assumption concerning the convolution method is that, given
the values o (g) of a polynomial g(X) with deg(g) < d, the computation of o ' (g)
is easy, and vice versa. Formally, we define the following shift operators:

(8) 6" (ot (9)) = o'(9) VgeR with deg(g) < D,
(9) G (UT(g)) = o'(g) VYgeR with deg(g) <D.

We now show that the choice of R is adequate for convolutions. Here is how the
operations rem R* and <R act upon o(g). If

(10) 9(X) = ¢(X) - RH(X) +r(X)
is the Euclidean division of g by R+, then (X ) = g(X) rem R*(X) is a polynomial
of degree < d and is uniquely determined by its values at d+ 1 interpolation points.

For us, € R+ we have R (u,) = 0 so g(us) = (g rem RY)(u,), for uy € R and
thus

(11) ot(g) =0t (g rem RL) .
So the truncation g rem R* is almost for free. It is sometimes necessary to know

the values (g rem R*)(yus) for us € RT. For this, one needs the shift operator &+.
Suppose now that g(X) is divisible by R*(X); from (I0),

(9(X) = RH(X)) (ns) = q(ps) = g(ps)/ R (ps) Vps €RT  thus
(12) c'(9) = o"(RY)-o" (9+RY).
Thus division by R*(X) is also almost for free too, since the values (a(X)+
R*(X)) (ps) for pus € R+ can be gained using the &~ operator.
Let a,b € A be given by ¢'(a),0’(b) and v(X) above be precomputed and also

given by o(v). We wish an algorithm which takes this input and returns o’(c) =
o'(a-b). The first step is naturally to compute

(13) zs =0'(a)s-0'(b)s forall seR.

This is the core of a multiplication using fast convolution and corresponds to step
0 in REDC. The direct spectral transform is avoided by the o-representation. Now
zs is the o-representation of a polynomial z(X) € r[X], of degree at most 2(d — 1)
and such that

2(X) = (RM)*(X) - a(X) - b(X) = RH(X) - p(a-b)(X) mod p(X).
We need the equivalent of the procedure REDC to divide out the factor R+ (X).

The algorithm below accomplishes this task. Note that z(X) = p(a) - p(b) verifies
deg(z) < 2d — 1; this eliminates step 3 of that procedure.

Algorithm ConvREDC (* REDC for Convolutions *)
Input: ¢’'(a),o’(b),a,b € A;0(v),o(p).

Output: o’(c) = o'(a - b)

1. 0s(z) = ol(a) - ol(b), for s € R.

2. m(ps) = 2(ps) - v(ps) for ps € RE. This yields ot (m).
3. 0" (m)=6"(c(m)).
4

(1e) = (2(1s) + mljis) - plsss)) /R (1s) for all i, € RT.
This yields o T ().

= q
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5. 0M(t)=6" (0" (t)).
6. Set o’(c) = {t(us) : s € R} and return o’(c).

The divisions by R*(us) in step 4 can be optimized, and will in general take less
than M(r), but certainly not more. The central step of the algorithm is the evalua-
tion of the shift operators, which is comparable in both directions. We shall denote
by (&) an upper bound for the time for these evaluations—a time which depends
on the convolution used. The run time for one modular multiplication in A, in
o-representation, using (I3)) and ConvREDC is herewith

(14) T <5-d-M(r)+20(S).

The first term in ([I4]) is close to the complexity-theoretic lower bound for this task,
while the last two terms are the times taken by the evaluations of &*. These
evaluations are thus crucial for the performance of the algorithm. Note that the
o-representation together with Montgomery’s algorithm allow deferring spectral
transformations to the end of a chain of computations. This is fundamental for the
Toom-Cook method, but less relevant for FFT. If one has to compute an expression
(61,02, ...,05) = E(a1, a9, ...,a1), where the a’s are inputs and the ’s outputs,
and if M is the number of A-multiplications for the evaluation of F, then the k
direct and j inverse spectral transforms for «, 8 are distributed as overhead over all
the M ring operations. When M is large compared j + k, as typically in the case
of exponentiations or multiplications on elliptic curves, this is an important gain.
The next theorem states the properties of the algorithm ConvREDC:

Theorem 1. Letn € N>o, r =Z/(n-Z), R =r[X] and p(X) € R be a polynomial
of degree d > 1. Let A =R/(p(X)) and a linear convolution polynomial

C(X) = R*(X)-R'(X), (C(X),p(X))=1

be given, so that deg(C) > 2(d + 1), with R*(X),R"(X) a splitting of C(X) in
coprime factors of degree > d. Let the o- and o’-representations be defined by
Definition [ and suppose that a polynomial v(X) € R[X] with

v(X)-p(X)=-1 mod R*(X)

is precomputed together with o(p),o(v). Then, for any linear convolution C'(X) as
above, the algorithm ConvREDC produces, on input o’ (a), o’ (b), the o’ -representation
of the modular product: o'(c) = o'(ab), where the product is taken in A. The num-
ber of operations is bounded by (I4)).

Proof. The integrity of this procedure is easily deduced from the one of the general
procedure REDC. In the first step one performs the multiplication which will be
the input for the actual reduction algorithm. In the next two steps one computes a
complete set o(m) of interpolation values of m, using ([[1]). This corresponds to step
1 of REDC. The following two steps produce o(t), using (I2); they correspond to
step 2 of REDC. Finally, we show that deg(t) < d, which makes step 3 superfluous.
The polynomial m is a remainder of Rt and has degree deg(m) < D. Then
deg(m(X)-p(X)) < D+d in step 2 of REDC, and since deg(z) < 2d — 1 it follows
that deg(t - R*) < D +d. But R*+(X) has degree D, so the last inequality implies
deg(t) < d = deg(p(X)), which completes the proof. O

The algorithm ConvREDC is generic, since it can be combined with any linear
convolution; the generalization to non-linear convolutions is at hand, but of little
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present interest. We shall investigate in the next sections in more detail the way
ConvREDC works together with the FFT and Toom-Cook convolutions.

4. ConvREDC witH FFT

For FFT one will reasonably choose C(X) = X?P — 1 and R+(X) = XP -1,
RT(X)=XP +1, whered+1< D < 2(d+1).

Remark 1. The choice of D is due to the fact that traditionally one wishes D to be a
power of 2. This leads to the unpleasant feature that the FF'T complexity becomes
roughly a step function of d, rather than a continuously growing one. Recently van
der Hoeven [vH] has shown that this effect can be avoided. For this he uses the
non-recursive version of FFT and chooses as interpolation points for a polynomial
of degree d the first d values computed by the non-recursive version of FFT (D),
where D is the least power of 2 which is larger than d.

In FFT mode, G* can be evaluated by an inverse spectral transform followed by
a direct transform, both of dimension D, rather than 2D. The major advantage of
FFT is that the operators &* can be performed in O(d - log(d) - M(r)) operations;
this is important when d is large.

4.1. FFT representation. Here we shall follow the guidelines set by Shoup in
[Sh] for implementing polynomial modular arithmetic over finite fields, since his
implementation [NTT] is considered the state of the art. The roots of unity p; = w*
are in general not in r, so the FFT operations will be multiplications on numbers
in a ring F = Z/(N - Z) which contains the required roots of unity (which affords
2D-point FFT, in [GG| terminology): we shall write for simplicity, in this section,
M(n) = M(r) and M(N) = M(F). Working over F corresponds to embedding
9(X) € r[X] in Z[X] and then the result in F[X]. In order to retrieve meaningful
results, N must be larger than the coefficients of the polynomial product in Z[X].

Following Shoup [Sh], one lets N be a product of small primes p; (machine
word length, typically), all of which are p, = 1 mod 2D: so all rings Z/(p, - Z)
contain 2D - th roots of unity and thus so does F = Z/(N - Z). In order to have
sign information, one uses the interval [—|N/2|,—|N/2] + N — 1] as the set of
representants for Z/(N - Z).

Definition 2. We shall say that g(X) € Z[X] is Z/(N - Z)-normal, if
g(X)=> gi-X' and |g;| < N/2.
i

In the chosen representation for Z/(N - Z), the normal polynomials are charac-
terized by:

(15) 9(X) = g(X) rem N.

Conversely,

Lemma 1. If the polynomials G1(X),G2(X),...,G(X) have the product
GX)=G1(X) -Ga(X)-...-Gr(X)

and there is a chain of intermediate products F1(X), Fo(X),...,Fv(X) = Go(X)
which are all Z/(N - Z)-normal, then the product can be evaluated using FFT in
Z/(N - Z) without loss of information.
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Proof. The polynomials
Fi(X) rem N,F5(X) rem N,..., Fo(X) rem N = G.(X) rem N

can be computed using FFT-convolutions in Z/(N - Z). Since they all are normal,
we have F;(X) = F;(X) rem N and finally G(X) = G(X) rem N, which completes
the proof. O

A polynomial g(X) € Z/(n - Z)[X] will be embedded in Z[X], the image being a
polynomial G(X) € Z[X] with coefficients |g;| < n/2. In order to compute products
inZ/(n-Z)[X]) with FFT in Z/(N-Z) using Lemmall] one must choose N sufficiently
large, so that normality of the occurring products is preserved. If the chain has
length r and the degrees of all factors deg(G;(X)) < d, it suffices to choose

(16) N>T(r)=2(d+ 1) (n/2)":

one easily verifies by induction on r that T'(r) is an universal upper bound for the
coefficients of products of r polynomials in Z/(n - Z)[X], when the coefficients are
in signed minimal representation, and thus have absolute value < n/2. An often
better alternative is to reduce modulo n the coefficients of each product. This way
T'(2) is sufficient, but one has to perform more FFT steps for the renormalization.

4.2. Modular reduction in FFT mode. We let r = Z/(n - Z) and p(X) € r[X]
be as before, a polynomial of degree d. The convolution polynomial is C'(X) =
X2 1 ,RY(X) = XP —1and RT(X) = XP + 1, with d < D < 2d. With
Montgomery reduction, the factor z(X) in step 1 may have degree 2d > deg(z) > d.
In view of (I8) we have two alternatives:

A. Compute m(X) without previous reduction of z(X) modulo n; in this case
m(X) is the product of three polynomials, and we must choose r = 3 in
(I6).

B. First reduce z(X) modulo n and then compute m(X). This costs two
additional FFT operations, but reduces r to 2.

Note that although N > dn?, the arithmetic in Z/(N - Z) is particularly ap-
pealing and it may be that M(IV) < M(n) for large n. Indeed, multiplications in
Z/(N -Z) require only log(N)/w word multiplications, where w is the machine word
length (the log will always be in base 2, when concrete constants are implied). One
FFT operation requires a chain of 3 - Dlog(D)log(N)/w word multiplications and
two Chinese Remainder operations. The price of CRT decomposition and recom-
position modulo N is paid only once per FFT operation, so for D sufficiently large
(e.g. O(log(N))), we have indeed M(N) < M(n), when the cost of one Z/(N - Z)
multiplication is averaged over an FFT(D) operation. Briefly: the arithmetic in
Z/(N - Z) is linear in log N, when CRT transforms are negligible. Increasing the
size of N by a factor c essentially amounts to increasing the number of factors p; by
that constant, and, finally increasing the FFT operation time by the same constant
factor. The increase of N is from dn? to d?n3. The time for one FFT operation is
thus increased by at most

n 1 1

92 1L ols(m
T+ 25c@

where the larger n/d, the closer A approaches 3/2. The degrees of the polynomials

are directly controlled by the procedure ConvREDC, so it is only the size of the

coefficients that need particular attention in FFT mode.

(17) A=

N w

3
27
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Remark 2. Switching from N3 ~ d?n3 to Ny ~ dn? is particularly easy: one
disregards part of the small primes used for N3. This is practical, since after
reducing m(X) mod n we only have products of two polynomials, so such a switch
is allowed.

In either case, let w € Z/(N - Z) be a primitive 2D-th root of unity. Then
XP +1=—((wX)P —1). This allows one to perform operations modulo X + 1
using FFT(D)-operations. We give the applications in the following

Lemma 2. Let w be a primitive 2D - th root of unity and

2' y D_l
Mp = (w Z])i,j:()'
Let G(X) € R[X] have degree deg(G) < D and g be its padded coefficient vector
of length D. Consider the diagonal matriz A = diag (1, w, ... ,wD_l). Finally, let

y= (G(wlﬁj))f:ol be the spectrum of G(X) mod XP + 1. Then

(18) § = MpxAxg,
g = A'xMp x7.
Proof. One verifies from the definition that
e D-1
Mp x A = (w@H0)
i,j=0

This together with the definition of 4 proves the first line in (I8]). The second line
is solving the linear system in the first line with respect to g. O

In terms of o-representation, this means, for a(X) € A:
(19) Mp xd = o+(a),
MpxAxd = o (a).

We now consider the implementation of the shift operators. The operator &V is
given by

(20) Gt = (Mp x A) o (modn) o Mp!,

in the natural execution sequence of operations from right to left. The modular
reduction in the center of expression ([20)—denoted by (mod n)—is used for renor-
malization. However, since it produces the output, along with computing &~ (¢),
after renormalization one should also recompute the top part which served as input
for &~. Thus:

(21) S; = (Mp|A x Mp) o (modn) o (Mp x A) "
Here the symbol | stands for concatenation of two matrices. The first two steps
in (2I) already give the coefficients of p(c), but the integrity of the procedure
ConvREDC requires that the output be the full ¢’-representation of a - b, so one
needs to apply Mp at the end.

Note that Rt (us) = pdt!t —1 = —2 for all y, € R" and thus the division by
R*(us) in step 4 is trivial; due to linearity it may even be performed after the
inverse spectral transform. We let v(X) € Z/(n-Z)[X] be defined by v(X)-p(X) =
—1 mod R*(X) and suppose that both v(X), p(X) are given by their precomputed
o-representation, like in ConvREDC. We write for simplicity M = Mp and M =
A x Mp, when w € Z/(N - Z) with N = Ny ~ T(2) and replace M by M’, when
N = N3 ~ T(3). We also assume that Ny divides Nj.
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In the first variant we shall require that the o-representation that the algorithm
maintains is with respect to N3 ~ T'(3). In order to save one FFT operation,
we note that after step 3 of ConvREDC, simple precision in FFT is sufficient, so
we introduce a switch between FFT modulo N3 and FFT modulo Ny. With this,
ConvREDC translates into:

Algorithm FFTConvREDC (* ConvREDC for FFT, o *)

Input: ¢/(a)(X), o’ (b)(X);0(p(X)),o(v(X)). The input is modulo
N,
Output: ¢'(a - b).
1. 04(z) = ol(a) - ol(b) for all u, € R.
2. m(us) = 2(ps) - v(us) for ps € R This yields ot (m)
mod Ns.
3. Let mt = M/, x (0 (m(X))) and reduce the vector modulo
n.

Switch to Ny-representation (i.e. start using matrices mod-
ulo Ny) and let o (m(X)) = My x mt.

4. t(ps) = (2(ps) +m(ps) - p(ps)) /(—2) for all u, € RT. This
yields o T (¢).

5. Let £ T =M, x (¢! (t(X))) and reduce the vector modulo 7.
Switch back to N3-representation for the output. Let /" (c)=
M/, x t and o (c) = M/, x t. Return o’(c).

For the time analysis, we shall write FFT(D) for the time for multiplication of a
vector with entries of the size of Ny = N ~ dn? by the D x D matrix Mp: this is
known to be O(D-log(D)-M(N)) operations, and more precisely 2D log(D)-M(N),
if D is a power of 2. According to the discussion above, the FFT modulo N3 for
the same size matrix will then cost A x FFT(D) operations. Using switches, the
evaluation of & costs (A + 1) x FFT(D) + 2M(n), where 2M(n) accounts for the
reduction modulo n and the one of &~ takes (2A+1) x FFT(D)+2M(n) operations.
Steps 1, 2 and 4 require 4 x D x M(N) operations. Steps 3 and 5 are G evaluations
requiring a total of (3A+2) x FFT(D)+ 2d x M(n) operations. The total operation
count is thus:

(22) Tt~ (3A+2) x FFT (D) +4D x M(N) + 4d x M(n).

In order to reduce the size of the operands to N ~ dn?, we now focus on strategy
B and add a partial renormalization of 2(X). Since only the values o1 (z) are
involved in a further multiplication, it is their size that needs to be controlled. For
this, we retrieve the coefficients of z(X) rem R*(X), reduce them modulo n and
then recompute the values o+ (z) with the renormalized coefficients. Writing 9(2)
for this operation, we have:

(23) M =Mo (modn )oM

One notices the structural analogy with the shift operators; the time required is,
accordingly, 2x FFT(D)+2dx M(n). The ring Z/(N -Z) is now smaller, the factor
X = 1 for the evaluation of &+ and no switches are necessary. Certainly, we assume
that input and output are in the o-representation for small N = N». This leads to
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Algorithm SFFTConvREDC (*ConvREDC for FFT, o, small

N *)
tput: o/ (@)(X), o/ (6)(X): (X)), 0 (o))
Output: o'(a - b).
1. 05(2) = ol(a) - oL(b) for all us € R.
2. Renormalize: o1 (2) = Nt (a1 (2)).
3. m(us) = 2(us) - v(ps) for ps € R+, This yields ot (m).
4. Let 0" (m(X)) = &7 (¢ (m(X))).
5. t(us) = (2(us) +m(ps) - p(ps)) /(=2) for all u, € RT. This

yields o T (t).
6. Let o (¢) =0 (t) and o' (c) = &~ (e (t)). Return o’(c).
The cost of the short variant of SFFTConvREDC is
(24) Ty ~7 x FFT(D) + 4D x M(N) + 4d x M(n).

4.3. Special cases and preconditioning. In the context of exponentiations, one
encounters squarings and repeated multiplications with a fixed factor. It is impor-
tant to use the specificity of these operations in order to save some FFT operations.
For squaring, the o-representation allows no savings, but these are implicitly pro-
vided by the possibility to avoid the computation of the spectra of the input data.

For multiplication by a fixed factor we can save on the computation of m(X) by
using the following identity, which holds for any triple of polynomials f(X), g(X),
h(X) € R[X] (here R(X) = R*+(X)):

(25) (( £(X) - g(X) rem R(X))-h(X) ) rem R(X)
— (S(X) - (9(X) - h(X) rem R(X)) ) rem R(X).

The proof is evident: both terms are remainders modulo R(X) by definition and
they are congruent to f(X) - g(X) - h(X) mod R(X). They must be equal by the
uniqueness of the remainder. Applying (25]) to the definition of m(X) in step 2 of
ConvREDC, we see that this can be replaced by:

m(X) = a(X) - (b(X) - v(X) rem R(X)) rem R*(X).

If b(X) is frequently used, one can store the spectral representation of ¢(X) = b(X)-
v(X) rem R*(X). More precisely, we assume that the product polynomial ¢(X) of
degree deg(¢) < d has been previously reduced modulo n, so its coefficients are all <
n. In this case all polynomials involved have coefficients dominated by dn? and one
can save the partial renormalization in SFFTConvREDC, thus reducing the costs
in this case to ~ 5FFT(D). There are less savings in FFTConvREDC, although
all computations can be made modulo No. On output, the o’-representation is
required modulo N3, and computing it will require one more FFT operation than
SFFTConvREDC.

This appears to compare quite well with the state of the art implementation
[NTT] of this method and even brings some gains for arbitrary d. The gains were
confirmed by an implementation on top of [NTL] and agree with the theoretical
prediction; this will be described in a separate paper. Here is a crude comparison,
based only on the number of FFT steps and using the data in [Sh|. For FFTCon-
vREDC, we use the scaling factor A = 3/2; as indicated by ([I1), this is a very good
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TABLE 1. Number of FFT operations at a glance

Operation (Number of FFT (D) ) NTL-Shoup | SFFTConvREDC | FFTConvREDC

General modular multiplication 12 - -
Modular squaring 10 7 6.5
Preconditioned modular multiplication 6 5 6

(lower) approximation, for d up to some fractional power of n. For small n and in
characteristic 2, A approaches 2, and the data for FFTConvREDC in Table 1 are
false. Note also that we write no value for general modular multiplications, since
the o-representation reduces in some respect the generality.

The results of this section are summed up in the following.

Theorem 2. Let n > 2 be an integer and p(X) € Z/(n-Z)[X],A = (Z/(n- Z)[X])/
(p(X)) with deg(p) = d < D < 2d and (p(X), X?P —1) = 1, with D suited for FFT.
Suppose that v(X) € A such that

v(X) p(X)=-1 mod XP -1

is precomputed and belongs to the description of A. Furthermore, if multiplication
by a polynomial b(X) € R[X] occurs frequently, one also precomputes the spectrum
of b(X) and of b(X) - v(X) rem p(X). Then multiplication in A can be performed
in Montgomery representation using FFT transforms. This task is fulfilled by one
of the procedures FFTConvREDC or SFFTConvREDC. The required number of
FFT(D) transforms is indicated by Table 1.

Remark 3. We have presented our algorithms in o-representation, for the sake of
consistency with the generic definition of ConvREDC. It should be mentioned how-
ever, that in the case of FFT which requires renormalizations, this representation
has no particular advantage. One may as well use the natural representation, i.e.
polynomials are given by their coefficients. The times are essentially the same, one
even saves one FFT operation in FFTConvREDC with preconditioned modular
multiplication. In this case, one can also give times for the general multiplication,
and they improve upon NTL too. The changes being quite straightforward, we do
not include them here.

Remark 4. For small d, the CRT operations modulo the small primes p; cannot be
neglected. This will increase the factor \. Thus FFTConvREDC saves 1/2 FFT
only for large d. Naturally, the impact of CRT is more important for small d, also
in [NTL]. We shall see that the Toom-Cook is in many respects preferable for such
values of d.

5. LONG ARITHMETIC WITH FFT AND CoONVREDC

Let n be a very large integer and B = 2* a block. This can be the size of
a machine word, in which case FFT is implemented directly on top of machine
operations, or several machine words, assuming that multiplication of integers up
to the size of a block is done using some fast method with less overhead.

The question of whether this choice of R = B¥ in REDC is still the best when
using linear convolutions for the long multiplication was addressed by Crandall
and Fagin in [CE] and, recently, by McLaughlin. In [MI], he uses some interesting
ad-hoc small Winograd convolutions in several detailed frameworks which improve
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long integer arithmetic. He also proposes an improvement of polynomial arithmetic
using FFT, but does not analyse it or use it for long integer arithmetic.

Here we consider the way SFFTConvREDC adapts to long integer arithmetic.
Assume that FFT is carried out in one of the ways described in the previous section,
probably using the three primes FFT |[GG], or similar. In the SFFT variant, it is
sufficient to let N > Ny with

(26) No=2- “;)gg((gﬂ B?=K . B

The factor 2 allows us to take the sum of two products of polynomials in spectral
representation: this is required in step 5 of SFFTConvREDC. We assume that
K < B, son? < BB, We assume the matrices M p, M are computed with respect
to Z/(N - Z), a ring affording 2D-point FFT.

5.1. Representation of integers, normalization and carry. In order to apply
SFFTConvREDC, we choose R-(X) = XP —1,RT(X) = XP + 1 and let R =
R*(B). We impose the condition R > 4 - n.

Ifa= Z?:o a;B', 0 < a; < B, is an integer, then it will be convenient to use
a notation, say ¢(a)(X) = Z?:o a; X" € Z[X] for the associated polynomial. In
the case 0 < a; < B we say that ¢(a)(X) is a polynomial in normal form. If
f(X) € Z[X], then the inverse operation is an evaluation at B, which we denote by

~

B: f(X) € Z[X]— f(B) € Z. We also denote by normalization the operation

(27) o(f) = ¢ (f(B)) = ¢ o B.

Naturally, here f(B) is rewritten as a polynomial in B with block-coefficients 0 <
fi < B.

We let 0 < V < R be such that V-n = —1 mod R, set p(X) = ¢(n), v(X) =
¢(V) and assume that these polynomials are precomputed together with their
spectral representations o(v(X)),o(p(X)). Note that we do not necessarily have
p(X)-v(X)=—1 mod R*(X), as polynomials, but p(B)-v(B) = —1 mod R*(B).
An integer a € Z will have the Montgomery representation p(a) = a- R = a -
(BP —1) rem n.

The o’-representation will be the composition of three opertaions ¢’ = oo ¢op.
First, p(a) € Z/(n - Z) is the Montgomery representation of a and ¢ transforms it
into a polynomial of degree deg(#(p(a)(X))) < D. Finally, this polynomial is given
by its (Fourier) spectral representation o.

We saw in the previous section that normalization plays an important role when
using FFT for arithmetic in (Z/(n - Z)[X]) /(p(X)). Now we investigate how nor-
malization works in the context of long integer arithmetic. If z(X) is a polynomial
with coefficients which exceed B, then normalization can modify its degree; yet, it
leaves the value at B unchanged. This happens in particular if z(X) is computed
as the product of two polynomial representations of integers. So there is a prob-
lem of carry propagation that we have to control. The problem is addressed in the
following

Lemma 3. With the notations above, let 0 < a,b < R be two integers and a-b = Z,
$(a)(X) - p(b)(X) = 2(X). Then z(B) = Z and there is a linear polynomial G(X)
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in normal form, such that
(28) 22(B) = (Zrem R*(B))+G(B) -R*(B) and
2"(B) = (Zrem R"(B))+G(B)-R"(B).

Proof. By construction,

2(B) = (¢(a)) (B) x (¢(b)) (B) =a-b=Z,
which is the first statement. For the rest, it will be convenient to use some re-
lated Chinese Remainder base for polynomials and numbers; notice that R (X) =
R*(X)+2. This relation yields, up to a factor 2, the required base. With the usual
meaning for z+(X), 2 (X), etc., we have
(29) 2-2(X) ZH(X) - RT(X) — 2" (X) - RH(X),

2.7 = ZY-R"-ZT".R*,

the second line being the result of the evaluation B on the equality in the first
line. Since z(B) = Z, we have by definition of 2 (X), 27 (X) also z+(B) = Z+
mod R+(B), 27(B) = ZT mod R"(B), although in general Z+ # »*(B). Thus
we let
2H(B) = Z*+g(B)-R(B),
2"(B) = Z"+h(B) -R"(B),
and insert these relations in (29)), in which we set X = B and use the fact that
z(B) = Z:
2.2(B) = (Z"+9(B)-R*(B)-R"(B)~ (£ +h(B)-R'(B))- R"(B)
(24 RY(B)~Z"-R*(B)) + R*(B)- R"(B) - (9(B) — h(B))
= (Z* R"B)-Z" -R*(B))=2-Z
By comparing the last two lines, it follows that g(B) = h(B). The relations (28)
follow with G(B) = g(B) = h(B). The coefficients of z+(X),z"(X) are all < T
and the degree of the polynomials is < D. Consequently |2+ (B)| < T-BP~! < K -
BP+1 < (1/2)BP*2 by ([20) and the assumption on K. Since G(B) = 2+ (B) + R,
in normal form, G(X) must be at most linear. O

5.2. An algorithm for long integer arithmetic. The shifts G are connected
in this case to some additional operations, so they will be split in several steps.
Here is the long integer arithmetic application of SFFTConvREDC:

Algorithm IntConvREDC (* REDC for integer arithmetic with
FFT %)
Input: o'(a)(X), 0’(b)(X); o (p(X)), o (v(X)).
Output: o’(a - b).
1. 0s(z) = ol(a) - ol(b) for all u, € R.
2. Renormalize z*:
2.1 Retrieve z*(X) from its spectrum o () applying M ;'
2.2 Let 21(X) = ¢(2+(B) rem R) = ¢(Z+) and compute
ot (z1) by FFT (Mp).
3. Compute o (m) as follows: m(us) = 21(1s) - v(ps) for ps €
R*.
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4. Compute & (ot (m)):
4.1 Retrieve m*(X) from its spectrum, by FFT with Mp,'.
4.2 Let M = m™*(B) rem R and set m;(X) = ¢(M).
4.3 Let o (m) =0 (m1) (My).

5. t(ps) = (2(ps) +m(ps) - p(us)) for all gy € RT and compute

tT(X) (using M71).

6. Set T = (—R"(B) + (t"(B) rem RT(B))) /(—2).

7. T >n,then T =T —n.

8. Compute o'(c) = o(¢(T)) (using Mp|M) and return o’(c).

The correctness of this procedure is asserted by the following

Theorem 3. Let n € N be a large integer, R = BP? —1 > n with B = 2% a
power of two and suppose that V- R = —1 mod n. Then procedure IntConvREDC
correctly computes the product of two numbers a,b € Z/(n - Z), in their spectral
Montgomery representation with respect to R, using ~ 7- FFT (D) operations. The
reductions for squaring, resp. repeated multiplication by a fized factor, are of 0,
resp. 2 FFT(D) operations.

Proof. We verify the integrity of the algorithm by comparing with Montgomery’s
REDC. Step 2.2 implies that o (2) is the spectrum of a polynomial with z;(B) =
Z+. REDC requires M = (Z+ - V), so step 3 correctly computes o (¢(Z+ - V)),
and step 4.2 provides the correct value of M.

Retrieving T is delicate. Note that z(B) = Z, m(B) = M and v(B) = V; thus
R*(B)-T(B) = R-T. We can apply Lemma [l by additivity to the two products
a(X)-b(X) =2(X) and m(X) - v(X) and deduce that

TT(B)=(R-Trem R"(B)) +G(B)-R"(B)=—-2-T+G(B)-R"(B).

By the initial condition imposed on R we have 2T < 4n < R < R"(B). Conse-
quently

T"(B)rem R"(B)=R"(B) —2-T,
and step 6 correctly computes the value of T. Step 7 is the correction in step 3 of
REDC and step 8 returns the value in o’-representation. ([

6. CoNvVREDC witH TooM-COOK

The Toom-Cook algorithm uses (iterated) Lagrange interpolation, with multiple
and not necessarily fixed number of interpolation points per iteration; as an extreme
case, Karatsuba-Ofman uses a constant of three interpolation points per iteration.
We consider here the other extreme degenerated case with only one iteration. In
this case, the interpolation points R = {us = s — 1,5 = 1,2,...,2d + 2} are used,
and we set R+ = {0,1,...,d}. The choices s = s —d or p, = 2°"! are also
interesting, the differences being not substantial. The procedure ConvREDC can
now be followed step by step:

Algorithm TCConvREDC (* ConvREDC with Tom-Cook *)

Input: o’(a),o’(b),a,b € A;o(v),o(p).
Output: ¢’(c) = o'(a-b)

1. 05(2) = o'(a) - o.(b), for s € R.
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2. m(ps) = z(ps) - v(ps) for ps € RE. This yields o (m).

3. 0" (m)=6"(c-(m)).

4. t(ps) = (2(us) +mlps) - p(us)) /R (ps) for all ps € RT.
This ylelds ol (t).

5. 0-(t) =6 (07 (t)). Return ¢’(c) = o(t).

6.1. Run time discussion for Toom-Cook. The complexity of the steps 1, 2
and 4 of this algorithm depends only on the underlying multiplication in r and adds
up to 77 = 5dM(r). We shall focus here on the evaluation of &*. Asymptotically
optimal methods for evaluating these operators in ¢+ M (A) have been known since
[BM]. The constant ¢ has been improved by Bostan, Gaudry and Schost [BGS]
and Bostan and Schost [BS], starting from the Tellegen principle. One may find
in Bostan’s thesis [Bo] a detailed account both of historic aspects of the problem
and of the best available algorithms (in part developed by that author) for various
cases. It is made explicite in [Bo], [BS], that the evaluation can be made in fact
by using any (including school-book) convolution. This allows a gradual balance
between overhead and asymptotic behavior, which is practically very interesting.

We shall give below an ad hoc presentation of the algorithm for transforming
the evaluation of the shift operators &% in convolution problems, which may be
attacked with any method, including Karatsuba or Toom-Cook itself, but also FFT;
the idea is the same as in [BS], derived in more of a numerical analyst’s way. The
approach has a large overhead but is asymptotically, for d not very small with
respect to n, quite fast.

On the other extreme, without overhead, but slower for increasing values of
d/log(n), one has a classical result, described in [Kn| and based on Newton poly-
nomials. The operators &% can be evaluated using finite differences, the operations
are then very simple, but their number is quadratic in d. The operation count is

(30) Ty =0(6T) +0(68)" ~d*- (A(r) +2S(r)).

This approach is preferable for its simplicity, as long as the quadratic number of
additions is not dominant. The total run time per operation is in general bounded
by ([I4). Using finite differences, this becomes:

(31) T = 5dM(r) + d* - (A(r) 4 25(r)) .

The estimates ([[]), BI) should be considered with the following caution: the
natural input and output of a chain of operations is not the o-representation, and
thus the cost of the input and output conversion should be averaged over the chain of
operations that one intends to implement. Typical candidates are exponentiation,
addition in abelian varieties, etc.

Note that if d is so small with respect to n that one may assume that

(32) d-S(r) < kM(r)
for some fixed constant, then (B3Il becomes
< (5+3k)d - M(x).

The time is in these cases linear in d, a performance which cannot be achieved by
FFT, e.g. due to the factor d -log(d) in the run time of a d-point FFT transform.
We have thus found a very defensive estimate range of magnitudes [B2]) in which
Toom-Cook is the preferable method for extension ring arithmetic. Note that in the
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range of small of values of d defined by [B2)), even the Z/(N - Z)-multiplications in
the FFT method are comparable to Z/(n - Z)-multiplications, since the CRT steps
dominate for small d.

When n — oo, then S(r) ~ log(n) and M(r) ~ log(n)loglog(n), so asymp-
totically the estimate ([B2) merely yields d = O(loglog(n)). It is useful to have
even for this rather narrow range an algorithm which is close to the complexity-
theoretic lower bound. However, this estimate reflects reality only poorly, and
([B2)) is preferable for practical use. For sizes of n allowing subquadratic—but no
linear—multiplication, a bound reflecting this situation is

(33) d-S(r) < d°M(r),

where the constant £ may also be estimated empirically. The bounds (32), (33) are
useful when it comes to deciding which algorithm to adopt for a certain range in
the (d, n)-plane.

7. FAST EVALUATION OF THE TOOM-COOK SPECTRAL TRANSFORMS

We present here, for reasons of completeness, the background for fast convolution
evaluation of the Toom-Cook shift operators. As already mentioned, the ideas and
essential results are already in [Bo], and in part, in [BS]. Let R+ = {0,1,...,d}
and RT = {d +1,d+2,...,2d + 1}, making C(X) into a polynomial of degree
2(d+1); s0 R = R+ + (d + 1), with the obvious meaning for the addition. Let
et (X),s € Rt and e] (X),s € RT be Chinese Remainder bases for R+ and R,

respectively. Thus

(34) eH(X) = 6,4 model(X) for s,ucR:L,

(X) = d.u mode, (X) for s,ucR'.
The polynomials above can be given explicitly [GG], [Knl:

R*(X)

1
X5 @) "€

(35) e (X) =

A similar formula applies for e] (X), but it is more convenient to relate these
polynomials to el (X). One verifies from the definitions, that

edrap1(X) = eg (X = (d+1)),

for s+d+1€RT. If g(X) € R[X] has deg(g) < d and is given by the interpolation
values g(s), s € R*, the shift operator &+ produces the values at d + 1 + R*.
Since the number of interpolation points in both sets exceeds the degree of the
polynomial by at least 1, both sets of interpolation values entirely determine g(X).
We write this fact using the respective CRT bases ([34)), ([B5):

d d+1
(36)  g(X)=> g(s)-es(X) =) gls+d+1)-es(X = (d+1)).
s=0 s=0

Now insert X = u+d-+1 in the above equation and apply the CRT base properties
B4). The right hand sum becomes Zgié g(s+d+1)-es(u) =g(u+d+1), while
the left hand side is ZZ:O g(s)-es(u+d+1). We have obtained the following useful
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expression for the interpolation values:
d
glu+d+1) = Zg(s)-es(u+d—|— 1) for ueR:
s=0

__R(std+l)
R/(s)-(u+d+1—s)"
(1/X ‘X d+14+(u— s)’
depend on u — s. Note also that the denominator never vanishes for s € R+. Let
v(s) = m?_i(dj'l) these values can be precomputed and T'(s) = g(s)-v(s), s € R+,
do not depend on u. They can be computed in d+1 multiplications in R. Finally let

R(X) = Zfdgl r Xt = Zfdgl )i The expression for the shifted values becomes:

The cofactors of g(s) above are es(u+d+1) =
here which depends on w is 1/(u+d+1—s) =

The only expression
it does in fact only

d
(37) glu+d+1)= Z Td+1+u—s * Lo(s).
s=0
The equation ([37) looks almost like a convolution. Let us define the sequence:
r if 0<s<d,
(59) ne = 0@ 0=0s
0 it d<s<2(d+1).

One can now regard (B7) either as the middle part of the coefficients of the poly-
nomial product

2d+1 d
P(X)=R(X) G(X)= (Z ri - Xi> (ZF >

() (&)

i.e. the coefficients of X4+ Xd+2  X2d+lin P(X), or as the upper half of the
2(d + 1))-cyclic convolution of the sequences ('), (75), i.e. the modular product

Pcyc(X):R(X)G(X) mod X2 (d+1) — 1.

Considering ([B7) as a convolution has the appealing consequence that it allows for
a transition zone between various areas of the (d,n) plane [BS]. The evaluation
for G~ is absolutely analog, with the needed sign changes in the right places. We
leave this to the reader. Note that in FFT-mode, the cyclic convolution of G(X)
by the fixed polynomial R(X)-with precomputed spectral values-requires 4 FFT
operations:

Theorem 4. The operators ST for the Toom-Cook method can be evaluated in
essentially AFFT(d + 1) operations.

With the fast evaluation of the shift operators, the overview of computation
times is given by Table 2.

TABLE 2. Number of FFT operations at a second glance

Operation NTL - | SFFTConv | FFTConv IntFFT TC 4+ FFT
(Number of FFT(D)) | Shoup REDC REDC ConvREDC | + ConvREDC
Squaring 10 7 6.5 7 8

Precond. mult. 6 5 6 5 8
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Remark 5. Following [Ba], a useful interpretation of the shift operators consists
in regarding them as evaluation of a d-recurrent sequence with fixed initial values.
This is of particular interest in small characteristic, when the reciprocal values r;
are not defined.
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