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ON UNIVOQUE PISOT NUMBERS

JEAN-PAUL ALLOUCHE, CHRISTIANE FROUGNY, AND KEVIN G. HARE

Abstract. We study Pisot numbers β ∈ (1, 2) which are univoque, i.e., such
that there exists only one representation of 1 as 1 =

∑
n≥1 snβ−n, with sn ∈

{0, 1}. We prove in particular that there exists a smallest univoque Pisot
number, which has degree 14. Furthermore we give the smallest limit point of
the set of univoque Pisot numbers.

1. Introduction

Representations of real numbers in non-integer bases were introduced by Rényi
[27] and first studied by Rényi and by Parry [26, 27]. Among the questions that were
addressed is the uniqueness of representations. Given a sequence (sn)n≥1, Erdős,
Joó and Komornik, [20], gave a purely combinatorial characterization for when
there exists β ∈ (1, 2) such that 1 =

∑
n≥1 snβ−n is the unique representation of 1.

This set of binary sequences is essentially the same as a set studied by Cosnard and
the first author [1, 2, 4] in the context of iterations of unimodal continuous maps
of the unit interval.

Following [22, 23], a number β > 1 is said to be univoque if there exists a unique
sequence of integers (sn)n≥1, with 0 ≤ sn < β, such that 1 =

∑
n≥1 snβ−n. (Note

that we consider only the representation of 1. The uniqueness of the representation
of real numbers in general was studied in particular in [21].) Using the character-
ization of [20], Komornik and Loreti constructed in [22] the smallest real number
in (1, 2) for which 1 has a unique representation. Its representation happens to be
the famous Thue-Morse sequence (see for example [5]).

Are there univoque Pisot numbers? It is worth noting that if the base β is
the “simplest” non-integer Pisot number, i.e., the golden ratio, then the number
1 has infinitely many representations. In this paper we study the univoque Pisot
numbers belonging to (1, 2). We prove in particular (Theorem 5.4) that there exists
a smallest univoque Pisot number, and we give explicitly the least three univoque
Pisot numbers in (1, 2): they are the roots in (1, 2) of the polynomials

x14 − 2x13 + x11 − x10 − x7 + x6 − x4 + x3 − x + 1 (root ≈ 1.8800),
x12 − 2x11 + x10 − 2x9 + x8 − x3 + x2 − x + 1 (root ≈ 1.8868),
x4 − x3 − 2x2 + 1 (root ≈ 1.9052).
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The last number is the smallest limit point of the set of univoque Pisot numbers
(Theorem 5.3). We also prove that 2 is a limit point of univoque Pisot numbers.

2. Definitions and reminders

2.1. Infinite words. Let N+ denote the set of positive integers. Let A be a finite
alphabet. We define AN+ to be the set of infinite sequences (or infinite words) on
A:

AN+ := {s = (sn)n≥1 | ∀n ≥ 1, sn ∈ A}.

This set is equipped with the distance ρ defined by: if s = (sn)n≥1 and v = (vn)n≥1

belong to AN+ , then ρ(s, v) := 2−r if s �= v and r := min{n | sn �= vn}, and
ρ(s, v) = 0 if s = v. The topology on the set AN+ is then the product topology,
and it makes AN+ a compact metric space.

A sequence (sn)n≥1 in AN+ is said to be periodic if there exists an integer T ≥ 1,
called a period of the sequence, such that sn+T = sn for all n ≥ 1. A sequence
(sn)n≥1 in AN+ is said to be eventually periodic if there exists an integer n0 ≥ 0
such that the sequence (sn+n0)n≥1 is periodic.

If w is a (finite) word, we denote by w∞ the infinite word obtained by concate-
nating infinitely many copies of w (this is in particular a periodic sequence, and
the length of w, usually denoted by |w|, is a period).

2.2. Base β representations. Let β be a real number > 1. A β-representation
of the real number x ∈ [0, 1] is an infinite sequence of integers (xn)n≥1 such that
x =

∑
n≥1 xnβ−n. If a representation ends in infinitely many zeros, say, and is of

the form w0∞, then the ending zeros are omitted and the representation is said to
be finite. The reader is referred to [24, Chapter 7] for more on these topics.

2.2.1. Greedy representations. A special representation of a number x, called the
greedy β-expansion, is the infinite sequence (xn)n≥1 obtained by using the greedy
algorithm of Rényi [27].

Denote by �y� and {y} the integer part and the fractional part of the real number
y. Set r0 := x and, for n ≥ 1, let xn := �βrn−1�, rn := {βrn−1}. Then x =∑

n≥1 xnβ−n.
Intuitively, the digit xn is chosen so that it is the maximal choice allowed at

each step. The digits xn obtained by the greedy algorithm belong to the alphabet
Aβ = {0, 1, . . . , �β�} if β is not an integer, which will always be the case in this
work. It is clear from the definition that amongst the β-representations of a number,
the greedy β-expansion is the largest in lexicographic order (denoted by ≤lex and
<lex). The greedy β-expansion of x will be denoted by dβ(x) := (xn)n≥1.

The greedy β-expansion of 1 plays an important role. Set dβ(1) = (en)n≥1 and
define

d∗β(1) :=
{

dβ(1) if dβ(1) is infinite,
(e1 · · · em−1(em − 1))∞ if dβ(1) = e1 · · · em−1em is finite.

Of course if dβ(1) is finite, the sequence d∗β(1) is also a β-representation of 1.

Denote by σ the shift on A
N+
β : for any sequence s = (sn)n≥1 in A

N+
β , the sequence

v = σ(s) is defined by v = (vn)n≥1 := (sn+1)n≥1. We recall some useful results.
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Theorem 2.1 ([26]). Let s = (sn)n≥1 be a sequence in A
N+
β . Then

• the sequence s is the greedy β-expansion of some x ∈ [0, 1) if and only if

∀k ≥ 0, σk(s) <lex d∗β(1),

• the sequence s is the greedy β-expansion of 1 for some β > 1 if and only if

∀k ≥ 1, σk(s) <lex s.

2.2.2. Lazy representations. Another distinguished β-representation of the real
number x is the so-called lazy expansion, which is the smallest in the lexico-
graphic order among the β-representations of x on the alphabet Aβ. Denote by
�β(x) = (xn)n≥1 the lazy β-expansion of x.

To compute it, intuitively we have to choose xn to be as small as possible at
each step. The algorithm to obtain the lazy expansion is the following. Let B :=∑

n≥1
�β�
βn = �β�

β−1 . Set r0 := x and, for n ≥ 1, let xn := max(0, 	βrn−1 − B
),
rn := βrn−1 − xn. Then x =

∑
n≥1 xnβ−n, where the (xn) form the lazy β-

expansion.
Let s = (sn)n≥1 be in A

N+
β . Denote by sn := �β� − sn the “complement” of

sn, and by extension s̄ := (sn)n≥1. Then the following characterization of lazy
expansions holds true.

Theorem 2.2 ([20, 16]). Let s = (sn)n≥1 be a sequence in A
N+
β . Then

• the sequence s is the lazy β-expansion of some x ∈ [0, 1) if and only if

∀k ≥ 0, σk(s̄) <lex d∗β(1),

• the sequence s is the lazy β-expansion of 1 for some β > 1 if and only if

∀k ≥ 1, σk(s̄) <lex s.

Example 2.1. Take ψ1 = 1+
√

5
2 as the golden ratio. The greedy β-expansion of 1

is dψ1(1) = 11, d∗ψ1
(1) = (10)∞, and the lazy expansion of 1 is �ψ1(1) = 01∞.

2.3. Univoque real numbers. Following [22, 23], a number β > 1 is said to be
univoque if there exists a unique sequence of integers (sn)n≥1, with 0 ≤ sn < β, such
that 1 =

∑
n≥1 snβ−n. In this case the sequence (sn)n≥1 coincides both with the

greedy and with the lazy β-expansion of 1. Remark that the number 2 is univoque,
but we will be concerned with non-integer real numbers in this paper.

Note that some authors call “univoque” the real numbers x having a unique β-
representation (see [18]). Binary sequences (sn)n≥1 such that the convergent sum∑

n≥1 snβ−n uniquely determines the sequence (sn)n≥1 are also called “univoque”
(see [17]). Nevertheless, for simplicity we keep our notion of “univoque”.

Definition 2.1. We define two sets of binary sequences as follows:
• A sequence s = (sn)n≥1 in {0, 1}N+ is called self-bracketed if for every k ≥ 1

s̄ ≤lex σk(s) ≤lex s.

The set of self-bracketed sequences in {0, 1}N+ is denoted by Γ.
• If all the inequalities above are strict, the sequence s is said to be strictly

self-bracketed. If one of the inequalities is an equality, then s is said to be
periodic self-bracketed.

The subset of Γ consisting of strictly self-bracketed sequences is denoted
by Γstrict.
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Remark 2.1. The reader will have noted that the expression “periodic self-bracketed”
comes from the fact that σk(s) = s or σk(s) = s̄ for some k ≥ 1 implies that the
sequence s is periodic.

With this terminology we can rephrase the following result from [20].

Theorem 2.3 ([20]). A sequence in {0, 1}N+ is the unique β-expansion of 1 for a
univoque number β in (1, 2) if and only if it strictly self-bracketed.

Corollary 2.1. Let s = (sn)n≥1 be a sequence in {0, 1}N+ . Suppose that the largest
string of consecutive 1’s in s has length k, and the largest string of consecutive 0’s
has length n (here k and n may be ∞.) If n > k, then s is not self-bracketed.

There exists a smallest univoque real number in (1, 2), [22]. Recall first that the
Thue-Morse sequence is the fixed point beginning with 0 of the morphism 0 → 01,
1 → 10 (see for example [5]), hence the sequence

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . . .

Theorem 2.4 ([22]). There exists a smallest univoque real number κ ∈ (1, 2). One
has κ ≈ 1.787231, and dκ(1) = (tn)n≥1, where (tn)n≥1 = 11010011 . . . is obtained
by shifting the Thue-Morse sequence.

The number κ is not rational; actually more can be proved.

Theorem 2.5 ([3]). The Komornik-Loreti constant κ is transcendental.

Notation. In the remainder of this paper, we will denote by U the set of real
numbers in (1, 2) which are univoque. We will denote by Ũ the set of real numbers
β ∈ (1, 2) such that dβ(1) is finite and d∗β(1) is a periodic self-bracketed sequence.

Formally, we have

U = {β ∈ (1, 2) : dβ(1) ∈ Γstrict}
and

Ũ = {β ∈ (1, 2) : dβ(1) is finite and d∗β(1) is periodic self-bracketed}.

2.4. Pisot numbers. A Pisot number is an algebraic integer > 1 such that all
its algebraic conjugates (other than itself) have modulus < 1. As usual the set of
Pisot numbers is denoted by S and its derived set (set of limit points) by S′. It
is known that S is closed [28], and has a smallest element, which is the root > 1
of the polynomial x3 − x − 1 (approx. 1.3247). A Salem number is an algebraic
integer > 1 such that all its algebraic conjugates have modulus ≤ 1, with at least
one conjugate on the unit circle.

We recall some results on Pisot and Salem numbers (the reader is referred to [7]
for more on these topics). One important result is that if β is a Pisot number,
then dβ(1) is eventually periodic (finite or infinite) [8]. Note that dβ(1) is never
periodic, but that when dβ(1) is finite, d∗β(1) is periodic. A number β such that
dβ(1) is eventually periodic is called a Parry number (they are called beta-numbers
by Parry [26]). When dβ(1) is finite, β is called a simple Parry number.

One deeper result is the following one.

Theorem 2.6 ([8, 29]). Let β be a Pisot number. A number x of [0, 1] has a (finite
or infinite) eventually periodic greedy β-expansion if and only if it belongs to Q(β).

For lazy expansions we have a similar result.
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Corollary 2.2. Let β be a Pisot number. A number x of [0, 1] has an eventually
periodic lazy β-expansion if and only if it belongs to Q(β).

Proof. Let �β(x) = (xn)n≥1. By Theorem 2.2 the sequence (xn)n≥1 is the greedy
β-expansion of the number �β�

β−1 − x, and the result follows from Theorem 2.6. �

Amara has determined all the limit points of S smaller than 2 in [6].

Theorem 2.7 ([6]). The limit points of S in (1, 2) are the following:

ϕ1 = ψ1 < ϕ2 < ψ2 < ϕ3 < χ < ψ3 < ϕ4 < · · · < ψr < ϕr+1 < · · · < 2

where ⎧⎪⎨
⎪⎩

the minimal polynomial of ϕr is xr+1 − 2xr + x − 1,

the minimal polynomial of ψr is xr+1 − xr − · · · − x − 1,

the minimal polynomial of χ is x4 − x3 − 2x2 + 1.

The first few limit points are:
• ϕ1 = ψ1 ≈ 1.618033989, the root in (1, 2) of x2 − x − 1,
• ϕ2 ≈ 1.754877666, the root in (1, 2) of x3 − 2x2 + x − 1,
• ψ2 ≈ 1.839286755, the root in (1, 2) of x3 − x2 − x − 1,
• ϕ3 ≈ 1.866760399, the root in (1, 2) of x4 − 2x3 + x − 1,
• χ ≈ 1.905166168, the root in (1, 2) of x4 − x3 − 2x2 + 1,
• ψ3 ≈ 1.927561975, the root in (1, 2) of x4 − x3 − x2 − x − 1.

The greedy and lazy β-expansions of these points are given in Table 1 below.
For any interval [a, b], with b < 2, an algorithm of Boyd [10, 11, 12] finds all

Pisot numbers in the interval. If [a, b] contains a limit point θ, then there exists an
ε > 0 such that all Pisot numbers in [θ − ε, θ + ε] are regular Pisot numbers of a
known form. Boyd’s algorithm detects these regular Pisot numbers, and truncates
the search accordingly. (For a non-effective study of Pisot numbers in subintervals
of (1, 2), see also [30, 31].)

Recall that Boyd has shown that for any Salem number of degree 4 the greedy
expansion of 1 is eventually periodic, [13], and has given some evidence in favor of
the conjecture that it is still the case for degree 6, [15].

3. Preliminary combinatorial results

We start by defining a function Φ on the infinite words of the form b = (z0)∞.

Definition 3.1. Let b = (z0)∞ be a periodic binary word whose period pattern
ends in a 0. Suppose furthermore that the minimal period of b is equal to 1 + |z|.
Then we define Φ(b) by

Φ(b) := (z1z0)∞.

We now recall a result from [1].

Lemma 3.1.
• If a sequence b belonging to Γ begins with uū where u is a finite non-empty

word, then b = (uū)∞.
• If b = (z0)∞, where the minimal period of b is equal to 1+ |z|, is an element

of Γ, then Φ(b) belongs to Γ, and there is no element of Γ lexicographically
between b and Φ(b).
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Remark 3.1. The inequalities defining the set Γ show that Γ is a (topologically)
closed set.

Corollary 3.1. Let b = (z0)∞ (where the minimal period of b is equal to 1 + |z|).
The sequence (Φ(n)(b))n≥0 is a sequence of elements of Γ that converges to a limit
Φ(∞)(b) in Γ. The only elements of Γ lexicographically between b and Φ(∞)(b) are
the Φ(k)(b), k ≥ 0.

By abuse of notation, if θ is the number such that d∗θ(1) = b, we denote by Φ(θ)
the real number > 1 such that d∗Φ(θ)(1) = Φ(b).

Take b = d∗ψr
(1) = (1r0)∞. Then Φ(b) = (1r10r0)∞ = d∗ϕr+1

(1), thus ϕr+1 =
Φ(ψr). Let πr be the real number defined by d∗πr

(1) = Φ(∞)((1r0)∞), that is,
πr = Φ∞(ψr). Then d∗πr

(1) is strictly self-bracketed (see [1]), hence the following
result holds true.

Proposition 3.1. The number πr is univoque. Furthermore between ψr and πr =
Φ(∞)(ψr) the only real numbers belonging to U or Ũ are the numbers ϕr+1, Φ(ϕr+1),
Φ(2)(ϕr+1), etc. They all belong to Ũ .

We will now prove a combinatorial property of the sequences dβ(1). Before
stating and proving this property we first make a straightforward remark.

Remark 3.2. Let u and v be two binary words having the same length. Let a and b
be either two binary words having the same length or two infinite binary sequences.
Suppose that a begins with u and b begins with v. Then

a ≤lex b =⇒ u ≤lex v,
u <lex v =⇒ a <lex b.

Proposition 3.2. Let a = (w0)∞ be an infinite periodic binary sequence with
minimal period 1 + |w|, such that w (and hence a) begins in 1. Let b = w10∞.
Then the following two properties are equivalent:

(i) ∀k ≥ 1, σk(a) ≤lex a,
(ii) ∀k ≥ 1, σk(b) <lex b.

Proof. We first prove (i) =⇒ (ii). Since we clearly have σk(b) <lex b for each
k ≥ |w|, we can suppose that k < |w|. Write w = uv where |u| = k, hence u and v
are both non-empty. This gives a = (uv0)∞ and b = uv10∞, and we want to prove
that v10∞ <lex uv10∞.

Let us write |v| = d|u| + e, where d ≥ 0 and e ∈ [0, |u|). We can write v =
v1v2 . . . vdz, with |v1| = |v2| = . . . = |vd| = |u|, and |z| = e < |u|. Note that, if
d = 0, then v = z.

Let us also write u = st and, for each j ∈ [1, d], vj = sjtj , where |s| = |s1| =
|s2| = . . . = |sd| = |z| and |t| = |t1| = |t2| = . . . = |td|. We thus have

a = (sts1t1s2t2 . . . sdtdz0)∞

and we want to prove that

s1t1s2t2 . . . sdtdz10∞ <lex sts1t1s2t2 . . . sdtdz10∞.

Applying, for each j ∈ [1, d], the hypothesis σk(a) ≤lex a with k = |sts1t1s2t2 . . .
sj−1tj−1| (in particular if j = 1, then k = |st|), we see that sjtj ≤lex st. Define

E := {j, sjtj <lex st}.
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• If E �= ∅, let j0 = min E . Then

st = s1t1 = s2t2 = . . . = sj0−1tj0−1,

i.e.,

s = s1 = s2 = . . . = sj0−1 and t = t1 = t2 = . . . = tj0−1

(this condition is empty if j0 = 1) and

sj0tj0 <lex st.

In this case we have b = (st)j0sj0tj0 . . . sdtdz10∞, and we want to prove
that

(st)j0−1sj0tj0 . . . sdtdz10∞ <lex (st)j0sj0tj0 . . . sdtdz10∞

which is an immediate consequence of the inequality sj0tj0 <lex st.
• If E = ∅, then either d = 0, or s1t1 = s2t2 = . . . = sdtd = st. Either way,

we get

s1 = s2 = . . . = sd = s and t1 = t2 = . . . = td = t.

In this case we have a = ((st)d+1z0)∞ and we want to prove that (st)dz10∞

<lex (st)d+1z10∞, i.e., that z10∞ <lex stz10∞. Applying the hypothesis
σk(a) ≤lex a with k = |(st)d+1|, we see that z ≤lex s.

– If z <lex s, the inequality z10∞ <lex stz10∞ is clear.
– If z = s, we want to prove that 10∞ <lex tz10∞, i.e., that t begins in 1

(note that, if t is empty, then the inequality is clear since z = s begins
in 1 as does a). If we had t = 0r, with r possibly empty, we would
have a = ((z0r)d+1z0)∞. Applying the hypothesis σk(a) ≤lex a with
k = |(z0r)d+1| and k = |(z0r)dz0| we get respectively z0z0r ≤lex z0rz0
(i.e., z0r ≤lex rz0) and rz0 ≤lex z0r. Hence we have rz0 = z0r.
Writing this last equality as r(z0) = (z0)r, the Lyndon-Schützenberger
theorem (see [25]) implies that r = ∅ or there exist a non-empty word
x and two integers p, q ≥ 1, such that z0 = xp and r = xq. This gives
a = (xa(d+2))∞ or a = (x(p+q)(d+1)+p)∞. In both cases a = x∞ and
|x| < |((z0r)d+1z0)| which contradicts the minimality of the period of
a.

We now prove (ii) =⇒ (i). Because of the periodicity of the sequence a and the
fact that it begins in 1, we can suppose that k ≤ |w|. Hence we write w = uv with
u and v nonempty and |u| = k, and we want to prove that v0(uv0)∞ ≤lex (uv0)∞.
Since u begins in 1 as a does, it suffices to prove that v01∞ ≤lex (uv0)∞. Applying
the hypothesis σk(b) <lex b with k = |u|, we have v10∞ <lex uv10∞.

Hence v10|u| ≤lex uv1. This inequality must be strict since its left-hand side
ends in a 0 and its right-hand side ends with a 1: thus v10|u| <lex uv1. Hence
v10|u| ≤lex uv0.

We then can write v0u <lex v10|u| ≤lex uv0, hence v0u <lex uv0. This implies
in turn v0(uv0)∞ ≤lex (uv0)∞. �

Corollary 3.2. The sequence a = (w0)∞ is equal to d∗θ(1) for some θ > 1 if and
only if b = w10∞ is equal to dθ(1).

We end this section with a result on limits of sequences of elements in Γ.
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Lemma 3.2. A sequence of Γ of the form (w0)∞ cannot be a limit from above of
a non-eventually constant sequence of elements of Γ.

Proof. Suppose we have a sequence (z(m))m≥0 with z(m) = (z(m)
n )n≥1 belonging to

Γ, and converging towards (w0)∞, with z(m) ≥ (w0)∞. From Lemma 3.1 there is
no element of Γ lexicographically between (w0)∞ and (w1w̄0)∞, hence (z(m))m≥0

is ultimately equal to (w0)∞. �

4. First results

In this section we consider only numbers β belonging to (1, 2).

4.1. Preliminary results. Our goal here is to present some simple preliminary
data. In particular, in Table 1, we give the expansions for Pisot numbers in S′ ∩
(1, 2), in Table 2 we give Pisot numbers of small degree in the interval (1,2), and
in Table 3 we examine Salem numbers of small degree in the interval (1, 2). Some
observations that are worth making, based on these tables, include:

Remark 4.1.

• The golden ratio ϕ1 = ψ1 is the smallest element of Ũ . (This comes straight
from Definition 2.1.)

• There is no univoque Pisot number of degree 2 or 3.
• The number χ is the unique Pisot number of degree 4 which is univoque.
• For Pisot numbers ψr, the lazy expansion coincides with d∗ψr

(1).
• There exists a unique Salem number of degree 4 which is univoque.
• Salem numbers greater than the Komornik-Loreti constant κ appear to be

univoque (for degrees 4 and 6).

Table 1. Greedy and lazy β-expansions of real numbers in S′ ∩ (1, 2).

Minimal Pisot Greedy Lazy Comment
Polynomial Number expansion expansion
xr+1 − 2xr + x − 1 ϕr 1r0r−11 1r−101∞ periodic self-bracketed
xr+1 − xr − · · · − 1 ψr 1r+1 (1r0)∞ periodic self-bracketed
x4 − x3 − 2x2 + 1 χ 11(10)∞ 11(10)∞ univoque

We also observe the following lemma which is straightforward.

Lemma 4.1. A Parry number which is univoque must be a unit (i.e., an algebraic
integer whose minimal polynomial has its constant term equal to ±1).

For each Pisot or Salem number of degree less than 4 or 6 respectively, we simply
compute the greedy and lazy expansion, and then compare them to see when they
are equal. To find the list of Pisot numbers, we use the algorithm of Boyd [10].
Although there is no nice algorithm to find Salem numbers in (1, 2) of fixed degree,
for low degree we can use brute force. Namely, if P (x) = xn +a1x

n−1+ · · ·+a1x+1
is a Salem polynomial with root in (1,2) and Q(x) = xn + b1x

n−1 + · · ·+ b1x + 1 =
(x + 2)(x + 1/2)(x + 1)n−2, then we have |ai| ≤ bi. See [9] for more on bounds of
coefficients.
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Table 2. Greedy and lazy expansions of degree 2, 3 and 4 Pisot numbers.

Minimal polynomial Pisot number Greedy Lazy Comment
expansion expansion

x2 − x − 1 1.618033989 11 01∞ periodic self-bracketed

x3 − x − 1 1.324717957 10001 00001∞

x3 − x2 − 1 1.465571232 101 001∞

x3 − 2x2 + x − 1 1.754877666 1101 101∞ periodic self-bracketed
x3 − x2 − x − 1 1.839286755 111 (110)∞ periodic self-bracketed

x4 − x3 − 1 1.380277569 1001 0001∞

x4 − 2x3 + x − 1 1.866760399 111001 1101∞ periodic self-bracketed
x4 − x3 − 2x2 + 1 1.905166168 11(10)∞ 11(10)∞ univoque

x4 − x3 − x2 − x − 1 1.927561975 1111 (1110)∞ periodic self-bracketed

Table 3. Greedy and lazy expansions of degree 4 and 6 Salem
numbers. Here w = 011010110.

Minimal polynomial Salem Greedy Lazy Comment
number expansion expansion

x4 − x3 − x2 − x + 1 1.722083806 1(100)∞ 101(110)∞

x4 − 2x3 + x2 − 2x + 1 1.883203506 1(1100)∞ 1(1100)∞ univoque

x6 − x4 − x3 − x2 + 1 1.401268368 1(0010000)∞ 0010111(1111110)∞

x6 − x5 − x3 − x + 1 1.506135680 1(01000)∞ 01011(11110)∞

x6−x5−x4 + x3−x2−x+1 1.556030191 1(01001001000)∞ 013(01)2(17016w13w160)∞

x6 − x4 − 2x3 − x2 + 1 1.582347184 1(0101000)∞ 011(110)∞

x6 − 2x5 + 2x4 − 3x3 1.635573130 1(1000000100)∞ 1010101(1101111110)∞

+2x2 − 2x + 1
x6 − x5 − x4 − x2 − x + 1 1.781643599 1(10100)∞ 11001(11110)∞

x6 − 2x5 + x3 − 2x + 1 1.831075825 1(10110100)∞ 1(10110100)∞ univoque
x6−x5−x4−x3−x2−x+1 1.946856268 1(11100)∞ 1(11100)∞ univoque
x6 − 2x5 − x4 + 3x3 − x2 1.963553039 1(111011100)∞ 1(111011100)∞ univoque

−2x + 1
x6 − 2x5 + x4 − 2x3 + x2 1.974818708 1(111100)∞ 1(111100)∞ univoque

−2x + 1
x6 − 2x4 − 3x3 − 2x2 + 1 1.987793167 1(1111100)∞ 1(1111100)∞ univoque

4.2. Limit points of univoque numbers. In this section we concern ourselves
with the structure of U ∩ S and Ũ ∩ S, as well as intersections with the derived set
S′. We begin with the following result.

Proposition 4.1. The limit of a sequence of real numbers belonging to U belongs
to U or Ũ .

Proof. Let (θj)j≥1 be a sequence of numbers belonging to U such that limj→∞ θj =
θ. Let a(j) = (a(j)

n )n≥1 := dθj
(1). Up to replacing the sequence (θj)j≥1 by a

subsequence, we may assume that the sequence of sequences (a(j)
n )n≥1 converges to

a limit a = (an)n≥1 when j goes to infinity. Then (dominated convergence):

1 =
∑
n≥1

an

θn
.

For every j ≥ 1 the number θj belongs to U . Hence the sequence a(j) belongs to
Γstrict, hence to Γ. Thus the limit a = limj→∞ a(j) belongs to Γ (see Remark 3.1).

If a belongs to Γstrict, then it is the θ-expansion of 1, and θ belongs to U .
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If a is periodic self-bracketed, it is of the form a = (w0)∞, where we may
assume that the minimal period of a is 1 + |w|. From Corollary 3.2, a = d∗θ(1),
b := w10∞ = dθ(1), and θ belongs to the set Ũ . �

Corollary 4.1. The numbers ϕr cannot be limit points of numbers in U .

Proof. This is a consequence of the first part of Lemma 3.1. �

We now give two remarkable sequences of real numbers that converge to the
Komornik-Loreti constant κ. Part (ii) of Proposition 4.2 below was obtained inde-
pendently by the second author and in [23].

Proposition 4.2.
(i) Let t = (tn)n≥1 = 11010011 . . . be the shifted Thue-Morse sequence, and

let τ2k be the real number > 1 such that dτ2k
(1) = t1 · · · t2k . Then, the

sequence of real numbers (τ2k)k≥1 converges from below to the Komornik-
Loreti constant κ. These numbers belong to Ũ . The first three are Pisot
numbers.

(ii) There exists a sequence of univoque Parry numbers that converges to κ from
above.

Proof. To prove (i), note that τ2 is the golden ratio, τ4 = Φ(τ2) = ϕ2, τ8 = Φ2(τ2),
etc., and κ = Φ(∞)(τ2).

In order to prove (ii) we define δ2k as the number such that

dδ2k
(1) = t1 · · · t2k−1(1t1 · · · t2k−1)

∞.

Clearly the sequence dδ2k
(1) converges to t when k goes to infinity, and thus the

sequence (δ2k)k≥1 converges to κ. �

Remark 4.2.

• Let Q2k be the polynomial “associated” with τ2k : writing 1 =
∑

1≤j≤2k

tj

τ j
2k

immediately gives a polynomial Q2k(x) of degree 2k such that Q2k(τ2k) =
0. Then, for k ≥ 2, the polynomial Q2k(x) is divisible by the product
(x + 1)(x2 + 1) · · · (x2k−2

+ 1).
• Let R2k(x) be the polynomial of degree 2k+1 − 1 associated (as above)

with δ2k . Then it can be shown that, for k ≥ 2, the polynomial R2k(x) is
divisible by the same product (x + 1)(x2 + 1) · · · (x2k−2

+ 1).

5. Main results

Recall that Amara gave in [6] a complete description of the limit points of the
Pisot numbers in the interval (1, 2) (see Theorem 2.7). Talmoudi [31] gave a de-
scription for sequences of Pisot numbers approaching each of the values ϕr, ψr or
χ. The Pisot numbers in these sequences are called regular Pisot numbers. Further,
Talmoudi showed that, for all ε > 0, there are only a finite number of Pisot numbers
in (1, 2 − ε), that are not in one of these sequences. These are called the irregular
Pisot numbers, and they will be examined later in Section 5.3.

Since χ is a univoque Pisot number (Tables 1 and 2), it is natural to ask if there
are any other univoque Pisot numbers smaller than χ. As well, it is natural to ask
if there is a smallest univoque Pisot number. This leads us to our first result:
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Theorem 5.1. There exists a smallest Pisot number in the set U .

Proof. Define θ by θ := inf(S ∩ U). We already know that θ belongs to S, since
S is closed. On the other hand, from Proposition 4.1, either θ belongs to U or
to Ũ . It suffices to show that θ cannot belong to Ũ . If it were the case, first θ
would be a limit point of elements of (S ∩ U). On the other hand we could write
d∗θ(1) = (w0)∞, with the minimal period of the sequence d∗θ(1) being 1 + |w| (note
that θ < χ since χ belongs to (S ∩ U) and θ �= χ). But from Lemma 3.2 there is a
contradiction. �

Now, to find the univoque Pisot numbers less than χ, we need to examine the
irregular Pisot numbers less than χ (Section 5.3). We also need to examine the
infinite sequences of Pisot numbers tending to those ϕr and ψr less than χ. Lastly,
we need to examine the sequences of Pisot numbers tending to χ from below.

By noticing that ϕ1 = ψ1 and ϕ2 are all strictly less than κ, the Komornik-Loreti
constant, we can disregard these limit points. Further, we may disregard ϕ3 as a
limit point by Corollary 4.1. In particular:

Proposition 5.1. There are no univoque numbers between ψ2 and 1.8705. (Note
that 1.8705 > ϕ3.)

Proof. We easily see from Proposition 3.1 that

Φ2(ψ2) = Φ(ϕ3) ≈ 1.870556617

which gives the result. �
So we see that it suffices to examine the sequence of Pisot numbers tending

towards ψ2 from below, and those tending to χ from below.

5.1. Approaching ψ2 from below. We know that the ψr are limit points of the
set of Pisot numbers. Moreover, we know exactly what the sequences tending to
ψr look like. Let Pψr

(x) = xr+1 − · · · − 1 be the Pisot polynomial associated with
ψr. Let Aψr

(x) = xr+1 −1 and Bψr
(x) = xr−1

x−1 be two polynomials associated with
Pψr

(x).1 Then for sufficiently large n, the polynomials Pψr
(x)xn ± Aψr

(x) and
Pψr

(x)xn ±Bψr
(x) admit a unique root between 1 and 2, which is a Pisot number.

These sequences of Pisot numbers are the regular Pisot numbers associated with
ψr. See for example [6, 14].

Moreover, we have that the roots of Pψr
(x)xn −Aψr

(x) and Pψr
(x)xn −Bψr

(x)
approach ψr from above, and those of Pψr

(x)xn + Aψr
(x) and Pψr

(x)xn + Bψr
(x)

approach ψr from below. This follows as Pψr
(1) = −1 and Pψr

(2) = 1, with
Pψr

(x) strictly increasing on [1, 2], along with the fact that on (1, 2] we have
Aψr

(x), Bψr
(x) > 0. Although we need only examine the sequences of Pisot num-

bers approaching ψ2 from below, we give the results for all sequences approaching
ψ2 for completeness.

Lemma 5.1. The greedy and lazy expansions of Pisot numbers approaching ψ2 are
summarized in Table 4.

Remark 5.1. It is interesting to observe that, in the case Pψ2(x)xn−Bψ2(x)(x) (last
section of Table 4), for n = 2, 3 and 4, the lazy expansion �β(1) is equal to d∗β(1).

1Note that the definition of Bψr (x) is different from the definition in [14], and corrects a

misprint in that paper.
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Table 4. Greedy and lazy expansion for regular Pisot numbers approaching ψ2.

Case Greedy expansion Lazy expansion Comment

Pψ2 (x)xn + Aψ2(x)

n = 1 101 00(1)∞

n = 2 10101 0(11101)∞

n = 3 110001 1010(1)∞

n = 4 1100110001 10(1111110011)∞

n = 3k + 1 (110)k011(000)k1 (110)k0(101)∞

n = 3k + 2 1(101)k010(000)k1 1(101)k0(011)∞

n = 3k + 3 (110)k+100(000)k1 1(101)k0((110)k+101(101)k1)∞

Pψ2 (x)xn − Aψ2(x)

n = 1 Root bigger than 2
n = 2 Root bigger than 2
n = 3 111(110)∞ 111(110)∞ univoque
n = 4 111(0110)∞ 111(0110)∞ univoque
n = 3k + 1 111(0(000)k−1110)∞ 11(011)k−11((011)k0)∞

n = 3k + 2 111(00(000)k−1110)∞ 11(011)k−11001(101)k−10111(11(011)k−1110)∞

n = 3k + 3 111((000)k110)∞ 11(011)k1(110)∞

Pψ2 (x)xn + Bψ2 (x)

n = 1 10001 0000(1)∞

n = 2 11 0(1)∞ periodic self-bracketed
n = 3 11001010011 (1011110)∞

n = 4 11010011001011 110100(10111111)∞

n = 3k + 1 1(101)k00(110)k0(101)k1 (1(101)k00(110)k0(101)k0)∞ periodic self-bracketed
n = 3k + 2 1(101)k1 (1(101)k0)∞ periodic self-bracketed
n = 3k + 3 (110)k+10(101)k+1001(101)k1 (110(110)k0(101)k+1001(101)k0)∞ periodic self-bracketed

Pψ2 (x)xn − Bψ2 (x)

n = 1 Root bigger than 2
n = 2 11111 (11110)∞ periodic self-bracketed
n = 3 111011 (111010)∞ periodic self-bracketed
n = 4 1110011 (1110010)∞ periodic self-bracketed
n = 3k + 1 11100(000)k−111 (11(011)k−11001(101)k−10)∞

n = 3k + 2 111(000)k11 (11(011)k11(101)k0)∞

n = 3k + 3 1110(000)k11 (11(011)k(101)k+10)∞
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Proof. Table 4, as well as Table 5 later on, are the results of a computation. The
results themselves are easy to verify, so the main interest is the process that the
computer went through to discover these results. This is the subject of Section 7.
We also list which of these numbers correspond to periodic self-bracketed sequences
for completeness. �

This lemma gives an easy corollary

Corollary 5.1. There exists a neighborhood [ψ2 − ε, ψ2 + ε] that contains no uni-
voque numbers.

In fact we will see in Section 5.3 that this is actually quite a large neighborhood.
This is probably also true for other ψr, where the neighborhood would not be nearly
as large.

5.2. The limit point χ. We know that χ is a limit point of the set of Pisot
numbers. Moreover, we know exactly what the sequences tending to χ look like.
Let Pχ(x) = x4 − x3 − 2x2 + 1 be the Pisot polynomial associated with χ. Let
Aχ(x) = x3 + x2 − x − 1 and Bχ(x) = x4 − x2 + 1 be two polynomials associated
with Pχ(x). Then for sufficiently large n, the polynomials Pχ(x)xn ± Aχ(x) and
Pχ(x)xn ± Bχ(x) admit a unique root between 1 and 2, which is a Pisot number.
See for example [6, 14].

Moreover, we have that the roots of Pχ(x)xn −Aχ(x) and Pχ(x)xn −Bχ(x) ap-
proach χ from above, and those of Pχ(x)xn +Aχ(x) and Pχ(x)xn +Bχ(x) approach
χ from below. This follows as Pχ(1) = −1 and Pχ(2) = 1, with Pχ(x) strictly in-
creasing on [1, 2], along with the fact that on (1, 2] we have Aχ(x), Bχ(x) > 0.
Although we need only examine the sequences of Pisot numbers approaching χ
from below, we give the results for all sequences approaching χ for completeness.

Lemma 5.2. The greedy and lazy expansions of Pisot numbers approaching χ are
summarized in Table 5.

Lemma 5.2 above, along with Proposition 3.1 and Corollary 5.1, prove the fol-
lowing result:

Theorem 5.2. There are only a finite number of univoque Pisot numbers less than
χ.

In addition, Lemma 5.2 proves the result

Theorem 5.3. The univoque Pisot number χ is the smallest limit point of univoque
Pisot numbers. It is a limit point from above of regular univoque Pisot numbers.

5.3. Univoque Pisot numbers less than χ. Our goal in this section is to de-
scribe our search for univoque Pisot numbers below the first limit point χ. We know
that all univoque Pisot numbers less than χ are either in the range [κ, ψ2], or in the
range [π2, χ]. Here κ is the Komornik-Loreti constant (approximately 1.787231),
ψ2 is approximately 1.839286755, π2 > 1.8705 and χ is approximately 1.905166168.
We will search for Pisot numbers in the range [1.78, 1.85] and [1.87, 1.91].

To use the algorithm of Boyd [10], we need to do an analysis of the limit points
in these two ranges. In particular, we need to do an analysis of the limit points ψ2

and χ.
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Table 5. Greedy and lazy expansion for regular Pisot numbers approaching χ.

Case Greedy expansion Lazy expansion Comment

Pχ(x)xn + Aχ(x)

n = 1 1001001 00(1111011)∞

n = 2 11 0(1)∞ periodic self-bracketed

n = 4 110110101001001011 110110100(1)∞ periodic self-bracketed
n = 2k + 1 11(10)k−101000(10)k−10(00)k11 11(10)k−100(11)k00(1)∞

n = 2k + 2 11(10)k−10111000(10)k−2000010(00)k−111 11(10)k−101101(11)k−100(1)∞

Pχ(x)xn − Aχ(x)

n = 1 Root bigger than 2
n = 2 Root bigger than 2
n = 3 Root bigger than 2
n = 5 1111(0001100)∞ 1111000101111(0111100)∞

n = 2k + 1 111(01)k−21(00011(10)k−200)∞ 111(01)k−2100011(10)k−30111011(1(01)k−311111000)∞

n = 2k + 2 111(01)k−11011((10)k−10111(01)k−11000)∞ 111(01)k−11011((10)k−10111(01)k−11000)∞ univoque

Pχ(x)xn + Bχ(x)

n = 1 10001 0000(1)∞

n = 2 101000101 0(1101)∞

n = 3 11001 10(11011)∞

n = 4 110101(01100110000100)∞ 110(1010110010110111)∞

n = 5 1110001 110(1110111)∞

n = 2k + 1 11(10)k−1001 1110((10)k−301111)∞

n = 2k + 2 11(10)k−10101(1(10)k−2(011)2(10)k−20104100)∞ 1110((10)k−201011(10)k−2(011)2(10)k−20013(10)k−2014)∞

Pχ(x)xn − Bχ(x)

n = 1 Root bigger than 2
n = 2 Root bigger than 2
n = 3 Root bigger than 2
n = 4 111111000001 111110(1)∞ periodic self-bracketed
n = 5 1111001111000001 111100(11101)∞

n = 2k + 1 111(01)k−2101000(10)k−3011(1(00)k−110)∞ 111(01)k−2100(1(11)k−101)∞

n = 2k + 2 111(01)k−2100000(10)k−2001 111(01)k−1110(1)∞
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We use the notation of [10]. Let P (z) be a minimal polynomial of degree s of
a Pisot number θ, and Q(z) = zsP (1/z) be the reciprocal polynomial. Let A(z)
be a second polynomial with integer coefficients, such that |A(z)| ≤ |Q(z)| for all
|z| = 1. Then f(z) = A(z)/Q(z) = u0 + u1z + u2z

2 + · · · ∈ Z[[z]] is a rational
function associated with θ. The sign of A(z) is chosen in such a way that u0 ≥ 1.
Then by Dufresnoy and Pisot [19] we have the following:

(1)
1 ≤ u0,

u2
0 − 1 ≤ u1,

wn(u0, · · · , un−1) ≤ un ≤ w∗
n(u0, · · · , un−1)

where wn, and w∗
n are defined below. Let Dn(z) = −zn + d1z

n−1 + · · · + dn and
En(z) = −znDn(1/z). Solve for d1, · · · , dn such that

Dn(z)
En(z)

= u0 + u1z + · · · + un−1z
n−1 + wn(u0, · · · , un−1)zn + · · · .

This will completely determine wn. There are some nice recurrences for wn and Dn,
which simplify the computation of wn [10]. We have that w∗

n is computed very sim-
ilarly, instead considering D∗

n(z) = zn +d1z
n−1 + · · ·+dn and E∗

n(z) = znDn(1/z).
Expansions u0 + u1z + · · · satisfying Equation (1) with integer coefficients are in a
one-to-one correspondence with Pisot numbers.

Using this notation, Lemma 2 of [10] becomes:

Lemma 5.3. Let f = u0 + u1z + u2z
2 + · · · be associated with a limit point θ in

S′. Suppose that w∗
N − wN ≤ 9/4 for some N . Then for any n ≥ N , there are

exactly two g with expansions beginning with u0 + u1z + · · ·+ un−1z
n−1. Moreover,

for all n ≥ N , all g beginning with u0 + u1z + · · · + un−1z
n−1 are associated with

the regular Pisot numbers approaching the limit point θ.

So in particular, we need to find the expansion of the limit points around ψ2

and χ: Consider the following rational functions associated with the limit points
ψ2 and χ:

(1) Consider

− x + 1
x3 + x2 + x − 1

= 1 + 2x + 3x2 + 6x3 + 11x4 + 20x5 + 37x6 + · · ·

as the first of the two rational functions associated with the limit point ψ2.
A quick calculation shows that w∗

24 − w24 < 9/4.
(2) Consider

x3 − 1
x3 + x2 + x − 1

= 1 + x + 2x2 + 3x3 + 6x4 + 11x5 + 20x6 + · · ·

as the second of the two rational functions associated with the limit point
ψ2. A quick calculation shows that w∗

11 − w11 < 9/4.
(3) Consider

− x3 + x2 − x − 1
x4 − 2x2 − x + 1

= 1 + 2x + 3x2 + 6x3 + 11x4 + 21x5 + 40x6 + · · ·

as the first of the two rational functions associated with the limit point χ.
A quick calculation shows that w∗

33 − w33 < 9/4.
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(4) Consider

x4 − x2 + 1
x4 − 2x2 − x + 1

= 1 + x + 2x2 + 4x3 + 8x4 + 15x5 + 29x6 + · · ·

as the second of the two rational functions associated with the limit point
χ. A quick calculation shows that w∗

44 − w44 < 9/4.

Using this result, we were able to use Boyd’s algorithm for finding Pisot numbers
in the two ranges [1.78, 1.85] and [1.87, 1.91] (which contain [κ, ψ2] and [π2, χ]),
where when we have an expansion that matches one of the four rational functions
listed above, we prune that part of the search tree, as we would only find regular
Pisot numbers of a known form.

There were 227 Pisot numbers in the first range (minus the known regular Pisot
numbers pruned by the discussion above), and 303 in the second range (similarly
pruned). There were 530 such Pisot numbers in total.

A corollary of this computation worth noting is

Corollary 5.2.

• The only Pisot numbers in [ψ2 − 10−8, ψ2 + 10−8] are ψ2 and the regular
Pisot numbers associated with ψ2.

• The only Pisot numbers in [χ−10−13, χ+10−3] are χ and the regular Pisot
numbers associated with χ.

We then checked each of these 530 Pisot numbers to see if they were univoque.
We did this by computing the greedy and lazy β-expansion of each Pisot number
and checked if they were equal. This calculation gave the following theorem:

Theorem 5.4. There are exactly two univoque Pisot numbers less than χ. They
are

• 1.880000 · · · the root in (1, 2) of the polynomial x14 − 2x13 + x11 − x10 −
x7 + x6 − x4 + x3 − x + 1 with univoque expansion 111001011(1001010)∞.

• 1.886681 · · · the root in (1, 2) of the polynomial x12 − 2x11 + x10 − 2x9 +
x8 − x3 + x2 − x + 1 with univoque expansion 111001101(1100)∞.

6. Regular Pisot numbers associated with ψr

The goal of this section is to show that 2 is the limit point of univoque Pisot
numbers. We will do this by observing that for each r, there are regular Pisot
numbers between ψr and 2 that are univoque. We know that the ψr are limit
points of the set of regular Pisot numbers. Moreover we know that ψr → 2 as
r → ∞. Using the notation of Section 5.1 we define Pψr

and Aψr
. We denote the

Pisot number associated with the polynomial Pψr
(x)xn − Aψr

(x), as ψA,−
r,n .

Theorem 6.1. Let n ≥ r + 1. Then the greedy expansion of ψA,−
r,n is

(2) 1r+1(0n−r−11r0)∞.
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Proof. First we expand this expansion to see that it is equivalent to

1 = 1
x

+ · · · + 1
xr+1 + (0 + 1

xn+1 + · · · + 1
n+r

+ 0)

(
1

1− 1
xn

)
=⇒ 1 =

1
x
− 1

xr+2

1− 1
x

+

( 1
xn+1 − 1

xn+r+1

1− 1
x

) (
1

1− 1
xn

)
=⇒ (1 − 1

x
)(1 − 1

xn ) = ( 1
x
− 1

xr+2 )(1 − 1
xn ) + ( 1

xn+1 − 1
xn+r+1 )

=⇒ xr+2(x − 1)(xn − 1) = x(xr+1 − 1)(xn − 1) + xr+2 − x2

=⇒ 0 = xn+r+3 − 2xn+r+2 + xn+1 − xr+3 + xr+2 − x2 − x
=⇒ 0 = x(x − 1)(xn(xr+1 − xr − · · · − 1) − (xr+2 − 1))
=⇒ 0 = x(x − 1)(Pψr (x)xn − Aψr (x)).

So we see that this is a valid expansion for this regular Pisot number.
To observe that this is indeed the greedy β-expansion we observe that the β-

expansion starts with r + 1 consecutive 1’s, and all strings of consecutive 1’s after
this are shorter than r + 1. Hence it follows from Theorem 2.1. �

By Corollary 2.1 we get the immediate result:

Corollary 6.1. If n ≥ 2(r + 1) the regular Pisot number ψA,−
r,n is not univoque.

So, the main theorem is

Theorem 6.2. Assume r + 1 ≤ n < 2(r + 1). Then ψA,−
r,n is a univoque Pisot

number.

Proof. So it suffices to see that the equation (2) is both greedy and lazy. This
follows from Theorems 2.1 and 2.2. �

Corollary 6.2. We have that 2 is a limit point of S ∩ U .

Proof. We see that ψA,−
r,n is always greater than ψr. Further, for r+1 ≤ n ≤ 2(r+1)

we have that ψA,−
r,n is less than 2, which follows from noticing that Pψr

(1)1n −
Aψr

(1) = (1 − 1 − 1 − · · · − 1) − (1r+1 − 1) < 0 and

Pψr
(2)2n − Aψr

(2) = 2n(2r+1 − 2r − · · · − 1) − (2r+1 − 1) = 2n − 2r+1 + 1 > 0.

Further, we see that ψr tends to 2. �

7. Automated conjectures and proofs

The results in Tables 4 and 5 were generated automatically. This section de-
scribes the algorithms that were used to do this.

• Computing the greedy β-expansion. We will explain, given β a root of
Pβ(x), how to compute the greedy β-expansion of 1 (assuming periodicity).

• Computing the lazy β-expansion. We will explain, given β a root of
Pβ(x), how to compute the lazy β-expansion of 1 (assuming periodicity).

• Creating the conjecture. We will explain how with the greedy or lazy
β-expansion of 1 for a sequence of regular Pisot numbers, how to create a
conjecture of the general pattern of the β-expansion.

• Verifying conjecture. We will explain how a general pattern can be
verified to be a valid β-expansion.

• Check greedy/lazy/univoque/periodic self-bracketed expansion.
We will explain how to check if a general pattern is a valid greedy, lazy,
univoque or periodic self-bracketed β-expansion.
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7.1. Computing the greedy β-expansion. The greedy algorithm does the most
work possible at any given step (see the discussion in Section 2.2.1).

The computation is done symbolically modulo the minimal polynomial of β, and
floating point numbers are used only when computing xn. A check is done on
βrn−1 − xn to ensure that the calculation is being done with sufficient digits to
guarantee the accuracy of the result.

A list of previously calculated rn’s is kept and checked upon each calculation to
determine when the β-expansion becomes eventually periodic.

7.2. Computing the lazy β-expansion. Basically, the algorithm tries to do the
minimal work at any given time (see discussion in Section 2.2.2).

As with the greedy expansion, computations are done as a mixture of floating
point and symbolic, to allow for recognition of periodicity, with the same checks
being performed as before to ensure the accuracy of the result.

7.3. Creating the conjecture. In this section we will explain how, given dq1(1)
and dq2(1) (or the related lazy β-expansions), for some “regular sequence” of Pisot
numbers qk, we can conjecture a “nice” expression for dqk

(1). This is probably best
done by example. Assume that two consecutive greedy expansions give the finite
expansions:

dq1(1) = 0011011011,

dq2(1) = 00111101101011.

We start by reading characters from each string into the “string read” expression:

String 1 String 2 String read
001101101011 0011110110101011 empty
01101101011 011110110101011 0
1101101011 11110110101011 00
101101011 1110110101011 001
01101011 110110101011 0011

At this point we see that the next characters to read from String 1 and String 2
are different. We use a result that is only observed computationally, and has no
theoretical reason for being true. This is that the size of every part that depends on
the value of k is of the same size, which is known before the computation begins.
So an expression dqk

(1) = v1(w1)kv2(w2)k · · · would have all |wi| constant, and
known in advance. In this case, we are assuming that this size is 2. So we check
if the next two characters of String 2 are the same as the previous two characters
of String 1. (In this case, both of these are “11”.) We then truncate the result to
give something of the form (11)k which is valid for both strings.

So we continue:
String 1 String 2 String read
01101011 110110101011 0011
01101011 0110101011 00(11)k

1101011 110101011 00(11)k0
...

...
...

1 011 00(11)k0110101

Again we check if the next two characters of String 2 are equal to the previous
two characters in String 1. We also notice that the two characters “01” are in fact
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repeated more times than this, so we get

String 1 String 2 String read
1 011 00(11)k0110101
1 1 00(11)k01101(01)k

1 1 00(11)k011(01)k+1

empty empty 00(11)k011(01)k+11

So we would conjecture that dqk
(1) = 00(11)k011(01)k+11.

It should be pointed out that this is in no way a proof that this is the general
result. This has to be done separately in Sections 7.4 and 7.5.

7.4. Verifying conjecture. In this section we show, given a conjectured expansion
for qk, how we would verify that this is a valid expansion for all qk. It should be
noticed that this does not prove what type of β-expansion it is (i.e., greedy, lazy,
...). This will be done in Section 7.5.

We will demonstrate this method, by considering an example. Consider the
greedy expansion dβk

(1) = 1(101)k1 = 11(011)k associated with the greedy expan-
sion of 1 for the Pisot root associated with

P ∗
k (x) = Pψ2(x)x3k+2 + Bψ2(x) = (x3 − x2 − x − 1)x3k+2 + (x + 1).

For convenience we write β for this root (where β will depend on k). We then see
that this expansions implies

1
β

+
1
β2

+
1
β4

+
1
β5

+
1
β7

+
1
β8

+ · · · + 1
β3k+1

+
1

β3k+2
= 1.

This simplifies to

β−1 + β−2 +
(
β−4 + β−5

) k−1∑
j=0

(
β3j

)−1
= 1.

By subtracting 1 from both sides, and clearing the denominator, this is equivalent
to Dk(β) = 0 where

Dk(x) := −x3k+5 + x3k+4 + x3k+3 + x3k+2 − x − 1.

But we notice that

Dk(x) = −(Pψ2(x)x3k+2 + Bψ2(x)),

hence Dk(x) = −P ∗
k (x). All of these processes can be automated. The hardest

part is finding a co-factor Ck(x) such that Dk(x) = Ck(x)P ∗
k (x). (We are not

always so lucky that Ck(x) = −1 as was the case in this example.) Here we noticed
computationally that Ck(x) is always of the form:

Ck(x) = anxbnk+cn + an−1x
bn−1k+cn−1 + · · · + a2x

b2k+c2 + a1x
b1k+c1 .

For our purposes it was unnecessary to prove that this is always the case, as we
could easily verify it for all cases checked, and we were using this as a tool to verify
the conjectured general form.
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7.5. Checking the greedy/lazy/univoque/periodic self-bracketed β-ex-
pansion. In this section we discuss how one would check if an expression (conjec-
tured using the techniques of Section 7.3 and verified as a β-expansion in Section
7.4) is in fact a greedy, lazy or periodic self-bracketing β-expansion. Consider a
general expression of the form

E(k) := v1(w1)kv2(w2)k · · · (wn−1)kvn(u1(wn)k · · · (wn+m)kum)∞

where the wi all have the same length (this is in fact the case for all problems that
we studied). Then the main thing to notice is that there exists a K such that if the
β-expansion E(K) has a desired property (either being or not being greedy, lazy,
etc.), then for all k ≥ K we have that E(k) has the same property. Moreover the K
is explicitly computable, being a function of the lengths of the vi, wi and ui. This
means that what initially looks like an infinite number of calculations is in fact a
finite number of calculations. The way to see this is that for sufficiently large k,
most of the comparisons will be done between the wi’s, and then an increase in k
will not change this, but just add another redundant check to something already
known.

8. Comments, open questions and further work

There are some interesting observations that can be made from the data and
results so far. This investigation has opened up a number of questions.

• First, given a sequence of greedy or lazy β-expansions of a nice sequence of
Pisot numbers qk that looks like

E(k) := v1(w1)kv2(w2)k · · · (wn−1)kvn(u1(wn)k · · · (wn+m)kum)∞,

is it always true that |w1| = |w2| = · · · = |wn+m|?
• Is the co-factor from Section 7.4 always of the form

Ck(x) = anxbnk+cn + an−1x
bn−1k+cn−1 + · · · + a2x

b2k+c2 + a1x
b1k+c1?

• It appears in Table 3 that for all Salem numbers of degree 4 and 6 greater
than ≈ 1.83, these Salem numbers are univoque. Is this just an artifact of
small degrees, or is something more general going on?

• In general, are the greedy/lazy β-expansions even periodic for Salem num-
bers? (This is not known to be true; see [15] for more details.)

• It is known that Pisot numbers can be written as a limit of Salem numbers,
where if P (x) is the minimal polynomial of a Pisot number, then P (x)xn ±
P ∗(x) has a Salem number as a root, which tends to the root of the Pisot
number. Some preliminary and somewhat haphazard investigation suggests
that we might be able to find a “regular” looking expression for the greedy
(resp. lazy) β-expansion of these Salem numbers, which tends towards the
greedy (resp. lazy) β-expansion of the Pisot number. If true, this could
have implications towards questions concerning the β-expansions of Salem
numbers being eventually periodic.

Note added on June 12, 2006

Just before submitting this paper we came across a paper where the topological
structure of the set U and of its (topological) closure are studied. We cite it here
for completeness:
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V. Komornik, P. Loreti, On the structure of univoque sets, J. Number Theory, 122 (2007),

157–183.

One can also read consequences of the results of that paper in
M. de Vries, Random β-expansions, unique expansions and Lochs’ Theorem, Ph.D. Thesis,

Vrije Universiteit Amsterdam, 2005.

(available at http://www.cs.vu.nl/∼mdvries/proefschrift.pdf).
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CNRS, LRI, Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, France

E-mail address: allouche@lri.fr

LIAFA, CNRS UMR 7089, 2 place Jussieu, 75251 Paris Cedex 05, France, and Univer-
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