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A DUAL FINITE ELEMENT COMPLEX
ON THE BARYCENTRIC REFINEMENT

ANNALISA BUFFA AND SNORRE H. CHRISTIANSEN

Abstract. Given a two dimensional oriented surface equipped with a simpli-
cial mesh, the standard lowest order finite element spaces provide a complex
X• centered on Raviart-Thomas divergence conforming vector fields. It can
be seen as a realization of the simplicial cochain complex. We construct a
new complex Y • of finite element spaces on the barycentric refinement of the
mesh which can be seen as a realization of the simplicial chain complex on
the original (unrefined) mesh, such that the L2 duality is non-degenerate on
Y i ×X2−i for each i ∈ {0, 1, 2}. In particular Y 1 is a space of curl-conforming
vector fields which is L2 dual to Raviart-Thomas div-conforming elements.
When interpreted in terms of differential forms, these two complexes provide
a finite-dimensional analogue of Hodge duality.

1. Introduction

Given a bounded domain in R
3, many electromagnetic scattering problems can

be reduced to integral equations on its surface Γ, whose unknowns are tangent
vector fields. In the boundary element method these are solved approximately by
introducing finite-element spaces of vector fields on Γ. In particular, the most
successful space for solving the so-called electric field integral equation consists
of surface Raviart-Thomas vector fields constructed on a triangulation of Γ (see
Bendali [4]). We denote by X1 this space of divergence conforming vector fields. For
some problems, in particular for preconditioning the electric field integral equation
and for some formulations of impedance boundary conditions, it would be useful to
have a space Y 1 of curl conforming vector fields on Γ which is L2 dual to X1. In this
paper we construct such a space, as a certain subspace of standard finite elements
of the barycentric refinement of the original mesh. In fact we insert X1 into a
complex X• and construct a complex Y • such that the L2 duality on Y i ×X2−i is
non-degenerate for each i ∈ {0, 1, 2}.

We choose the orientation on Γ induced by the outward pointing normal on Γ
(with respect to the interior, bounded domain), which we denote by n. It should be
noticed that putting Y 1 = X1×n does not provide an adequate space, as remarked
in [14].

The interpretation of the finite-element spaces of Raviart-Thomas type as spaces
of differential forms (called Whitney forms) having the algebraic properties of the
simplicial cochain complex of the mesh, was put forward by Bossavit [5]. From this
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point of view the spaces of scalar and vector fields we introduce are new (except per-
haps Y 2 which is a variant of the space of piecewise constant fields on the Voronoi
dual of the mesh) spaces of differential forms, but they have the algebraic properties
of the simplicial chain complex of the mesh. However, as already indicated these
spaces are constructed on a refinement of that mesh. Various differential complexes
have been increasingly used to interpret and guide developments in numerical anal-
ysis, and we refer to Arnold [3] for an exposition of this topic. This paper can
be seen as belonging to this trend. In this direction it provides an answer, in two
dimensions, to the problem of constructing a finite-element analogue of Hodge du-
ality ; indeed when the spaces Xi and Y i are interpreted as spaces of differential
forms, the duality on Y i ×X2−i we show to be non-degenerate is (v, u) �→

∫
v ∧ u.

In fact all the results of this paper are valid in the slightly more general setting of
an arbitrary oriented piecewise linear two-dimensional manifold without boundary,
but embedding it in R

3 makes the presentation less technical and corresponds to
the above applications. For the same reason we have chosen to present the results
in terms of vector fields rather that differential forms. For completeness, at the end
of the paper, we will come back to the general setting and also give the translation
of our results into the language of differential forms, defining in particular a discrete
analogue of the Hodge star operator.

The paper is organized as follows: In §2 we define the new spaces Y i
h and show

some algebraic properties pertaining to the complex they form. In §3 we prove
approximation properties, estimates on discrete Hodge-Helmholtz decompositions
in Y 1

h and inf-sup conditions for the L2 dualities on Y i
h × X2−i

h . In §4 we translate
some of the results of this paper into the language of differential forms, provide
an application to the preconditioning of the Electric Field Integral Equation and
provide an extension of the construction to open surfaces. Some of these results
were announced without proof in Buffa-Christiansen [10].

2. Definition and algebraic properties

We consider a polyhedron in R
3 whose boundary is locally the graph of a Lip-

schitz function, and denote this boundary by Γ (the polyhedron itself will not be
considered explicitly). Thus Γ is a two-dimensional surface embedded in R

3 and
we equip it with a family of meshes (Th) which is conforming and regular in the
sense defined by Ciarlet in [17]. For each h the mesh Th is simplicial, and for each
integer i we denote by T i

h the subset of Th consisting of i-dimensional simplexes
(i.e. elements of cardinality i + 1). The elements of T 0

h are the nodes or vertexes,
the elements of T 1

h are the edges and those of T 2
h are the triangles of Th. For s ∈ Th

we denote by |s| the convex envelope of s in R
3. When we need to distinguish

a simplex s from |s|, the latter will be called the geometric realization of s. We
suppose that edges of the polyhedral surface Γ do not cut any triangle of the mesh:
the edges of Γ are indeed union of (geometric realizations of) edges e ∈ T 1

h .
The triangles of Th are oriented by the outward pointing unit normal n on Γ,

and for each edge an orientation is chosen. The oriented unit-norm tangent vector
along an edge e is denoted τe.

The barycentric refinement of Th is defined by dividing each triangle s ∈ T 2
h

into six triangles and drawing the six edges joining the barycenter of s with the
vertexes of s as well as the midpoints of its edges. The barycentric refinement of Th
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is denoted T ′
h. In the Figures 1, 2 and 3 the edges of Th are drawn in bold, whereas

non-bold segments are edges of T ′
h (all bold segments are also edges of T ′

h).
On Th we consider the lowest order finite-element complex (X0

h, X1
h, X2

h) based
on Raviart-Thomas divergence conforming vector fields RT0. It is defined by:

X0
h = {u ∈ H1(Γ) : ∀ t ∈ T 2

h u|t ∈ P1},(1a)

X1
h = {u ∈ Hdiv(Γ) : ∀ t ∈ T 2

h u|t ∈ RT0},(1b)

X2
h = {u ∈ L2(Γ) : ∀ t ∈ T 2

h u|t ∈ P0}.(1c)

For generalities about mixed finite elements and Raviart-Thomas vector fields in
particular, we refer to Brezzi-Fortin [7]. Such finite element spaces on surfaces were
considered in the context of integral equations for electromagnetism in Bendali
[4]. For definitions of the functional spaces in the case of non-smooth surfaces
we refer to Buffa-Ciarlet [11]. Elements of X0

h are continuous and elements of
X1

h have continuous normal component (flux) across edges. Thus, in particular,
normal fluxes are continuous across the edges of the surface Γ. These spaces satisfy
curlX0

h ⊂ X1
h and divX1

h ⊂ X2
h, so that the spaces do indeed form a complex:

(2) X0
h

curl−→ X1
h

div−→ X2
h.

We denote by λi = (λi
s) indexed by s ∈ T i

h the standard basis of Xi
h. For each

i, the usual family of degrees on freedom relative to Xi
h will be denoted li = (lis)

indexed by s ∈ T i
h . Then l0v is evaluation at the vertex v, l1e is integration of the

normal component along the edge e in some orientation, and l2t is integration on the
triangle t. In a sense, for each i and each s, lis can be represented as integration on
the simplex s. The basis λi of Xi

h is characterized by the property that lis(λi
t) = δst.

On T ′
h we consider the slightly different finite-element complex (X̃0

h, X̃1
h, X̃2

h)
defined by:

X̃0
h = {u ∈ H1(Γ) : ∀ t ∈ T ′2

h u|t ∈ P1},(3a)

X̃1
h = {u ∈ Hcurl(Γ) : ∀ t ∈ T ′2

h u|t ∈ RT0 × n},(3b)

X̃2
h = {u ∈ L2(Γ) : ∀ t ∈ T ′2

h u|t ∈ P0}.(3c)

The only difference from the spaces corresponding to Xi
h on the refined mesh T ′

h is
that we rotate the middle one by the operation u → u × n. These spaces satisfy
gradX̃0

h ⊂ X̃1
h and curlX̃1

h ⊂ X̃2
h so that we have the complex:

(4) X̃0
h

grad−→ X̃1
h

curl−→ X̃2
h.

Bases are constructed for the spaces X̃i
h associated with T ′

h as for the spaces asso-
ciated with Th, and denoted (λ̃i

s : s ∈ T ′i
h ) (the corresponding degrees of freedom

will not be needed).
The aim of this paper is to construct subspaces Y i

h ⊂ X̃i
h such that on the one

hand Y i
h is L2-dual to X2−i

h (in the sense of satisfying a Babuska-Brezzi Inf-Sup
condition uniformly in h, in appropriate norms), and on the other hand they should
form a complex:

(5) Y0
h

grad−→ Y1
h

curl−→ Y2
h.

We define these spaces by the construction of a spanning family and then check
that it is a basis and that our above goals are fulfilled. For each i ∈ {0, 1, 2} and
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each simplex s ∈ T 2−i
h , let µi

s ∈ X̃i
h be the field attached to s constructed as a

linear combination of the basis functions λ̃i
t of X̃i

h, with the following coefficients:

• For i = 0 the coefficients are shown in Figure 1; s is the triangle of Th

whose barycenter carries the coefficient 1. Thus µ0
s is the element of X̃0

h

with non-zero values at the vertices shown in that figure.
• For i = 1 the coefficients are shown in Figure 2; s is the central edge,

and we have oriented the edges as pointing away from it. Thus µ1
s is an

element of X̃1
h such that the integrals of the tangent component on edges

is the coefficient shown in the figure. The coefficient of each edge should
be multiplied by the one indicated at its origin, e.g., to the left we have
coefficients ranging from 5/12 to −5/12 when ordered counter-clockwise.
Edges not carrying a value are given the coefficient 0; this is in particular
the case for the two small edges composing the central edge s.

• For i = 2 the coefficients are shown in Figure 3; s is the central vertex.
All 12 triangles of T ′

h in the shaded region should carry the same weight
1/12. Thus µ2

s is the element in X̃2
h whose integral is 1/12 on each shaded

triangle, and 0 elsewhere.

In each figure the shaded region is the support of the corresponding field.
We define Y i

h by:

(6) Y i
h = span{µi

s : s ∈ T 2−i
h }.

For each integer i ∈ {0, 1, 2}, we now construct families of linear forms on fields
(scalar or vector according to the case) whose restrictions to Yi

h are linearly inde-
pendent. These linear forms are the degrees of freedom (dof).

To this aim we fix some notations. For each triangle t ∈ T 2
h , let t′ denote its

barycenter. For each edge e ∈ T 1
h , let e′ be union of (the geometric realizations of)

the two edges of T ′
h joining the barycenter of e to the barycenters of the two neigh-

boring triangles. The oriented tangent vector along e′ is denoted τe′ , orientation
being chosen such that τe′ · τe × n < 0. For each vertex v ∈ T 0

h , denote by v′ the
union of (the geometric realizations of) the triangles of T ′

h containing v.
We now define three families of degrees of freedom:

M0
h = (m0

t : u �→ u(t′) : t ∈ T 2
h ),(7a)

M1
h = (m1

e : u �→
∫

e′ u · τe′ : e ∈ T 1
h ),(7b)

M2
h = (m2

v : u �→
∫

v′ u : v ∈ T 0
h ).(7c)

We remark that the first family of linear forms M0
h can also be written as integrals

(with respect to the trivial measure on points). In this sense the three preceding
definitions may be written:

(8) Mi
h = (mi

s : u �→
∫

s′ u : s ∈ T 2−i
h ),

where we integrate on certain dual geometric objects s′ relative to T ′
h and attached

to simplexes s ∈ Th, defined above.

Proposition 2.1. For each i ∈ {0, 1, 2} and each i-dimensional simplexes s, t ∈ T i
h

we have:

(9) mi
s(µ

i
t) = δst.
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Figure 1. A basis element for Y 0
h expressed in the basis of X̃0

h

In particular, for each i the family µi = (µi
s) indexed by s ∈ T 2−i

h is a basis for Y i
h,

and an element u ∈ Yi
h, i = 0, 1, 2, is uniquely determined the values mi

s(u) for
s ∈ T 2−i

h .

Proof. This is a matter of straightforward checking. �

We also remark that:

Proposition 2.2. The family of functions (µ0
s : s ∈ T 2

h ) is a partition of unity.

Proof. It is enough to remark that for each s ∈ T 2
h the nonzero values of µ0

s at
the vertexes v of the barycentric refinement T ′

h are the inverses of the number of
triangles t ∈ T 2

h such that v ∈ |t|. Therefore the sum of the functions µ0
s evaluated

at any such vertex v is 1. �

Proposition 2.3. We have gradY0
h ⊂ Y1

h and curlY 1
h ⊂ Y2

h. Moreover the matrix
of grad : Y0

h → Y1
h in the basis µ0 → µ1 is minus the transpose of the matrix of

div : X1
h → X2

h in the standard basis, and similarly the matrix of curl : Y 1
h → Y2

h in
the basis µ1 → µ2 is the transpose of the matrix of curl : X0

h → X1
h in the standard

basis.
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Figure 2. A basis element for Y 1
h expressed in the basis of X̃1

h.

1/12

Figure 3. A basis element for Y 2
h expressed in the basis of X̃2

h.
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Proof. Concerning the grad operator, one checks that for each triangle t ∈ Th,
gradµ0

t is a linear combination of the three vector-fields µ1
e where e is an edge of t.

The coefficients are 1 or −1 according to orientations of the edges. Checking this
is a matter of elementary but tedious computations using only the definitions of
basis functions. The matrix thus formed is known as an incidence matrix, and its
transpose is also known to be the matrix of −div : X1

h → X2
h in the standard basis.

The case of the curl operator is similar. �
For each i ∈ {0, 1, 2} we denote by Iih the interpolation operator associated with

the d.o.f. Mi
h. Explicitly Iih associates with a field u (scalar or vector according to

i) the element uh of Y i
h such that :

(10) ∀s ∈ T 2−i
h mi

s(uh) = mi
s(u).

Let Ω0 ⊂ H1(Γ), Ω1 ⊂ Hcurl(Γ) and Ω2 ⊂ L2(Γ) be the subspaces consisting of
piecewise smooth fields. We then have:

Proposition 2.4. The interpolators satisfy the following commuting diagram:

(11)
Ω0 grad−→ Ω1 curl−→ Ω2

↓ ↓ ↓
Y 0

h
grad−→ Y 1

h
curl−→ Y 2

h

Proof. This follows from an application of Stokes’ theorem on the geometric ele-
ments s′ we associated with the simplexes s ∈ Th in order to define the degrees of
freedom. �

Moreover:

Proposition 2.5. In the following complex, the cohomology groups have the “right”
dimension:

(12) 0 −→ Y0
h

grad−→ Y1
h

curl−→ Y2
h −→ 0.

Specifically, if Γ is connected, for the first cohomology group an element of Y 0
h has

gradient 0 iff it is constant, whereas for the last cohomology group an element of
Y 2

h is the curl of an element of Y 1
h iff it has 0 integral.

Proof. This can be deduced from the fact that the complex formed by the spaces
(Xi

h) is known to have cohomology groups of the right dimension (the dimension
of the DeRham cohomology groups) and that the matrices of the operators linking
the spaces Yi

h are transposes of the matrices of the operators linking the spaces Xi
h

(in the choices of basis we have used), as we have already remarked. 1 �
Remark 2.1. The appearance of the incidence matrices in the proof of Proposition
2.3 can be interpreted as the fact that we have a commuting diagram:

(13)
C2(Th) d−→ C1(Th) d−→ C0(Th)

↓ ↓ ↓
Y 0

h
grad−→ Y 1

h
curl−→ Y 2

h

1Given two matrices A and B such that AB = 0 we have BTAT = 0 and

dim((ker A)/(ranB)) = dim((ker A)/(ranB))� = dim(ranB)◦/(ker A)◦ = dim(ker BT )/(ranAT ).
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where the complex on the upper line is the simplicial chain complex (see Gelfand-
Manin [20] p. 23) and the vertical arrows are the basis interpretation isomorphisms:

(14)

{
Ci(Th) ≈ R

T i
h → Y 2−i

h ,
(c : T i

h → R) �→
∑

s∈T i
h

c(s)µi
s.

As remarked by Bossavit [5] there is a similar diagram linking the simplicial cochain
complex to the standard spaces Xi

h.

3. Metric properties

This section is devoted to the metric properties of the complex Y •
h =(Y0

h, Y1
h, Y2

h).
More precisely we investigate its approximation properties, stability (with respect
to the mesh size) of the Helmholtz-Hodge decompositions related to Proposition
2.5, and of the dualities on Y i

h ×Xi−2
h , i = 0, 1, 2, in natural norms. To this aim, we

introduce a few notations and spaces. In what follows Hs(Γ), s ∈ [−1, 3
2 ), denotes

the standard Sobolev space of Γ of Sobolev regularity s endowed with the norm
‖ · ‖s and seminorm | · |s (the domain will be specified when different from Γ, e.g.,
| · |s,v′ , v ∈ T 0

h ). Moreover, for s ∈ (−1, 1
2 ) we set:

(15)
Hs

curl(Γ) := {u ∈ Hs(Γ) : curlu ∈ Hs(Γ)},
Hs

div(Γ) := {u ∈ Hs(Γ) : divu ∈ Hs(Γ)},
These spaces are endowed with their graph norms ‖·‖s,curl and ‖·‖s,div, respectively.
For details about these spaces we refer the reader to Buffa [8]. Moreover, all along
this section, the symbol · � · will stand for · ≤ C·, where C is a generic constant
depending only on Γ (not on h).

3.1. Error estimates. For each integer N we denote by ĈN a regular polygon
with N sides (edges) of length 1 and having the barycentre at the origin of the
chosen Cartesian system.

For each node v ∈ T 0
h we denote by Nv the number of triangles in T 2

h containing
v and pick a bi-Lipschitz transformation Fv : v′ → ĈNv

from the cell v′ dual to v
(thus v′ is the support of µ2

v) which is piecewise affine with respect to T ′
h such that:

(1) the barycentre of the triangles in Th meeting v′ are sent to vertices of ĈNv
;

(2) the barycentre of the edges of Th meeting v′ are sent to the barycentre of
the sides of ĈNv

;
(3) v is sent to the barycentre of ĈNv

.
Note that, since the mesh Th is supposed regular, there is a constant N inde-

pendent of the mesh size, such Nv ≤ N for all v ∈ T 0
h . For a given N , we denote

by x̂�, � = 1, . . . , N , the vertices of ĈN (numbered in a counterclockwise sense),
and by x̂�+1/2, � = 1, . . . , N , the mid-points of the segment (x̂�, x̂�+1), where the
indexes are taken modulo N . Moreover, τ0,x̂�

denotes the tangent vector along the
oriented segment (0, x̂�) and τx̂�,x̂�+1 the tangent vector along the oriented segment
(x̂�, x̂�+1).

We denote by Fv : ĈN → v′ the inverse of Fv, which is again a Lipschitz piecewise
affine mapping. More precisely, for each t ∈ T ′2

h ∩ v′, Fv|t is affine, invertible and
we denote by Ft , Ft(x̂) = Btx̂ + ct, its inverse. Standard scaling arguments say
that:

(16) ‖Bt‖ � h , | detBt| � h2 , ‖B−1
t ‖ � h−1 , | detB

−1
t | � h−2.
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For each u0 ∈ H1+s(Γ), u1 ∈ Hs
curl(Γ), u2 ∈ Hs(Γ) we define the pull-back

mappings as follows:

(17) û0 = u0 ◦ Fv , û1 = DF
T
v (u1 ◦ Fv) , û2 = detDFv u2 ◦ Fv.

The pull-back operators involve the Lipschitz piecewise affine mapping Fv. Thus,
they preserve only Sobolev regularity for “small” exponents. More precisely, û0 ∈
H1+s(ĈN ), û1 ∈ Hs

curl(ĈN ), û2 ∈ Hs(ĈN ) only for s < 1
2 . Finally, by scaling

argument, we obtain the following proposition:

Proposition 3.1. Let u0 ∈ H1+s(Γ), u1 ∈ Hs
curl(Γ), and fix v ∈ T 0

h . We denote
by ûi the pull-backs of ui obtained by means of the mappings (17). The following
scaling estimates hold for each 0 ≤ s < 1

2 :

|û0|1+s,ĈN
≤ C(s, N) hs|u0|1+s,v′ ,(18a)

|û1|s,ĈN
≤ C(s, N) hs|u1|s,v′ ,(18b)

|curlû1|s,ĈN
≤ C(s, N) h1+s|curlu1|s,v′(18c)

where the constant C(s, N) does not depend upon ui.

Proof. We concentrate on (18b) and (18c). The scaling estimate (18a) can be
obtained by the same arguments. Moreover, for s = 0, the proof is easy and then
omitted. We fix s : 0 < s < 1

2 , v ∈ T 0
h , and a function u1 ∈ Hs

curl(Γ). For each
t ∈ T ′2

h ∩ v′ we denote by t̂ the triangle in ĈN such that t = Bt t̂ + ct.
(i) Proof of (18b).

|û1|2
s,ĈN

�
∑

t̂∈ĈN

|û1|2
s,t̂

since s < 1
2

�
∑
t∈v′

| detBt|−2

∫
t

∫
t

|BT
t (u1(x) − u1(y))|2

|B−1
t (x − y)|2+2s

�
∑
t∈v′

| detBt|−2‖Bt‖4+2s

∫
t

∫
t

|u1(x) − u1(y)|2
|x − y|2+2s

since |B−1
t (x − y)| ≥ ‖Bt‖−1|x − y|

�
∑
t∈v′

h2s|u1|2s,t ≤ Ch2s|u1|2s,v′ .

(ii) Proof of (18c). This proof is inspired by the corresponding one for standard
edge elements; see Alonso-Valli [1]. Using (17) it is easy to deduce that curlû1 =
(detDFv)(curlu1) ◦ Fv. We then estimate:

|curlû1|2
s,ĈN

�
∑

t̂∈ĈN

|curlû1|2
s,t̂

since s < 1
2

�
∑
t∈v′

| detBt|−2

∫
t

∫
t

| detBt(curlu1(x) − curlu1(y))|2

|B−1
t (x − y)|2+2s

�
∑
t∈v′

| detBt|−2‖Bt‖2+2s| det Bt|2
∫

t

∫
t

|curlu1(x) − curlu1(y)|2
|x − y|2+2s

�
∑
t∈v′

h2+2s|curlu1|2s,t ≤ Ch2+2s|curlu1|2s,v′ . �
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Theorem 3.2. Let 0 < s < 1
2 . For any u0 ∈ H1+s(Γ), u1 ∈ Hs

curl(Γ), u2 ∈ Hs(Γ),
it holds that

‖u0 − I0hu0‖1 + h−1‖u0 − I0hu0‖0 � hs‖u0‖s+1,(19a)

‖u1 − I1hu1‖0,curl � hs‖u1‖s,curl,(19b)

‖u2 − I2hu2‖0 � hs‖u2‖s.(19c)

Proof. First of all, given a v ∈ T 0
h and ui ∈ Yi

h (i = 0, 1, 2), it is easy to see that
ui|v′ is completely characterized by the values of ui on the boundary of v′. More
precisely, u0|v′ depends only on the nodal values at the barycentre falling on the
boundary of v′, u1 on the moments m1

s on the segments on the boundary of v′.
(i) Spaces on the reference cell. Fix a v ∈ T 0

h , and let ĈN be the reference
cell ĈN = Fv(v′). We also map the basis functions µi with support meeting v′

according to (17), and we number them according to the numbering given to the
vertices of ĈN . So, µ̂0

� is the pull-back to ĈN of the basis function associated with
the triangle s such that s′ = Fv(x̂�), µ̂1

�+1/2 is the pull-back to ĈN of the basis
function associated with the segment s such that s′ = Fv((x̂�, x̂�+1)) and, finally,
µ̂2 is the pull-back of µ2

v′ .
The spaces on the reference cells ĈN are given by:

Ŷ0 = Span{µ̂0
�},(20a)

Ŷ1 = Span{µ̂1
�+1/2},(20b)

Ŷ2 = Span{µ̂2}.(20c)

We remark that these spaces do not depend on the particular choice of v ∈ T 0
h

which we used to define them.
Each function û0 ∈ Ŷ0 verifies:

(21) û0(x̂i,i+1) =
û0(x̂i) + û0(x̂i+1)

2
, û0(0) =

1
N

n∑
i=1

û0(x̂i).

Each vector valued function û1 ∈ Ŷ1 consists of an edge element, piecewise affine
on each of the 2N triangles (of the refined mesh) t̂ of ĈN , such that its curl is
constant on the cell ĈN .

(i) Mappings. Fix v ∈ T 0
h . We map functions and interpolation operators from

v′ to ĈN (for a suitable N) through the mappings (17). Thus:

(22) Î0(û0) = I0hu0 ◦ Fv , Î1û1 = DF
T
v (I1hû1 ◦ Fv) , Î2û2 = (detDFv) I2hu2 ◦ Fv.

By construction, we have that

Î0 : H1+s(ĈN ) → Ŷ0 Î1 : Hs
curl(ĈN ) → Ŷ1 , Î2 : Hs(ĈN ) → Ŷ2

are linear and continuous for each s > 0.
Finally, Ŷ• forms a complex (as in Proposition 2.5):

(23) 0 −→ Ŷ0 grad−→ Ŷ1 curl−→ Ŷ2
−→ 0.

(ii) Reproducing polynomial property. Fix N , and let p0 be a polynomial of
degree 1 defined on the reference cell ĈN . Then p0 ∈ Ŷ0 thanks to (21).
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On the other hand, let p1 be a Nédélec finite element on the cell ĈN , i.e., p1(x̂) =(
a − bx̂2

c + bx̂1

)
. Then, p1 ∈ Ŷ1. First, in the case b = 0: there exists a p0 ∈ Ŷ0 such

that p1 = gradp0. Indeed p0 is a polynomial of degree 1 on the cell. Second,
we treat the case a = c = 0. We first remark that

∫ x̂�

0
p1 · τ0,x̂�

= 0 for all �.
Since 2b = curlp1 is constant on the cell, then a simple computation shows that∫
(x̂�,x̂�+1)

p1 · τx̂�,x̂�+1 = N−1 2b|ĈN |. Thus p1 =
∑

� N−1 2b|ĈN | µ̂�+1/2 ∈ Ŷ1.
(iii) Error estimate for I0h. Let u0 ∈ H1+s(Γ) (0 < s < 1

2 ), v ∈ T 0
h , and û0

be the pull-back of u|v′ on the reference cell ĈN for a suitable N . Note that,
û ∈ H1+s(ĈN ) for 0 ≤ s < 1

2 . For each t ∈ T ′2
h ∩ v′, we have:

‖u0 − I0hu0‖2
0,t � | detBt| ‖û0 − Î0û0‖2

0,ĈN

� | detBt||û0|2
1+s,ĈN

� h2(1+s)|u0|21+s,v′

(24)

where we have used the reproducing polynomial property, Deny-Lions Lemma and
(18a). The estimate for the H1(Γ) norm can be obtained in a similar way.

(iv) Error estimate for I1h and I2h. Let u1 ∈ Hs
curl(Γ) (0 < s < 1

2 ), v ∈ T 0
h and

û1 be the pull-back (see (17)) of u|v′ on the reference cell ĈN for a suitable n. We
estimate as follows:

‖u1 − I1hu1‖2
0,t � | detBt| ‖Bt‖−2‖û1 − Î1û1‖2

0,ĈN

� | detBt|‖Bt‖−2(|û1|2
s,ĈN

+ |curlû1|2
0,ĈN

+ |curlû1|2
s,ĈN

)

� (h2s|u1|2s,v′ + h2‖curlu‖2
s,v′)

(25)

where in the second line, we used the Deny-Lions Lemma for edge elements (see
Alonso-Valli [1, Formula (5.12)] and also Monk [24]) together with the reproducing
polynomial property; and in the third line we simply use (18b), (18c).

On the other hand

‖curlu1 − curl I1hu1‖2
0,t � | detBt|

∫
ĈN

|(detDFv)−1 (curlû1 − Î2curlû1)|2

� | detBt|
(

sup
x̂∈ĈN

| detDFv(x̂)|−2

)
|curlû1|2

s,ĈN

� h2s|curlu1|2s,v′ .

(26)

Corollary 3.3. Let u1 ∈ Hs
curl(Γ), for s > 0, be such that curlu1 ∈ Y2

h. Then

(27) ‖u1 − I1hu1‖0 � Chs‖u‖s 0 < s < 1
2 .

Proof. Let v ∈ T 0
h , and û1 be the pull-back of u1|v′ on the corresponding reference

cell ĈN . From (25), we have:

(28) ‖u1 − I1hu1‖2
0,t � (|û1|2

s,ĈN
+ |curlû1|2

0,ĈN
+ |curlû1|2

s,ĈN
).

Since curlû1 belongs to a finite dimensional space (indeed, a space of dimension 1)
and all norms are equivalent on finite dimensional spaces, (28) reduces to

(29) ‖u1 − I1hu1‖2
0,t � |û1|2

s,ĈN
.

We conclude by using the scaling argument (18b). �
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Corollary 3.4. For each u0 ∈ X̃0
h, it holds that:

‖I0hu0‖1 � ‖u0‖1,(30)
‖u0 − I0hu0‖0 � h|u0|1.(31)

Proof. It is enough to repeat the argument used in (iii) in the proof of Theorem
3.2. In (24), û0 belongs to a finite dimensional space, and we can then use the norm
equivalence:

|û0|1+s,ĈN
� |û0|1,ĈN

. �

3.2. Discrete Helmholtz-Hodge decomposition. The aim of this section is to
prove stability of the discrete Helmholtz-Hodge decomposition of Y1

h. We suppose
for simplicity that the manifold Γ has trivial topology. The following two propo-
sitions are direct consequences of Proposition 2.5 and Corollary 3.3. Their proofs
are very similar to the ones of the corresponding results for the space X1

h (see, e.g.,
Hiptmair-Schwab [21] or Buffa et al. [13]), but we report them for the sake of
completeness.

Proposition 3.5. Let u1
⊥ ∈ Y1

h be such that
∫
Γ

gradφ0 · u1
⊥ = 0 ∀φ0 ∈ Y0

h and
solve the following problem: Find ϕ ∈ Hcurl(Γ) such that:

(32) curlϕ = curlu1
⊥ , divϕ = 0.

There exists a s ∈ (0, 1
2 ) such that:

(33) ‖u1
⊥ − ϕ‖0 � hs‖curlu1

⊥‖−1+s, s ∈ (0, s].

Proof. It is known that the problem defining ϕ is well-posed (see, e.g., [21]), and
that the solution verifies the following regularity estimate: there exists an s, s ∈
(0, 1

2 ) such that ϕ ∈ Hs(Γ) and

(34) ∀ s ∈ [0, s] : ‖ϕ‖s � ‖curlϕ‖−1+s.

Thus, the interpolation operator I1h is well defined on ϕ and Corollary 3.3 ensures
that:

(35) ‖ϕ − I1hϕ‖0 � hs‖ϕ‖s, s ∈ (0, s].

On the other hand, by construction, it holds u1
⊥ − I1hϕ ∈ gradY0

h. Orthogonality
implies:

(36) ‖ϕ − u1
⊥‖2

0 =
∫

(ϕ − u1
⊥) · (ϕ − I1hϕ).

Combining (34), (35), (36), we obtain:

‖ϕ − u1
⊥‖0 � hs‖ϕ‖s � hs‖curlu1

⊥‖−1+s, s ∈ (0, s]. �

We are now ready for the following statement:

Proposition 3.6. Let u1 ∈ Y1
h. Then

(37)

u1 =gradu0 + u1
⊥ u0 ∈ Y0

h , u1
⊥ ∈ Y1

h :∫
u0 = 0 ,

∫
gradφ0 · u1

⊥ = 0 ∀φ0 ∈ Y0
h and

(i) ‖u1
⊥‖− 1

2+t � ‖curlu1‖− 1
2+t t ∈ (−1

2 , 1
2 );

(ii) ‖u0‖ 1
2+t � ‖u1‖− 1

2+t,curl t ∈ (−1
2 , 1

2 ).
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Proof. Let u0 ∈ Y0
h be the unique solution, up to a global constant, of the problem:∫
gradu0 · gradφ0 =

∫
u1 · gradφ0 ∀φ0 ∈ Y0

h,

and u1
⊥ = u1 − gradu0. On the other hand, since u1 ∈ Hcurl(Γ), it admits a

continuous Helmholtz-Hodge decomposition:

u1 = gradp + ϕ, p ∈ H1(Γ), ϕ ∈ L2(Γ) :
{

curlϕ = curlu1,
divϕ = 0.

The vectorfield ϕ is defined as in Proposition 3.5. By means of Corollary 3.3, I1hϕ is
well defined and it holds: ‖I1hϕ‖0 � ‖ϕ‖s, s > 0. By orthogonality and Proposition
2.5, it follows easily that

∫
|u1

⊥|2 =
∫

u1
⊥ · I1h(ϕ). Thus, we deduce that, for any

fixed s > 0, it holds that:

‖u1
⊥‖0 � ‖ϕ‖s � ‖curlu1‖−1+s.

This implies that (37)(i) holds true. We deduce (37)(ii) by the difference and
recall that grad: H

1
2+t(Γ) → H− 1

2+t(Γ) is continuous and has closed range for each
t ∈ (−1

2 , 1
2 ). �

3.3. LBB Inf-Sup condition. We now show that the spaces Y i
h and X2−i

h are
dual to each other in the sense that the L2 dualities restricted to these spaces
satisfy uniform LBB Inf-Sup conditions in appropriate norms. These results are
proved under the assumption that the family of meshes (Th) is quasi-uniform. In
addition, for Proposition 3.11 we need a combinatorial non-degeneracy condition
stated at the end of its proof. We first prove dualities in L2 norms based on a matrix
argument and then extend the results by more functional analytic techniques.

We will use the following fact on diagonally dominant matrices:

Lemma 3.7. Suppose (aij) is a square real matrix with non-negative diagonal
coefficients, which is diagonally dominant with respect both to rows and columns in
the sense that for some δ ≤ 1 we have:

(38) δaii ≥
∑
j �=i

|aij | and δajj ≥
∑
i �=j

|aij |.

Then for all tuples (ui) we have:

(39) (1 − δ)
∑

i

aii|ui|2 ≤
∑
ij

aijuiuj ≤ (1 + δ)
∑

i

aii|ui|2.

Proof. The study of Gersgorin discs (see, e.g., Horn-Johnson [22] p. 349) shows
that a real symmetric matrix which is diagonally dominant and has non-negative
diagonal elements is positive semi-definite.

Let d denote the diagonal of a. The above remark yields:

(40) (a + aT)/2 − (1 − δ)d ≥ 0 and (1 + δ)d − (a + aT)/2 ≥ 0.

This proves the lemma. �

For each vertex v let Nv be the number of triangles t ∈ T 2
h such that v ∈ |t|. Let

Nmax be largest such number.
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L2 duality on Y 0
h × X2

h. The following proposition holds true.

Proposition 3.8. For each pair of triangles s, t ∈ T 2
h put ast =

∫
µ0

sλ
2
t . Then

there is a δ < 1 depending only on Nmax for which the matrix (ast) satisfies (38).

Proof. By definition, for each triangle t, λ2
t is the constant function on |t| whose

integral is 1. It follows that on each of the six triangles of the barycentric refinement
contained in t, the integral of λ2

t is 1/6. The integral of an affine function times λ2
t

on such a triangle is therefore 1/18 of the sum of its values at its vertices.
Fix a triangle t ∈ T 2

h . We denote by u, v and w its vertices.
We first compute

∫
µ0

t λ
2
t . Using the above remark on the six subtriangles of t

gives:

att =
∫

µ0
t λ

2
t = (1/18)(6 + 6(1/2) + 2/Nu + 2/Nv + 2/Nw)(41)

= 1/2 + (1/Nu + 1/Nv + 1/Nw)/9.(42)

Next we compute the terms on the columns of the matrix a. They’re all positive,
and since µ0 is a partition of unity, the sum of the column terms is the integral of
λ0

t which is 1. This yields:

(43)
∑
s �=t

|ast| = 1/2 − (1/Nu + 1/Nv + 1/Nw)/9.

For the row we also remark that all terms are positive. Using the above remark
repeatedly we obtain:

(44)
∑

s

∫
µ0

t λ
2
s = 1.

Therefore it suffices to take δ defined by:

(45) δ = max
1/2 − (1/Nu + 1/Nv + 1/Nw)/9
1/2 + (1/Nu + 1/Nv + 1/Nw)/9

≤ 1 − 2/(3Nmax)
1 + 2/(3Nmax)

< 1.

This concludes the proof. �

Proposition 3.9. Suppose that the family of meshes is quasi-uniform. There is
C > 0 such that for all h:

(46) inf
u∈X2

h

sup
v∈Y 0

h

∫
uv

‖u‖0‖v‖0
≥ 1/C.

Proof. Let Λh : X2
h → Y 0

h be the map defined by:

(47) Λh :
∑

s

usλ
2
s → 1/h2

∑
s

usµ
0
s.

The map Λh can be written uniquely as Λh = I0
hΘh where I0

h : X2
h → Y 0

h is the
interpolation operator defined by the degrees of freedom, and Θh : X2

h → X2
h is

diagonal in the basis λ2. Both I0
h : X2

h → Y 0
h and Θh : X2

h → X2
h are stable in the

L2 norm, uniformly with respect to h (the first because of a finite dimensionality
argument on the reference cells and the second because by quasi-uniformity the
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areas of the triangles are equivalent to h2). For u =
∑

s usλ
2
s we can write:∫

uΛhu = 1/h2 ∑
st

∫
λ2

sµ
0
t usut(48)

≥ 1/(Ch2)
∑

s u2
s(49)

≥ 1/C‖u‖2
0(50)

≥ 1/C‖u‖0‖Λhu‖0.(51)

This concludes the proof. �

Proposition 3.10. Suppose that the family of meshes is quasi-uniform. There is
C > 0 such that for all s ∈ [0, 1] and all h:

(52) inf
u∈X2

h

sup
v∈Y 0

h

∫
uv

‖u‖−s‖v‖s
≥ 1/C.

Proof. Let Ph be the Ritz-Galerkin projector onto Y 0
h , associated with the L2

duality on Y 0
h × X2

h. By the preceding proposition it is stable in the L2 norm, i.e.,
there is C > 0 such that:

(53) ‖Phu‖0 � ‖u‖0.

By standard interpolation arguments it is enough to prove that it is also stable in
the H1 norm for the proposition to hold.

Let Qh be the projector onto Y 0
h constructed as Qh = I0

hRh where I0
h : X̃0

h → Y 0
h

is the interpolator and Rh : L2(Γ) → X̃0
h is the (standard) L2 projection. Then Qh

satisfies:

‖Qhu‖1 � ‖u‖1,(54)
‖u − Qhu‖0 � h‖u‖1,(55)

since these properties hold for both I0
h and Rh (see Corollary 3.4).

Now we can simply write:

‖Phu‖1 ≤ ‖Phu − Qhu‖1 + ‖Qhu‖1

� h−1‖Ph(u − Qhu)‖0 + ‖Qhu‖1

� h−1‖(u − Qhu)‖0 + ‖Qhu‖1

� ‖u‖1.

This concludes the proof. �

L2 duality on Y 2
h × X0

h. This duality is more well-known at least to the extent
that Y 2

h is close to the space of piecewise constants on the Voronoi dual mesh, but
we sketch a proof nevertheless, following the lines of the previous case.

Proposition 3.11. For each pair of vertices s, t ∈ T 0
h put ast =

∫
µ2

sλ
0
t . Under

a mild local non-degeneracy condition given at the end the proof, the matrix (ast)
satisfies (38).

Proof. First we check that, since the integral of µ2
s times an affine function of T ′

h on
a triangle containing s is 1/(6Ns) of the sum of its values at the vertices, we have:

(56)
∫

µ2
sλ

0
s = (1 + 1/2 + 1/3)/3 = 11/18.
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Moreover, λ0 is a partition of unity giving :

(57)
∑

t

µ2
sλ

0
t = 1.

We can also compute the sum of the column terms (all of which are positive):∑
t

µ2
sλ

0
t = 11/18 + ((1/3 + 1/3 + 1/2)/3)(

∑
t

1/Nt)(58)

= 11/18 + (7/18)(
∑

t

1/Nt),(59)

where the last sum is taken over the Ns vertices t such that {s, t} ∈ T 1
h .

It therefore suffices that the family of meshes is such that for some δ′ < 1 we
have for each h and s ∈ T 0

h :

(60)
∑

t∈T 0
h : {s,t}∈T 1

h

1/Nt ≤ δ′(11/7),

which is easy to achieve. �

Proposition 3.12. Suppose that the family of meshes is quasi-uniform. There is
C > 0 such that for all h:

(61) inf
u∈X0

h

sup
v∈Y 2

h

∫
uv

‖u‖0‖v‖0
≥ 1/C.

Proof. Let Λh : X0
h → Y 2

h be the map defined by:

(62) Λh :
∑

s

usλ
0
s → h2

∑
s

usµ
2
s.

The map Λh is stable in L2 by the quasi-uniformity hypothesis, since the mass
matrix on X0

h in the basis λ0 is uniformly strictly diagonally dominant (see, e.g.,
Brenner-Scott [6]). For u =

∑
s usλ

0
s we can repeat the preceding argument:∫

uΛhu = h2 ∑
st

∫
λ2

sµ
0
t usut(63)

≥ h2/C
∑

s u2
s(64)

≥ 1/C‖u‖2
0(65)

≥ 1/C‖u‖0‖Λhu‖0.(66)

This concludes the proof. �

Proposition 3.13. Suppose that the family of meshes is quasi-uniform. There is
C > 0 such that for all s ∈ [0, 1] and all h:

(67) inf
u∈X0

h

sup
v∈Y 2

h

∫
uv

‖u‖s‖v‖−s
≥ 1/C.

Proof. It is enough to prove that the Ritz-Galerkin projector onto X0
h with respect

to L2 duality on X0
h × Y 2

h is stable in the H1 norm. This can be proved as in the
case of the projector onto Y 0

h relative to X2
h × Y 0

h (see the proof of Proposition
3.10). �
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L2 duality on Y 1
h × X1

h. In fact the matrix relative to our choices of basis is not
diagonally dominant, as shown in the appendix. However using discrete Hodge
decompositions we can deduce Inf-Sup conditions for the most important pairs
of norms. Indeed, following Buffa-Ciarlet [11] and Buffa [8], we know that the
L2 scalar product extends to a continuous non-degenerate duality pairing between
H− 1

2+s

div (Γ) × H− 1
2−s

curl (Γ), s ∈ (−1
2 , 1

2 ), i.e. there exists a constant C > 0 such that:

inf
u∈H

−1/2+s
div (Γ)

sup
v∈H

−1/2−s
curl (Γ)

∫
Γ

u · v
‖u‖− 1

2+s,div‖v‖− 1
2−s,curl

≥ 1/C,

and we shall now prove the discrete analogue. Again, for simplicity we suppose
that the topology of Γ is trivial in the sense that curl-free (resp. divergence-free)
vector fields are gradients (resp. curls).

Proposition 3.14. Suppose that the family of meshes is quasi-uniform. Then for
each s ∈ (−1

2 , 1
2 ) there is C > 0 such that for all h:

(68) inf
u∈X1

h

sup
v∈Y 1

h

∫
u · v

‖u‖− 1
2+s,div‖v‖− 1

2−s,curl

≥ 1/C.

Proof. Fix s ∈ (−1
2 , 1

2 ) and a u ∈ X1
h. Write u ∈ X1

h in the form u = curlp + u⊥
with p ∈ X0

h and ∀p′ ∈ X0
h

∫
u⊥ · curlp′ = 0. Moreover, following Hiptmair-Schwab

[21]:
(1) there exists a curl free φ such that ‖φ − u⊥‖− 1

2+s,div � µh‖u‖− 1
2+s,div, for

a given sequence µh converging to 0 as h → 0;
(2) for all s ∈ (−1

2 , 1
2 ), it holds that:

(69) ‖u⊥‖− 1
2+s � ‖divu‖− 1

2+s.

Similarly write v ∈ Y 1
h in the form v = gradq + v⊥ with q ∈ Y 0

h and ∀q′ ∈
X0

h

∫
v⊥ · gradq′ = 0. Proposition 3.5 gives a divergence free ψ such that ‖ψ −

v⊥‖− 1
2−s,curl ≤ νh‖v‖− 1

2−s,curl, for a given sequence νh converging to 0 as h → 0.
We have:

(70)
∫

u · v =
∫

p curlv⊥ −
∫

divu⊥ q +
∫

u⊥ · v⊥.

Moreover, since
∫

φ · ψ = 0 we have:

|
∫

u⊥ · v⊥| = |
∫

(u⊥ − φ) · ψ + φ · (v⊥ − ψ) + (u⊥ − φ) · (v⊥ − ψ)|

� max{µh, νh}‖u‖− 1
2+s,div‖v‖− 1

2−s,curl.

The Inf-Sup conditions (67) and (52) proved for the scalar cases in H−1/2±s ×
H1/2∓s norms, together with (37)(i) and (69), give the Inf-Sup condition (68) for h
small enough. This method of proof extends to non-trivial topologies.

Next we show that, for large h, degeneracy cannot occur in trivial topology. This
uses Proposition 2.5 repeatedly. Given u ∈ X1

h we suppose that quantity (70) is
zero for all v ∈ Y 1

h . First, taking v to be of the form v = gradq (so that v⊥ = 0)
with q ∈ Y 0

h shows that divu = 0. Therefore u is in the form u = curlp for some
p ∈ X0

h with 0 mean value. Given the range of curl : Y 1
h → Y 2

h , such a p must be
0, which shows that u is zero. �
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4. Remarks, extensions and applications

4.1. In the language of differential forms. The results of this paper can be
cast in the language of differential forms. This is achieved through the standard
correspondence of various kinds of forms with functions and vectorfields. Let g be
the Riemannian metric on Γ and ω the canonical volume-form on Γ associated with
g and the orientation of Γ. A function u on Γ is a 0-form but also gives rise to
the 2-form uω, and a vectorfield u corresponds to the 1-forms ω(u, ·) and g(u, ·).
Departing from the definitions preceding Proposition 2.4 we let Ωi(Γ) denote the
space of i-forms on Γ obtained as follows :

• Ω2(Γ) is the range of the map u �→ uω on H−1/2(Γ).
• Ω1(Γ) is the range of the map u �→ ω(u, ·) on H−1/2

div (Γ), or alternatively as
the range of the map u �→ g(u, ·) on H−1/2

rot (Γ).
• Ω0(Γ) is the space H1/2(Γ).

The equality of the two definitions given for Ω1(Γ) is based on the identity

ω(u × n, ·) = g(u, ·)

and the fact that u �→ u × n provides an isomorphism H−1/2
rot (Γ) → H−1/2

div (Γ). We
also assume that Ωi(Γ) has been equipped with the norm, denoted H−1/2

d , which
makes the defining maps isometries.

Departing slightly from the notations of the previous sections we interpret Xi
h as

a space of i-forms, for each i ∈ {0, 1, 2}, using the maps defining the spaces Ωi(Γ).
This interpretation goes back to Bossavit [5]. The bases chosen for these spaces
are also the ones obtained by mapping the preceding ones. The spaces Xi

h form a
complex under the exterior derivative d.

This procedure associates a complex X•
h to any simplicial complex Th on Γ,

together with a choice of basis for each of the spaces Xi
h. In particular, given

Th we obtain X•
h and λ•, as well as a complex X ′•

h and bases λ′• associated with
the barycentric refinement T ′

h of Th. The complex Y •
h is then constructed as a

subcomplex of X ′•
h , such that the space Y i

h is equipped with a basis µi whose
elements are linear combinations of the basis-elements λ′i with the same coefficients
as before.

The previous results straightforwardly carry over to this setting. Recall that
integration is a linear form on the space of 2-forms. The bilinear form (u, v) �→∫

u ∧ v defined on i and (2 − i) forms u and v is non-degenerate and called Hodge
duality. In the continuous case non-degeneracy can be deduced from the existence
of the Hodge star operator (see Taylor [28] p. 355), whose definition we now recall.
It is the map ∗ which to any i-form u associates the (2−i)-form ∗u defined pointwise
by the property that:

(71) v ∧ ∗u = (v · u)ω,

for each i-form v, where the notation · is used to denote the scalar product on
alternating forms induced by the metric g.

Much of this paper is motivated by the following discrete non-degeneracy
property.
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Proposition 4.1. Suppose that the family of meshes is quasi-uniform. For each i
there is C > 0 such that for all h:

(72) inf
u∈Xi

h

sup
v∈Y 2−i

h

∫
u ∧ v

‖u‖
H

−1/2
d

‖v‖
H

−1/2
d

≥ 1/C.

Proof. For the case i = 1 we remark that when u and v are two vectorfields we
have:

(73) ω(u, ·) ∧ g(v, ·) = −g(u, v)ω.

The present formulation is therefore just a reformulation of the vector case. For
i = 0 and i = 2 the translations are even more direct. �

This leads to the definition of a discrete Hodge star operator. We introduce the
maps ∗h : Xi

h → Y 2−i
h which to any u ∈ Xi

h associates ∗hu ∈ Y 2−i
h defined by:

(74)
∫

v ∧ ∗hu =
∫

(v · u)ω,

for all v ∈ Xi
h. They are well defined isomorphims by Proposition 4.1. Contrary

to the continuous Hodge star, the discrete ones are non-local (do not in general
preserve supports).

The formal adjoint δ of d is defined by the property that for all i-forms u and
all (i − 1)-forms v we have:

(75)
∫

δu · v =
∫

u · dv.

Similarly one can define the formal adjoint δh : Xi
h → Xi−1

h of d : Xi−1
h → Xi

h.
We then have, for all u ∈ Xi

h and all v ∈ Xi−1
h :∫

δhu · v =
∫

dv · u =
∫

dv ∧ ∗hu(76)

= (−1)i−1

∫
v ∧ d ∗h u = (−1)i−1

∫
v ∧ ∗h(∗h)−1d ∗h u(77)

= (−1)i−1

∫
(∗h)−1d ∗h u · v,(78)

which shows that , on i-forms, δh = (−1)i−1(∗h)−1d∗h which is a discrete analogue
of the fact that, up to signs, δ equals ∗d∗, given that ∗ is its own inverse up to
sign ([28] p. 356). In other words we have just showed that the following diagram
commutes:

(79)
X2

h
δh−→ X1

h
δh−→ X0

h

∗h ↓ ∗h ↓ ∗h ↓
Y 0

h
−d−→ Y 1

h
d−→ Y 2

h

4.2. Extension to open surfaces. The aim of this section is to extend the pre-
vious definitions and results to the case of open orientable polyhedral manifolds.
Then let γ denote such a manifold and ∂Γ its boundary.

All the notations in this section will be consistent with those introduced pre-
viously. Moreover, every time that we add a subscript (·)0 to spaces, we mean
the closure of regular compactly supported functions with respect to the topology
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of the space, and we will use the superindex (·)b to denote objects related to the
boundary ∂Γ.

We are given a complex (X0
h, X1

h, X2
h) based on Raviart-Thomas divergence con-

forming vector fields satisfying homogeneous boundary conditions. It is defined by:

X0
h = {u ∈ H1

0(Γ) : ∀ t ∈ T 2
h u|t ∈ P1},(80a)

X1
h = {u ∈ Hdiv,0(Γ) : ∀ t ∈ T 2

h u|t ∈ RT0},(80b)

X2
h = {u ∈ L2(Γ) : ∀ t ∈ T 2

h u|t ∈ P0}.(80c)

We then construct a suitable complex Y•
h such that the dualities on Yi

h × X2−i
h ,

i = 0, 1, 2, are non-degenerate. Moreover, the complex Y•
h is built as a sub-complex

of X̃•
h, which is defined exactly as in (3). We proceed in a constructive way by

modifying the basis functions introduced in Section 2 in order to take into account
the boundary ∂Γ.

Note that hereafter we construct one particular complex, but others may be
constructed enjoying different properties, depending on their intended use. In what
follows, our construction is mainly driven by the requirement that the dualities on
Yi

h × X2−i
h are non-degenerate.

(i) Boundary basis functions for Y0
h. Let t ∈ T 2

h be a triangle interacting with
the boundary ∂Γ. Two situations may occur: (i) t∩ ∂Γ ∈ T 1

h , i.e., t shares an edge
with the boundary, then µ0,b

t ∈ X̃0
h have the coefficients shown in Figure 4(a); (ii)

t ∩ ∂Γ ∈ T 0
h , i.e., t shares a vertex with the boundary, then µ0,b

t ∈ X̃0
h have the

coefficients shown in Figure 4(b).
Thus, we set

Y0
h = span{(µ0

t , t ∈ T 2
h : t ∩ ∂Γ = ∅), (µ0,b

t , t ∈ T 2
h : t ∩ ∂Γ �= ∅)}.

It is a matter of trivial checking that this basis is a partition of unity.
(ii) Boundary basis functions for Y1

h. We associate a basis function only with
those edges e ∈ T 1

h such that e ∩ ∂Γ ∈ T 0
h , i.e., which share a vertex with the

boundary. Let v ∈ T 0
h be on ∂Γ and mv +1 the number of triangles t ∈ T 2

h sharing
v as a vertex. We number these triangles as t0, . . . , tmv

turning around v in a
counterclockwise sense. Accordingly we number edges e such that |e| ∩ ∂Γ = |v| as
e1 , e2, . . . , emv−1 and denote by wi the other vertex of ei. We suppose each ei to
be oriented from wi to v. The boundary basis function µ1,b

ei
associated with ei is

defined as:

(81) µ1,b
ei

=
{

µ1
ei

on w′
i,∑i−1

j=0 gradµ0,b
tj

on v′.

Note that the construction does not depend upon the orientation or the number-
ing we have chosen since

∑i−1
j=0 gradµ0,b

tj
= −

∑mv

j=i gradµ0,b
tj

on v′, being true that∑mv

j=0 µ0,b
tj

= 1 on v′.
Thus, we set

Y1
h = span{(µ1

e , e ∈ T 1
h : e ∩ ∂Γ = ∅), (µ1,b

e , e ∈ T 1
h : t ∩ ∂Γ ∈ T 0

h )}.

(iii) Characterization of Y2
h. We do not add any boundary term to the space Y2

h,
i.e., Y2

h = span{µ2
v , v ∈ T 0

h : v /∈ ∂Γ}.



DUAL FINITE ELEMENT COMPLEX ON BARYCENTRIC REFINEMENT 1763

1/3 

1/2 

1/2 

1 

1/2 

1 

1/N_v 

(a) Case t ∩ ∂Γ ∈ T 1
h .

1/2 
1/N_w 

1/3 

1 

1/N_v 

1/2 
1/2 

(b) Case t ∩ ∂Γ ∈ T 0
h .

Figure 4. The two types of boundary basis element for Y 0
h ex-

pressed in the basis of X̃0
h. The shaded gray region corresponds to

the boundary ∂Γ. Nv and Nw stand for the number of triangles
sharing the nodes v and w, respectively.

Now, we list a series of results which are basically a repetition of the ones proved
in Section 2 and Section 3. We will not repeat proofs when they are similar to the
ones already presented.

Proposition 4.2 (Analogue of Proposition 2.5). In the following complex, the
cohomology groups have the “right” dimension:

(82) 0 −→ Y0
h

grad−→ Y1
h

curl−→ Y2
h −→ 0.

More precisely, for a connected manifold, for the first cohomology group an element
of Y 0

h has gradient 0 iff it is constant, whereas for the last cohomology group any
element of Y 2

h is the curl of an element of Y 1
h .

As far as the metric properties are concerned, we adopt the notation of Section
3. Remark that, in the case of open manifolds some attention has to be devoted to
the definition of Sobolev spaces with negative regularity exponent. Hereafter, we
adopt the following notation: H−s(Γ) =

(
Hs

0(Γ)
)′, s ∈ (0, 3/2). For the singular

exponents s = ±1
2 , we adopt the notation of Lions-Magenes [23] and set H− 1

2
00 (Γ) =(

H
1
2
00(Γ)

)′. These spaces are endowed with their standard norms ‖ · ‖ 1
2 ,00 and

‖ · ‖− 1
2 ,00, respectively. In the same way, a singular index appears in the definition
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of Hs
curl(Γ), when s = −1

2 . As in Buffa-Ciarlet [12, Sec. 6], we set:

H− 1
2

curl,00(Γ) = {u ∈ H− 1
2

00 (Γ) : curlu ∈ H− 1
2

00 (Γ)},
endowed with the corresponding graph norm ‖ · ‖ 1

2 ,curl,00.
We start by proving the following error estimates.

Theorem 4.3 (Analogue of Theorem 3.2). Let 0 < s < 1/2. For any u0 ∈ H1+s(Γ),
u1 ∈ Hs

curl(Γ), u2 ∈ Hs(Γ), it holds that

‖u0 − I0hu0‖1 + h−1‖u0 − I0hu0‖0 � hs‖u0‖s+1,(83a)

‖u1 − I1hu1‖0,curl � hs‖u1‖s,curl,(83b)

‖u2 − I2hu2‖0 � hs‖u2‖s, .(83c)

Proof. The proof of (83a) goes exactly as the one of (19a), with minor changes.
Let v ∈ T 0

h be a vertex on ∂Γ, and let Nv be the number of t ∈ T 2
h which share v

as a vertex. We map v′ into C̃Nv
= {Ĉ2Nv

: x < 0}. Let u0 ∈ H1+s(Γ), û0 be
its pull back on the half cell, Î0b the interpolation operator on C̃Nv

associated with
the pull-pack of the boundary basis functions, and R : H1+s(C̃Nv

) → H1+s(Ĉ2Nv
)

be the reflection operator. It is a matter of straightforward checking to see that
Î0b û

0 = Î0R(û0) on C̃Nv
. The estimate (83a) follows directly.

The estimate (83b) follows by the same argument, just noticing that (25) applies
as soon as constant vectors are reproduced by the discrete space.

Finally, we prove (83c). Let u2 ∈ Hs(Γ). We denote by Γh the total support of
the functions in Y2

h and note that Γ \ Γh is a strip of elements of T ′
h which share

with ∂Γ an edge or a vertex. A straightforward application of (19c) implies that:

‖u2 − I2hu2‖0 � hs‖u‖s,Γh
+ ‖u2‖0,Γ\Γh

, s ∈ (0, 1
2 ).

It can be proved that for any v ∈ H1
0(Γ) there holds:

‖v‖0,Γ\Γh
� h|v|1,Γ\Γh

.

By standard interpolation theory and recalling that Hs
0(Γ) = Hs(Γ) for any s ∈

[0, 1
2 ), the result follows. �

The results of Section 3.2, namely Propositions 3.5 and 3.6, are also valid in the
case of an open manifold. Indeed, they are consequences of Proposition 4.2 and
Theorem 4.3, their statements do not change and their proofs change only in the
construction of the continuous Hodge decomposition which is now the one used by
Amrouche et al. in [2, Formulae (3.29, 3.30, 3.31)].2 In Proposition 3.6, the stability
estimate in (37) fails to be true for the singular exponent t = 0 and extends to the
following:

‖u1
⊥‖− 1

2 ,curl,00 + ‖u0‖ 1
2

� ‖u1‖− 1
2 ,curl,00.

Finally, we arrive at the LBB inf-sup conditions, i.e., the non-degeneracy of the
Hodge duality products. Indeed, as before, they are direct consequences of the
LBB inf-sup conditions which we have already proved in Section 3.3. Here below,
we detail the reasoning.

2Indeed, the vectorfield ϕ is constructed in both proofs as the unique solution of the problem:

ϕ ∈ Hdiv,0(Γ) : curlϕ = curlu1 divϕ = 0.



DUAL FINITE ELEMENT COMPLEX ON BARYCENTRIC REFINEMENT 1765

L2 duality on Y0
h ×X2

h. In the L2 context, it is a matter of computing
∫

µ0,b
s λ2

t

for each pair of triangles s , t ∈ Th such that s ∩ ∂Γ ∈ T 1
h . A simple calculation

shows that:
∫

s
µ0,b

s λ2
s = 10/18 + 1/9(1/Nu + 1/Nv + 1/Nw) where u , v , w denote

the vertices of s. Then, the arguments used in the proof of Proposition 3.9 apply.
The arguments used in Proposition 3.10 apply for s ∈ [0, 1/2]. Recall that, beyond
this range, the spaces Hs(Γ)′ can no longer be interpreted as spaces of distributions.

L2 duality on Y2
h × X0

h. In the L2 context, this is just a special case of the
duality proved in Propositions 3.12. Beyond the L2 context we use the stability
of the L2 projector Rh : H1

0(Γ) → X0
h in H1 norm (Crouzeix-Thomée [19]). The

exponent s = 1
2 is singular in the interpolation argument used in Proposition 3.13.

For the case s = 1
2 the very same interpolation argument provides the following

LBB condition: there exists a positive constant C s.t.

(84) inf
u∈X0

h

sup
v∈Y2

h

∫
u · v

‖u‖ 1
2 ,00‖v‖− 1

2 ,00

≥ 1/C.

L2 duality on Y1
h × X1

h. The proof of Proposition 3.14 relies on the LBB
stability of the previous two dualities, and thus it also applies to the present case.
More precisely, (68) holds true for all s ∈ (−1

2 , 0). The cases s > 0 cannot be
considered here since, as already discussed for the duality on Y0

h × X2
h, this would

bring us beyond the distributional setting. The case s = 0 corresponds to the
singular index for the duality Y2

h −X0
h. The same argument as the one used in the

proof of Proposition 3.14, together with (84), provides the following: there exists a
constant C > 0 such that

(85) inf
u∈X1

h

sup
v∈Y1

h

∫
u · v

‖u‖− 1
2 ,div‖v‖− 1

2 ,curl,00

≥ 1/C.

Note that, according to Buffa-Ciarlet [12, pp. 46-47], this is the relevant duality
between traces.

4.3. Applications. One of the motivations for constructing the dual spaces of
this paper was to obtain spectrally equivalent preconditioners for the Electric Field
Integral Equation (EFIE). This equation is routinely solved in electromagnetic scat-
tering problems, with applications to radar cross section computations and antenna
simulations. With the advent of Fast Multipole Methods, which enable fast matrix-
vector multiplication (the complexity is reduced from O(n2) of full n × n matrices
to O(n log(n)k) via diagonalization of the translation operator and a divide and
conquer strategy – Rokhlin [25], Coifman et al. [18], and Song et al. [26]) it has
become important to design good preconditioners to be incorporated in iterative
linear equation solvers.

For the EFIE, variational preconditioners based on the Calderon formulas were
first introduced in Christiansen-Nédélec [14]. At that time a curl-conforming finite
element space in L2 duality with X1

h was not known, and the authors resorted to
a saddlepoint formulation. The preconditioner thus obtained was not in general
invertible, but still several properties could be proved or demonstrated numerically.
With the help of the new space Y 1

h we can obtain a conceptually simpler discretiza-
tion of the Calderon formulas yielding an invertible preconditioner. This is what
we detail in this section. For the rest of it we put Xh = X1

h and Yh = Y 1
h .

We consider the scattering of an electromagnetic wave by a perfect conductor.
More precisely, in R

3 we consider an open subset Ω, which is connected and is the
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complement of a (compact) polyhedron with boundary Γ. We are given an incident
wave (Einc, Hinc) and we look for the scattered field (E, H). These are vectorfields
in Ω satisfying:

(86) curlE = +iωµH et curlH = −iωεE,

where µ is the magnetic permeability, ε is the electric permittivity and ω the angular
frequency of the incident wave. The scattered field also satisfies the Silver-Müller
radiation condition at infinity :

(87) µ1/2H × x/|x| − ε1/2E = o(1/|x|),
and the perfect conductor boundary condition on Γ for the total field Etot = E +
Einc gives (for the tangent components on Γ, ET = (n × E)|Γ) :

(88) ET = −Einc
T in H− 1

2
div (Γ).

The associated wavenumber is k = ω(µε)1/2. The Greens functions for the
Helmholtz equation is:

(89) Gk(x, y) =
eik|x−y|

4π|x − y| .

The scattered electric field can be sought in the form of an electric potential:

(90) E(y) = (1 + (1/k2)grad div)
∫

Γ

Gk(x, y)u(x)dx,

where u ∈ H− 1
2

div (Γ) is an unknown tangent vectorfield on Γ determined by the
boundary condition (88).

Let Ak denote the operator which to u ∈ H− 1
2

div (Γ) associates the tangential trace
on Γ of the electric potential (90) (i.e., n × (E × n)|Γ). It is known that Ak is a

Fredholm operator H− 1
2

div (Γ) → H− 1
2

curl(Γ) with index 0 and which is invertible for all
k ∈ R+ except a countable subset accumulating only at infinity. Let a denote the
bilinear form on H− 1

2
div (Γ) induced by Ak:

(91) a(u, u′) = 〈Aku, u′〉.
Recall that:

〈Aku, u′〉 =
∫∫

Gk(x, y)u(x) · u′(y)dxdy · · ·(92)

−(1/k2)
∫∫

Gk(x, y)divu(x)divu′(y)dxdy.

Following Bendali [4] one then looks for uh ∈ Xh such that for all u′
h ∈ Xh:

(93) a(uh, u′
h) = −〈Einc, u′

h〉.
Let Ah be defined by (Ah)t,s = a(λ1

s, λ
1
t ) for all s , t ∈ T 1

h , be the associated stiffness
matrix and Ah : Xh → X�

h the associated mapping: 〈Ahuh, vh〉 = a(uh, vh). The
aim of this section is to construct an optimal preconditioner for the matrix Ah.
Following Christiansen-Nédélec [16] (based on the work by Steinbach-Wendland
[27]), we need two ingredients:

(i) A uniformly invertible mapping Bh : Yh → X�
h. Here we choose the mapping

associated with the L2 duality. Thus, with our choice of bases, the matrix associated
with Bh is (Bh)t,s =

∫
λ1

t · µ1
s.
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(ii) A uniformly invertible mapping Ch : Yh → Y �
h . The Calderon formulas sug-

gest one possible choice for Ch. Other choices are also possible, as briefly discussed
in [14]. We denote by n the outward pointing normal on Γ, and u �→ u×n provides
an isomorphism Ξ : H− 1

2
curl(Γ) → H− 1

2
div (Γ). Then, we consider the mapping defined

by:

(94) 〈Chvh, v′h〉 = a(Ξvh, Ξv′h) vh , v′h ∈ Yh.

The fact that Ch is uniformly invertible on Yh (for h small enough) is a consequence
of the properties of the complex Y •

h proved in this paper (see Section 3.2) and the
generalities proved for discretizations of the EFIE in Buffa-Christiansen [9]. We
denote by Ch the matrix associated with the mapping Ch.

The mapping B�−1
h ChBhAh is the composition of uniformly invertible isomor-

phisms, thus it is a uniformly invertible isomorphism from Xh to Xh. The general
theory now proves that B�−1

h ChB−1
h is a preconditioner for Ah which is spectrally

equivalent in the following sense:

Proposition 4.4. For each k such that the operator Ak : H− 1
2

div (Γ) → H− 1
2

curl(Γ) is
invertible, the spectral radius of B�−1

h ChB−1
h Ah and its inverse are both bounded

independently of h (for h small enough).

Proof. See §1.2.2 in Christiansen [15] and in particular Proposition 1.2.1. �

Remark also that B�−1
h ChB−1

h Ah can be viewed as the matrix of an approxima-
tion of the operator Ξ�AkΞAk appearing in the Calderon formulas. This operator
is of the form (1/4)I + K where, for smooth surfaces, K : H− 1

2
div (Γ) → H− 1

2
div (Γ) is

compact.

5. Appendix

The following proposition is of limited practical interest but shows why we re-
sorted to Helmholtz-Hodge decompositions.

Proposition 5.1. For each pair of edges s, t ∈ T 1
h put ast =

∫
µ1

sλ
1
t . The matrix

(ast) is not in general diagonally dominant by rows.

Proof. The computation is based on the fact that there is a constant α such that
if any triangle carries a Raviart-Thomas field with coefficients a, b, c according to
normals oriented outwards and a Nédélec field with coefficients a′, b′, c′ according
to counterclockwise oriented tangents, then the integral of their scalar product is
α times:

(95) a(c′ − b′) + b(a′ − c′) + c(b′ − a′).

Using this formula repeatedly gives the following results (where we simplify all
matrix coefficients by α).

Let s be an edge with vertices u and v. We get:

(96) ass = 4 − (1/Nu + 1/Nv)(8/3).

Moreover the off-diagonal terms come in several forms (looking at a line in the
matrix):

– We have two terms looking like:

(97) ast = 3/4 + 1/(2Nu)(−7/2) + 1/(2Nv)(−2/3),
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and two similar terms obtained by switching the roles of u and v.
– We have Nu − 3 terms looking like:

(98) ast = 1/(2Nu)(−10/3),

and as many obtained by switching the roles of u and v.
– We also have Nu − 3 terms of the form:

(99) ast = i/(3Nu),

for i ranging between Nu − 3 and −Nu + 3 by steps of 2. We also have the Nv − 3
terms obtained by substituting v for u.

If we add the absolute values of the off-diagonal row terms of the two first types
we get:

(100) 19/3 + (1/Nu + 1/Nv)(−55/6);

those of the third type are best computed by hand. As an example if Nu = Nv = 6
we get a diagonal term equal to 56/18 and a sum of absolute values of off-diagonal
terms equal to 75/18. �
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