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MIXED FINITE ELEMENT METHODS FOR LINEAR
ELASTICITY WITH WEAKLY IMPOSED SYMMETRY

DOUGLAS N. ARNOLD, RICHARD S. FALK, AND RAGNAR WINTHER

ABSTRACT. In this paper, we construct new finite element methods for the
approximation of the equations of linear elasticity in three space dimensions
that produce direct approximations to both stresses and displacements. The
methods are based on a modified form of the Hellinger—Reissner variational
principle that only weakly imposes the symmetry condition on the stresses.
Although this approach has been previously used by a number of authors,
a key new ingredient here is a constructive derivation of the elasticity com-
plex starting from the de Rham complex. By mimicking this construction in
the discrete case, we derive new mixed finite elements for elasticity in a sys-
tematic manner from known discretizations of the de Rham complex. These
elements appear to be simpler than the ones previously derived. For example,
we construct stable discretizations which use only piecewise linear elements to
approximate the stress field and piecewise constant functions to approximate
the displacement field.

1. INTRODUCTION

The equations of linear elasticity can be written as a system of equations of the
form

(1.1) Ao = eu, dive = f in Q.

Here the unknowns ¢ and u denote the stress and displacement fields engendered
by a body force f acting on a linearly elastic body which occupies a region Q C R3.
Then o takes values in the space S := RS;HP{ of symmetric matrices and u takes
values in V := R3. The differential operator ¢ is the symmetric part of the gradient,
the div operator is applied row-wise to a matrix, and the compliance tensor A =
A(z) : S — S is a bounded and symmetric, uniformly positive definite operator
reflecting the properties of the body. If the body is clamped on the boundary 92
of Q, then the proper boundary condition for the system (I]) is u = 0 on 9. For
simplicity, this boundary condition will be assumed here. The issues that arise when
other boundary conditions are assumed (e.g., the case of pure traction boundary
conditions on = g) are discussed in [9].
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The pair (o, u) can alternatively be characterized as the unique critical point of
the Hellinger—Reissner functional

(1.2) J(T,’U):/(%ATIT—i—diVT-U—f-D)dx.
Q

The critical point is sought among all 7 € H(div,{;S), the space of square-
integrable symmetric matrix fields with square-integrable divergence, and all v €
L?(Q;V), the space of square-integrable vector fields. Equivalently, (o,u) €
H(div,$;S) x L?(Q;V) is the unique solution to the following weak formulation
of the system (LI)):

Jo(Ao : T +divr-u)dz = 0, T € H(div,Q;S),

1.3
(13) Jodive - vdx = [of-vdz, veL?*(Q;V).

A mixed finite element method determines an approximate stress field o and
an approximate displacement field uy, as the critical point of J over ¥, x V}, where
¥, C H(div,Q;S) and V}, C L2(Q;V) are suitable piecewise polynomial subspaces.
Equivalently, the pair (op,up) € X x V}, is determined by the weak formulation
([@T3), with the test space restricted to Xp, x V3. As is well known, the subspaces Xy,
and Vj cannot be chosen arbitrarily. To ensure that a unique critical point exists
and that it provides a good approximation of the true solution, they must satisfy
the stability conditions from Brezzi’s theory of mixed methods [12] [13].

Despite four decades of effort, no stable simple mixed finite element spaces for
elasticity have been constructed. For the corresponding problem in two space di-
mensions, stable finite elements were presented in [10]. For the lowest order element,
the space X is composed of piecewise cubic functions, with 24 degrees of freedom
per triangle, while the space V}, consists of piecewise linear functions. Another ap-
proach which has been discussed in the two-dimensional case is the use of composite
elements, in which V}, consists of piecewise polynomials with respect to one trian-
gulation of the domain, while ¥; consists of piecewise polynomials with respect
to a different, more refined, triangulation [5, 21} 23 B1]. In three dimensions, a
partial analogue of the element in [I0] has been proposed and shown to be stable
in [I]. This element uses piecewise quartic stresses with 162 degrees of freedom per
tetrahedron, and piecewise linear displacements.

Because of the lack of suitable mixed elasticity elements, several authors have re-
sorted to the use of Lagrangian functionals which are modifications of the Hellinger—
Reissner functional given above [2, 4 [6] 27], 28], 29] [30], in which the symmetry of the
stress tensor is enforced only weakly or abandoned altogether. In order to discuss
these methods, we consider the compliance tensor A(x) as a symmetric and positive
definite operator mapping M into M, where M is the space of 3 x 3 matrices. In
the isotropic case, for example, the mapping o — Ao has the form

1 A

Ao = 5(0’— mtr(U)I),

where A(x), u(x) are positive scalar coefficients, the Lamé coefficients. A modifi-
cation of the variational principle discussed above is obtained if we consider the
extended Hellinger—Reissner functional

(1.4) Te(1,0,q) = J(7,0) —|—/ T:qdx

Q
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over the space H(div, ;M) x L?(Q;V) x L?(Q;K), where K denotes the space of
skew symmetric matrices. We note that the symmetry condition for the space of
matrix fields is now enforced through the introduction of the Lagrange multiplier, ¢.
A critical point (o, u, p) of the functional 7. is characterized as the unique solution
of the system

Jo(Ao T +divr-u+7:p)dr = 0, T € H(div, Q; M),
(1.5)  Jodive-vdz = [of vde, v e L2 V),
Joo:qdx = 0, q € L*(4K).

Clearly, if (o,u,p) is a solution of this system, then o is symmetric, i.e., o €
H(div,Q;S), and therefore the pair (o,u) € H(div,€;S) x L?(Q;V) solves the
corresponding system (L3). On the other hand, if (u,p) solves (I3]), then u €
HY(©; V) and, if we set p to the skew-symmetric part of grad u, then (o, u, p) solves
(LH). In this respect, the two systems (3] and (LA are equivalent. However, the
extended system (L)) leads to new possibilities for discretization. Assume that we
choose finite element spaces X5, x Vi, x Q) C H (div, Q; M) x L(£; V) x L*(Q; K) and
consider a discrete system corresponding to (LH)). If (o, up,pr) € Bp X Vi, X Qp is
a discrete solution, then o, will not necessarily inherit the symmetry property of
o. Instead, o, will satisfy the weak symmetry condition

/ah:qdaij, for all ¢ € Q.
Q

Therefore, these solutions in general will not correspond to solutions of the discrete
system obtained from (L3)).

Discretizations based on the system (LH) will be referred to as mixed finite
element methods with weakly imposed symmetry. Such discretizations were already
introduced by Fraejis de Veubeke in [2I] and further developed in [4]. In particular,
the so-called PEERS element proposed in [4] for the corresponding problem in
two space dimensions used a combination of piecewise linear functions and cubic
bubble functions, with respect to a triangulation of the domain, to approximate
the stress o, piecewise constants to approximate the displacements, and continuous
piecewise linear functions to approximate the Lagrange multiplier p. Prior to the
PEERS paper, Amara and Thomas [2] developed methods with weakly imposed
symmetry using a dual hybrid approach. The lowest order method they discussed
approximates the stresses with quadratic polynomials plus bubble functions and the
multiplier by discontinuous constant or linear polynomials. The displacements are
approximated on boundary edges by linear functions. Generalizations of the idea
of weakly imposed symmetry to other triangular elements, rectangular elements,
and three space dimensions were developed in [2§], [29], [30] and [24]. In [29], a
family of elements is developed in both two and three dimensions. The lowest order
element in the family uses quadratics plus the curls of quartic bubble functions in
two dimensions or quintic bubble functions in three dimensions to approximate the
stresses, discontinuous linears to approximate the displacements, and discontinuous
quadratics to approximate the multiplier. In addition, a lower order method is
introduced that approximates the stress by piecewise linear functions augmented
by the curls of cubic bubble functions plus a cubic bubble times the gradient of
local rigid motions. The multiplier is approximated by discontinuous piecewise
linear functions and the displacement by local rigid motions. Morley [24] extends
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PEERS to a family of triangular elements, to rectangular elements, and to three
dimensions. In addition, the multiplier is approximated by nonconforming rather
than continuous piecewise polynomials.

There is a close connection between mixed finite elements for linear elasticity and
discretization of an associated differential complex, the elasticity complex, which
will be introduced in §3 below. In fact, the importance of this complex was already
recognized in [I0], where mixed methods for elasticity in two space dimensions
were discussed. The new ingredient here is that we utilize a constructive derivation
of the elasticity complex starting from the de Rham complex. This construction
is described in Eastwood [I§] and is based on the the Bernstein—Gelfand—Gelfand
resolution; cf. [I1] and also [14]. By mimicking the construction in the discrete case,
we are able to derive new mixed finite elements for elasticity in a systematic manner
from known discretizations of the de Rham complex. As a result, we can construct
new elements in both two and three space dimensions which are significantly simpler
than those derived previously. For example, we will construct stable discretizations
of the system ([L3]) which only use piecewise linear and piecewise constant functions,
as illustrated in the figure below. For simplicity, the entire discussion of the present
paper will be given in the three-dimensional case. A detailed discussion in two space
dimensions can be found in [8]. Besides the methods discussed here, we note that
by slightly generalizing the approach of this paper, one can also analyze some of
the previously known methods mentioned above that are also based on the weak
symmetry formulation (see [19] for details).

VA A A A

FiGURE 1. Elements for the stress, displacement, and multiplier
in the lowest order case in two dimensions and three dimensions.

I

An alternative approach to construct finite element methods for linear elasticity
is to consider a pure displacement formulation. Since the coefficient A in (I
is invertible, the stress o can be eliminated using the first equation in (II]), the
stress-strain relation. This leads to the second order equation

(1.6) divA ' eu=f inQ

for the displacement u. A weak solution of this equation can be characterized as
the global minimizer of the energy functional

E(u)z/g(%A_leuzeu—l—f-u) dx

over the Sobolev space H}(; V). Here H}(2;V) denotes the space of all square
integrable vector fields on €2, with square integrable derivatives, and which vanish
on the boundary 992. A finite element approach based on this formulation, where
we seek a minimum over a finite element subspace of H}(Q;V) is standard and
discussed in textbooks, (e.g., [I6]). However, for more general models, arising, for
example, in viscoelasticity and plasticity (cf. [I5]), the stress—strain relation is not
local and an elimination of the stress ¢ is impossible. For such models, a pure
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displacement model is excluded, and a mixed approach seems to be an obvious
alternative. The construction of stable mixed elements for linear elasticity is an
important step in the construction of mixed methods for these more complicated
models. Another advantage of the mixed approach is that we automatically obtain
schemes which are uniformly stable in the incompressible limit, i.e., as the Lamé
parameter A tends to infinity. Since this behavior of mixed methods is well known,
we will not focus further on this property here. A more detailed discussion in this
direction can, for example, be found in [5].

An outline of the paper is as follows. In §2, we describe the notation to be used,
state our main result, and provide some preliminary discussion on the relation
between stability of mixed finite element methods and discrete exact complexes. In
§3, we present two complexes related to the two mixed formulations of elasticity
given by (L3) and (LH). In §4, we introduce the framework of differential forms
and show how the elasticity complex can be derived from the de Rham complex. In
85, we derive discrete analogues of the elasticity complex beginning from discrete
analogues of the de Rham complex and identify the required properties of the
discrete spaces necessary for this construction. This procedure is our basic design
principle. In §6, we apply the construction of the preceding section to specific
discrete analogues of the de Rham complex to obtain a family of discrete elasticity
complexes. In §7 we use this family to construct stable finite element schemes
for the approximation of the mixed formulation of the equations of elasticity with
weakly imposed symmetry. Finally, in §8, we show how a slightly more complicated
procedure leads to a simplified elasticity element.

2. NOTATION, STATEMENT OF MAIN RESULTS, AND PRELIMINARIES

We begin with some basic notation and hypotheses. We continue to denote by
V = R? the space of 3-vectors, by M the space of 3 x 3 real matrices, and by
S and K the subspaces of symmetric and skew symmetric matrices, respectively.
The operators sym : Ml — S and skw : M — K denote the symmetric and skew
symmetric parts, respectively. Note that an element of the space K can be identified
with its axial vector in V given by the map vec: K — V:

0 —Us (%) (%1
vec | w3 0 v | =\|ve ],
—U92 U1 0 U3

i.e., vec (v)w = v x w for any vectors v and w.

We assume that  is a domain in R? with boundary 9Q. We shall use the stan-
dard function spaces, like the Lebesgue space L2(2) and the Sobolev space H*(().
For vector-valued functions, we include the range space in the notation following
a semicolon, so L?(£2; X) denotes the space of square integrable functions mapping
Q into a normed vector space X. The space H(div,Q;V) denotes the subspace of
(vector-valued) functions in L?(£2; V) whose divergence belongs to L?(£2). Similarly,
H (div, ;M) denotes the subspace of (matrix-valued) functions in L?(£2; M) whose
divergence (by rows) belongs to L?(Q;V).

Assuming that X is an inner product space, then L?(£2;X) has a natural norm
and inner product, which will be denoted by || - || and (-, - ), respectively. For a
Sobolev space H*(§;X), we denote the norm by || - || and for H(div,2;X), the
norm is denoted by ||[v||aiy := (||v]|? + || divv||?)}/2. The space Py (£2) denotes the
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space of polynomial functions on (2 of total degree < k. Usually we abbreviate this
to just Py.

In this paper we shall consider mixed finite element approximations derived from
(TX). These schemes take the form:

Find (op, up,pn) € Xp X Vi X Qp, such that

Jo(Aoy i 74+ divr - up +7:pp)de = 0, T E Xy,
(2.1) Jodivoy - vda = Jof vde, v e Vi,
Joon:qdx = 0, q € Qp,

where now %, C H(div, Q; M), Vi, C L2(;V) and Qj, € L?(; K).
Following the general theory of mixed finite element methods (cf. [12} 13]) the
stability of the saddle—point system (2I)) is ensured by the following conditions:

(A1) ||I7]13;, < c1(AT,7) whenever T € Xy, satisfies (divr,v) =0 Yo € Vj,
and (7,q) =0 Vg € Qp,

(A2) for all nonzero (v,q) € Vi, x @y, there exists nonzero 7 € X; with
(div T, 0) + (7,9) = coll7llaiv ([[o]] + [lgl);

where ¢; and ¢y are positive constants independent of h.

The main result of this paper, given in Theorem[Z.]] is to construct a new family
of stable finite element spaces ¥, V},, Qp, that satisfy the stability conditions (A1)
and (A2). We shall show that for r > 0, the choices of the Nédélec second family
of H(div) elements of degree r + 1 for Xj, (cf. [26]) and of discontinuous piecewise
polynomials of degree r for V}, and @}, provide a stable finite element approximation.
In contrast to the previous work described in the introduction, no stabilizing bubble
functions are needed; nor is interelement continuity imposed on the multiplier. In
§8 we also discuss a somewhat simpler lowest order element (r = 0) in which the
local stress space is a strict subspace of the full space of linear matrix fields.

Our approach to the construction of stable mixed elements for elasticity is moti-
vated by the success in developing stable mixed elements for steady heat conduction
(i.e., the Poisson problem) based on discretizations of the de Rham complex. We
recall (see, e.g., [7]) that there is a close connection between the construction of
such elements and discretizations of the de Rham complex

(22) R 0oQ) 29 oo v) L oo v) Y oxQ) — 0.
More specifically, a key to the construction and analysis of stable mixed elements
is a commuting diagram of the form

R C=(Q) 229 oo, v) L oo v) Y o) — 0

(2.3) JH; ln; lnz JH‘,’L
. Vi Qe —o.

R— Wh I Uh
Here, the spaces V;, C H(div) and Q; C L? are the finite element spaces used to
discretize the flux and temperature fields, respectively. The spaces U;, C H(curl)
and W;, C H! are additional finite element spaces, which can be found for all
well-known stable element choices. The bottom row of the diagram is a discrete
de Rham complex, which is exact when the de Rham complex is (i.e., when the
domain is contractible). The vertical operators are projections determined by the

curl
—_—
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natural degrees of freedom of the finite element spaces. As pointed out in [7], there
are many such discretizations of the de Rham complex.

A diagram analogous to (2.3]), but with the de Rham complex replaced by the
elasticity complexr defined just below, will be crucial to our construction of stable
mixed elements for elasticity. Discretization of the elasticity complex also gives
insight into the difficulties of constructing finite element approximations of the
mixed formulation of elasticity with strongly imposed symmetry; cf. [§].

3. THE ELASTICITY COMPLEX

We now proceed to a description of two elasticity complexes, corresponding to
strongly or weakly imposed symmetry of the stress tensor. In the case of strongly
imposed symmetry, relevant to the mixed elasticity system (L3]), the characteriza-
tion of the divergence-free symmetric matrix fields will be needed. In order to give
such a characterization, define curl : C*°(Q; M) — C°°(Q; M) to be the differential
operator defined by taking curl of each row of the matrix. Then define a second
order differential operator J : C*°(€2;S) — C>(£;S) by

(3.1) Jr = curl(curl )T, 7€ C®(;S).

It is easy to check that divoJ = 0 and that J oe = 0. In other words,

(3.2) T—C=®(V) -5 ¢2(@S) L o) & c®v) — 0

is a complex. Here the dependence of the domain € is suppressed, i.e., C®(S) =
C>*(92;S), and T = T(Q) denotes the six-dimensional space of infinitesimal rigid
motions on €, i.e., functions of the form x +— a + Bz with a € V and B € K. In
fact, when € is contractible, then (3.2]) is an exact sequence, a fact which will follow
from the discussion below. The complex ([B.:2) will be referred to as the elasticity
complex.

A natural approach to the construction of stable mixed finite elements for elas-
ticity would be to extend the complex [B2) to a complete commuting diagram of
the form (23], where [82) is the top row and the bottom row is a discrete analogue.
However, due to the pointwise symmetry requirement on the discrete stresses, this
construction requires piecewise polynomials of high order. For the corresponding
problem in two space dimensions, such a complex was proposed in [I0] with a
piecewise cubic stress space; cf. also [§]. An analogous complex was derived in the
three-dimensional case in [3]. It uses a piecewise quartic space, with 162 degrees of
freedom on each tetrahedron for the stresses.

We consider the formulation based on weakly imposed symmetry of the stress
tensor, i.e., the mixed system ([H). Then the relevant complex is, instead of ([3:2)),
(3.3)

T 0= (V x K) 220,

(div,skw)T
-

Cc=(M) L coo(M) C(V x K) — 0.

Here,
T = {(v,gradv)|v € T},

and J : C®°(Q;M) — C°°(2; M) denotes the extension of the operator defined on
C*(Q;S) by (BJ) such that J = 0 on C*(;K). We remark that J may be written

(3.4) Jr = curl = ! curl 7,
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where = : Ml — M is the algebraic operator
—_ o 1
(3.5) Bp=pt (s, ETp=pt = S e(p)d,

with ¢ the identity matrix. Indeed, if 7 is symmetric, then curl 7 is trace free, and

therefore the definition (4] reduces to Bl on C*°(2;S). On the other hand, if

T is skew with axial vector u, then curlT = —=grad u, and so curl =2~ ! curl 7 = 0.
Observe that there is a close connection between ([B2) and [B3]). In fact, [B.2)

can be derived from (B3] by performing a projection step. To see this, consider

the diagram

(3.6)

T — C®(V x K) Cc*(M) L (M) C®(VxK) — 0
T C®(V) <o) L ooxs) Iy C®(V) — 0,

where the projection operators 7, are defined by

(grad,—1TI) (div,skw)T
— 5 -

mo(u,q) =u, mi(0) =m(0) =sym(c), w3(u,q)=u—divg.
We may identify C>°(V) with a subspace of C*°(V x K), namely,
{(u,q) : ue C®(V),q=skw(gradu)}.

Under this identification, T C C'*°(V) corresponds to T C C*°(V x K). We identify
the C>°(V) on the right with a different subspace of C*°(V x K), namely,

{(u,q) - we C=(V),q=0}.

With these identifications, the bottom row is a subcomplex of the top row, and the
operators 7 are all projections. Furthermore, the diagram commutes. It follows
easily that the exactness of the upper row implies exactness of the bottom row.

In the next section, we shall discuss these complexes further. In particular, we
show the elasticity complex with weakly imposed symmetry, i.e., (83]) follows from
the de Rham complex (2Z2]). Hence, as a consequence of the discussion above, both

B2) and B3) will follow from (22)).

4. FROM THE DE RHAM TO THE ELASTICITY COMPLEX

The main purpose of this section is to demonstrate the connection between the
de Rham complex (Z2) and the elasticity complex ([B3]). In particular, we show
that whenever ([2.2)) is exact, (33]) is exact. This section serves as an introduction
to a corresponding construction of a discrete elasticity complex, to be given in the
next section. In the following section, the discrete complex will be used to construct
stable finite elements for the system (L3]).

The de Rham complex (22]) is most clearly stated in terms of differential forms.
Here we briefly recall the definitions and properties we will need. We use a com-
pletely coordinate-free approach. For a slightly more expanded discussion and the
expressions in coordinates see, e.g., [T, §4]. We let A¥ denote the space of smooth
differential k-forms on Q, i.e. A¥ = AF(Q) = C°(Q; Alt"V), where Alt*V denotes
the vector space of alternating k-linear maps on V. If w € A* we let w, € AltPV
denote w evaluated at z, i.e., we use subscripts to indicate the spatial dependence.
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Using the inner product on Alt*V inherited from the inner product on V (see
equation (4.1) of [7, §4]), we may also define the Hilbert space L2A*(Q) =
L2(Q; Alt*V) of square integrable differential forms with norm denoted by || - ||,
and also the mth order Sobolev space H™AF(Q) = H™(Q; Alt"V), consisting of
square integrable k-forms for which the norm

loll == (3 J0%0?) "

o] <m

is finite (where the sum is over multi-indices of degree at most m).

Thus, 0-forms are scalar functions and 1-forms are covector fields. We will not
emphasize the distinction between vectors and covectors, since, given the inner
product in V, we may identify a 1-form w with the vector field v for which w(p) =
v-p, p € V. In the three-dimensional case, we can identify a 2-form w with a vector
field v and a 3-form p with a scalar field ¢ by

w(p,q) =v-pxgq, wpp,qr)=clpxq-r), pgqreV.
The exterior derivative d = dj, : A¥ — AF+1 is defined by
dwz(vlv s avk-i-l)
k41

i+1 . k
= (—1)7 Op; Wz (V1, -y Vjy ey Ug1), WEA UL, 0541 €V,
1

+

(4.1)

J
where the hat is used to indicate a suppressed argument and 0, denotes the direc-
tional derivative in the direction of the vector v. It is useful to define

HA* = {w e L} Alt*V) |dw € L2(Q; AltF V) },

with norm given by ||w||%, = |lw||? + ||dw]||?. Using the identifications given above,
the dj, correspond to grad, curl, and div for k = 0,1, 2, respectively, and the HAF
correspond to H', H(curl), H(div), and, for k = 3, L2

The de Rham complex (2.2) can then be written

R AN )

(4.2) Res A0 4 Al
It is a complex since dod = 0.

A differential k-form w on Q may be restricted to a differential k-form on any
submanifold M C ; at each point of M the restriction of w is an alternating linear
form on tangent vectors. Moreover, if dim M = k, the integral [ o w is defined.

If X is a vector space, then A¥(X) = A¥(2;X) refers to the k-forms with values
in X, i.e., A¥(X) = C=(Q; Alt"(V; X)), where Alt"(V;X) are alternating k-linear
forms on V with values in X. Given an inner product on X, we obtain an inner
product on A*(X). Obviously the corresponding complex

(4.3) X A%X) 4 AYX) 4 A2(X) L A3(X) — 0,

is exact whenever the de Rham complex is.

We now construct the elasticity complex as a subcomplex of a complex iso-
morphic to the de Rham complex with values in the six-dimensional vector space
W := K x V. First, for any x € R? we define K, : V — K by K,v = 2skw(av?).
We then define an operator K : Ak(Q; V) — A*(Q;K) by

(4.4) (Kw)g(v1,...,0k) = Kplwg (v, ... vp)]-
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Next, we define an isomorphism ® : A¥(W) — AF(W) by
(w, p) = (w+ Kp, ),

with inverse given by
O w, p) = (w— Kp, o).

Next, define the operator A : AF(W) — AFL(W) by A = ®d®~!. Inserting the
isomorphisms ® in the W-valued de Rham sequence, we obtain a complex
(4.5) (W) = AO (W) 2 AL W) 2 A2(W) 2 A3(W) — o,
which is exact whenever the de Rham complex is.

The operator A has a simple form. Using the definition of ®, we obtain for
(w, 1) € A¥(W),

Alw, p) = @od(w — Kp, pi) = ®(dw — dK pr, dpp) = (dw — Sp, dps),

where S = S : A¥(V) — A**1(K), k =0,1,2 is given by S = dK — Kd. Using the
definition ([£1]) of the exterior derivative, the definition (£4) of K, and the Leibniz
rule

(4.6) dwAp) =dwAp+ () FwAdy, we Ak, pe A,
we obtain
(4.7)
k+1 )
(Sw) (01, vp1) = D (1)K, [w(vr, .05, vpg)], w € AF(QV).
j=1

Note that the operator S is purely algebraic, and independent of x.
Since d? = 0, we have

dS = d*K — dKd = —(dK — Kd)d
or
(4.8) dS = —5d.
Noting that
(S1p) (v1,02) = Ko, [(v2)] = Ko, [1(01)] = 2skwlorpu(va)" — vap(vr)T],
e A V), vy, €V,
we find, using the identity
(4.9) a x b= —2vecskw ab”,
that S is invertible with

(S7tw)(v1) xvg-v3 = %[VQC(W(’UQ,’U;?,)) vy —vec(w(vy, v2)) vzt vec(w(vy, vs))-val,
w € A?(K), vy, v2,v3 € V.
We now define the desired subcomplex. Define
I = {(w,pu) € A" QW) |dw =S}, T?={(w,pu)€A(QW)|w=0},
with projections 7! : AL(Q; W) — I't and 72 : A%(Q; W) — I'? given by
7w ) = (w, ST dw), 72w, 1) = (0, + dST ).
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Using (@), it is straightforward to check that A maps A°(W) into I'! and I'! into
I'?, and that the diagram

O(W) — AO(W) 2 AYW) 2 A2(W) 2 A3(W) — 0

(4.10) lm lﬂl lwz lm

W) AO(W) & T A 12 A AW) — o0
commutes, and therefore the subcomplex in the bottom row is exact when the
de Rham complex is. This subcomplex is, essentially, the elasticity complex. In-
deed, by identifying elements (w, u) € T'! with w € A'(K), and elements (0, u) € I'?
with 4 € A%(V), the subcomplex becomes

B(W) — AO(K x V) 2750,y Dodiod,

(—S2,d2)"™
-~ =,

(4.11) AW)

A3(K x V) — 0.
This complex may be identified with (33]). As an initial step of this identification

we observe that the algebraic operator = : C*°(M) — C°°(M) appearing in (3.3)
via [B4) and the operator S; : A1(V) — A%(K) are connected by the identity

(4.12) E=7",'97,
where T : C°(M) — AY(V) and To : C°°(M) — A2%(K) are given by T1F(v) = Fv
and Yo F(v1,v9) = vec ™ F(vy X vy) for F € C>°(M). In fact, using ([&3)), we have
for any vi,v9 €V,
S1Y1F(v1,v2) = 2skwlvy (Fug)T — vo(Fuy)T]
= VeC_l(Ug x Fvy —v; X Fug).
On the other hand,
YoZF (v1,v9) = vec H[EF(vy X v9)],
and hence ([{I2)) follows from the algebraic identity
EF(v1 X v2) = v9 X Fvg —v1 X Fug,

which holds for any F' € M.
We may further identify the four spaces of fields in ([3.3]) with the corresponding
spaces of forms in ([LIT) in a natural way:
(u,p) € C®(V x K) ~ (vec L u,vecp) € A°(K x V).
F € C®M) ~w € AY(K) given by w(v) = vec™!(Fv).
F € 0®°(M) ~ u € A%(V) given by u(vy,ve) = F(v1 X vg).
(u,p) € C®(V x K) ~ (w,p) € A3(K x V) given by w(vy,ve,v3) =
p(v1 X vg - v3), u(vy, v, v3) = u(vy X Vg - v3).
Under these identifications, we find that
o dy : A°%(K) — Al(K) corresponds to the row-wise gradient C°(V) —
C>(M).
e Sp: A%°(V) — AY(K) corresponds to the inclusion of C°°(K) — C°°(M).
e dioS; od; : AY(K) — A?(V) corresponds to J = curl =~ curl : (M) —
C>(M).
e dy : A%2(V) — A3(V) corresponds to the row-wise divergence C°°(M) —
C=(V).
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e Sy : A%(V) — A3(K) corresponds to the operator —2skw : C°°(M) —
C>*(K).

Thus, modulo these identifications and the (unimportant) constant factor in the

last identification, (B3) and (@II]) are identical. Hence we have established the
following result.

Theorem 4.1. When the de Rham complex [2.2) is exact, (i.e., the domain is
contractible), then so is the elasticity complex ([B.3)).

To end this section, we return to the operator S : A*¥(V) — A¥+1(K) defined
by S = dK — Kd. Let K’ : A¥(K) — A¥(V) be the adjoint of K (with respect to
the Euclidean inner product on V and the Frobenius inner product on K), which
is given by (K'w).(v1,...,v) = —2ws(v1,...,vp)z. Define §": A¥(K) — A*L(V)
by S’ = dK' — K'd. Recall that the wedge product A : A¥F x A — AR+ is given by

(WA p)(v1, .-y Vgt1)
= Z(Signa)w(vgl, Ve i (Vopy s ey Vo) W E A e A eV,

where the sum is over the set of all permutations of {1,...,k + [}, for which o1 <
o9 < --- <o} and opy1 < 0412 < -+ < op4. This extends as well to differential
forms with values in an inner product space, using the inner product to multiply
the terms inside the summation. Using the Leibniz rule ([@6l), we have

(4.13) (Sw)Ap= (=D wA Sy, weARV), pe A(K).
We thus have
dKwAp = (—D)*"TKwAdp+d(Kw A p) = (—1)* o A K'dp + dw A K'p),
and
KdoAp=doNK'p=(—1)FoANdK pn+dwA K'p).
Subtracting these two expressions gives ([@I3)).

For later reference, we note that, analogously to (&7), we have

(4.14)
k+1

(S'w)(v1y. .y vpg1) = =2 Z(*l)jﬂw(vl, ey Dy V1)U, WE Ak(Q;K)-
j=1

5. THE DISCRETE CONSTRUCTION

In this section we derive a discrete version of the elasticity sequence by adapting
the construction of the previous section. To carry out the construction, we will use
two discretizations of the de Rham sequence. For k& = 0,1,2,3, let A’,?L denote a
finite-dimensional space of HA* for which dA} C Aﬁ*l, and for which there exist
projections IIj, = IT¥ : A¥ — A¥ which make the following diagram commute:

R A0 4 AT 4 A2 4 A3

(5.1) lnh lnh lnh lnh
R—A0 L AL A2 LA3 0
This is simply the diagram (23)) written in the language of differential forms. We

do not make a specific choice of the discretization yet, but, as recalled in §2 there
exist many such discrete de Rham complexes based on piecewise polynomials. In
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fact, as explained in [7], for each polynomial degree r > 0 we may choose A; to
be the space of all piecewise polynomial 3-forms with respect to some simplicial
decomposition of €2, and construct four such diagrams. We make the assumption
that P1(92) C AY, which is true in all the cases mentioned.

Let ]\Z be a second set of finite dimensional spaces with corresponding projection
operators II, enjoying the same properties, giving us a second discretization of
the de Rham sequence. Supposing a compatibility condition between these two
discretizations, which we describe below, we shall construct a discrete elasticity
complex.

We start with the complex

(5:2) K x Ve AYK) x A9(V) 4 - L AB(K) x A3(V) — 0

where A¥(K) denotes the K-valued analogue of A¥ and similarly for AF(V). For
brevity, we henceforth write A¥(W) for A¥(K) x A¥(V). As a discrete analogue of

the operator K, we define Kj : A¥(V) — A¥(K) by K; = II,K where II, is the
interpolation operator onto A (K).

Next define Sy, = Sk, : AF(V) — AFTH(K) by S), = dK), — Kpd, for k = 0,1,2.
Observe that the discrete version of (4],

(5.3) dSy = —Spd,

follows exactly as in the continuous case. From the commutative diagram (G5.1), we
see that
Sp=dlL K — I, Kd =11, (dK — Kd) = II;S.
Continuing to mimic the continuous case, we define the automorphism ®;, on A¥ (W)
by
q)h(wv u) = (w + Knp, /L)a
and the operator Ay, : AF(W) — A¥T1(W) by Aj, = ©,d®; ", which leads to

Ap(w, 1) = (dw — Spp, dp).

Thanks to the assumption that P; C A9, we have @, (W) = ®(W). Hence, inserting
the isomorphisms ®;, into (B.2)), we obtain

(54)  BW)— A (W) 225 AL(W) 25 A2Z(W) 25 A3(W) — 0.

In analogy to the continuous case, we define
Dy = {(w,p) € Ay(W)[dw = Sip}, T = {(w,n) € Aj(W) |w=0}.

As in the continuous case, we can identify F%L with ]\%L(V), but, unlike in the con-
tinuous case, we cannot identify I'} with A} (K), since we do not require that Sy j,
be invertible (it is not in the applications). Hence, in order to derive the analogue
of the diagram (€.I0) we require a surjectivity assumption:

(5.5) The operator Sy, maps A}, (V) onto AZ(K).

Under this assumption, the operator S, = S5 has a right inverse S}TL mapping
A7 (K) into A},(V). This allows us to define discrete counterparts of the projection
operators 7! and 72 by

Th(w, 1) = (w, o — S} Shpu + Shdw), 77 (w, 1) = (0, p+ dSfw),
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and obtain the discrete analogue of ([@I0):
D(W) — AQ(W) 25 AL(W) 25 AZ(W) 25 A3(W) — 0

(5.6) lid lw; lwg Jrid

(W)= AQ(W) 22 1l Anyop2 A A3y

It is straightforward to check that this diagram commutes. For example, if (w, u) €
A (W), then

7} An(w, i) = 73 (dw — Spp, dp) = (dw — Spp, dp — St Spdp + St d[dw — Spp])
= (dw — Sup, dpp — S} [Sndp + dSp]) = An(w, 1),

where the last equality follows from (G3]). Thus the bottom row of ([B.G) is a
subcomplex of the top row, and the vertical maps are commuting projections. In
particular, when the top row is exact, so is the bottom. Thus we have established
the following result.

Theorem 5.1. For k =0,...,3, let Afl be a finite dimensional subspace of HAF
for which dA} C A and for which there exist projections IIj, = IIf : Ak — AF
that make the diagram ([B1) commute. Let ]\2 be a second set of finite dimensional
spaces with corresponding projection operators ﬁﬁ with the same properties. If
Sip = dlI} K — 12 Kd maps 1~\,11£V) onto A3 (K), and the bottom row of (B.1)) is
exact for both sequences AZ and Aﬁ, then the discrete elasticity sequence given by
the bottom row of (B4 is also exact.

The exactness of the bottom row of (B.6) suggests that the following choice of
finite element spaces will lead to a stable discretization of (Z.1I):

Sh~ ALV, Vi~ AR(Y), Qi ~ AR(K),

In the next section we will make specific choices for the discrete de Rham complexes,
and then verify the stability in the following section.

For use in the next section, we state the following result, giving a sufficient
condition for the key requirement that S j, be surjective.

Proposition 5.2. If the diagram

AL WV) 2L A(K)
(5.7) n,l n‘;;l
R(v) 2% A2 (K)

commutes, then Sy, is surjective.

6. A FAMILY OF DISCRETE ELASTICITY COMPLEXES

In this section, we present a family of examples of the general discrete con-
struction presented in the previous section by choosing specific discrete de Rham
complexes. These furnish a family of discrete elasticity complexes, indexed by an
integer degree r > 0. In the next section we use these complexes to derive finite ele-
ments for elasticity. In the lowest order case, the method will require only piecewise
linear functions to approximate stresses and piecewise constants to approximate the
displacements and multipliers.
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We begin by recalling the two principal families of piecewise polynomial spaces
of differential forms, following the presentation in [7]. We henceforth assume that
the domain € is a contractible polyhedron. Let 7} be a triangulation of 2. Let 7},
be a triangulation of € by tetrahedra, and set

PAN(Ty) = {we HAN(Q) | w, e P.ANT) VT €T, 1,
PIAM(T,) = {w e HA Q) | w, € PFANT) VT €T, }.

Here PHAX(T) := P.AR(T) + kP.A*1(T) where  : AF(T) — A¥(T) is the
Koszul differential defined by

(ﬁw)w(vl,--- ,vk) :ww(x,vl,--- ,Uk).

The spaces P;FA%(7,,) = P,41A°(7},) correspond to the usual degree r +1 Lagrange
piecewise polynomial subspaces of H!, and the spaces P;FA3(7},) = P,.A3(7},) cor-
respond to the usual degree r subspace of discontinuous piecewise polynomials in
L%*(Q). For k = 1 and 2, the spaces P} A¥(7;,) correspond to the discretizations
of H(curl) and H(div), respectively, presented by Nédélec in [25], and the spaces
P.A*(T;,) are the ones presented by Nédélec in [26]. An element w € P.A*(7},) is
uniquely determined by the following quantities:

(6.1) /f‘“’ NG CEPT AR, feNuTn), k<d<3.

Here Ay4(7}) is the set of vertices, edges, faces, or tetrahedra in the mesh 7, for
d = 0,1,2,3, respectively, and for r < 0, we interpret P;"A*(T) = P, A*(T) = 0.
Note that for w € A¥, w naturally restricts on the face f to an element of AF(f).
Therefore, for ¢ € AY~*(f), the wedge product w A ¢ belongs to A%(f) and hence
the integral of w A ( on the d-dimensional face f of T is a well-defined and natural
quantity. Using the quantities in (G.]), we obtain a projection operator from A* to
P.A*(T;).
Similarly, an element w € P A*(T;,) is uniquely determined by

(6.2) /w ANC CEPrakNF(f), feDyTh), k<d<3,
f

and so these quantities determine a projection.

If X is a vector space, we use the notation P,A*(7;,;X) and P;A*(7;;X) to
denote the corresponding spaces of piecewise polynomial differential forms with
values in X. Furthermore, if X is an inner product space, the corresponding degrees
of freedom are given by (G and (6.2), but where the test spaces are replaced by
the corresponding X valued spaces.

To carry out the construction described in the previous section we need to
choose the two sets of spaces Af and AF for k = 0,1,2,3. We fix r > 0 and
set AF = PHAF(T;,), k = 0,1,2,3, and A) = P,12A%(Tp), AL = P AYT,),
A} = P 1A%(T;,), and A3 = P.A3. As explained in [7], both these choices give a
discrete de Rham sequence with commuting projections, i.e., a diagram like (5.1))
makes sense and is commutative.

We establish the key surjectivity assumption for our choice of spaces by verifying
the commutativity of (51)).

Lemma 6.1. Let A} (V) = P AN (Th; V) and AZ(K) = PFA%(T5; K) with projec-
tions 1:1,11, H,QL defined via the corresponding vector-valued moments of the form (6.1])



1714 DOUGLAS N. ARNOLD, RICHARD S. FALK, AND RAGNAR WINTHER

and @2). If S1,, =125 then
(6.3) Sy pll}, =103,
and so S1,, 1s surjective.

Proof. We must show that (I13S; — S 411} )0 = 0 for ¢ € A'(V). Defining w =
(I —1I})o, the required condition becomes 112 Sjw = 0. Since II}w = 0, we have

(6.4) /w AC=0, CE€PryadA™ (f;V), feAy(Tn), 2<d<3,
f

(in fact ([64]) holds for d = 1 as well, but this is not used here). We must show that

64) implies
(6.5) /Slw Apu=0, pue€Pra gAN72(f;K), feAyTn), 2<d<3.
!

From ([I3), we have S1w A = —w A ¢, where ¢ = S ,u € Prja_gA1(f;V)
for u € Prio_gA?2(f;K), as is evident from ([@I4). Hence (6.5) follows from
©.4). 0

7. STABLE MIXED FINITE ELEMENTS FOR ELASTICITY

Based on the discrete elasticity complexes just constructed, we obtain mixed
finite element spaces for the formulation (21]) of the elasticity equations by choos-
ing ¥y, Vi, and @Qj as the spaces of matrix and vector fields corresponding to
appropriate spaces of forms in the K- and V-valued de Rham sequences used in the
construction. Specifically, these are

(7.1)  Zp~PeaA(Th;V), Vi~ PoA3 (T V), Qu ~ PrA3(Th; K).

In other terminology, ¥; may be thought of as the product of three copies of
the Nédélec H(div) space of the second kind of degree r + 1, and V3 and @, are
spaces of all piecewise polynomials of degree at most r with values in K and V,
respectively, with no imposed interelement continuity. In this section, we establish
stability and convergence for this finite element method.

The stability of the method requires the two conditions (Al) and (A2) stated
in §2. The first condition is obvious since, by construction, divX, C V,, i.e.,
dP,11A%(T,; V) C P.A3(T;; V). The condition (A2) is more subtle. We will prove
a stronger version, namely,

(A2") for all nonzero (v,q) € Vi X @y, there exists nonzero 7 € ¥, with
divr = v, 2llg, skwT = ¢ and
7 llaiv < e(llvll + [lglh);
where 1, is the L? projection into @, and c is a constant.
Recalling that I'? = 0 x P,41A%(7,; V) and A (0,0) = (—S2 40,do), and that the

operator S corresponds on the matrix level to —2skw, we restate condition (A2')
in the language of differential forms.

Theorem 7.1. Given that (w,pu) € PrA3(T;K) x P.A3(T,; V), there exists o €
Pri1A2(Th; V) such that Ap(0,0) = (w, 1) and

(7.2) lollza < e(llwll + {lull),

where the constant c is independent of w, u and h.
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Before proceeding to the proof, we need to establish some bounds on projection
operators. We do this for the corresponding scalar-valued spaces. The extensions
to vector-valued spaces are straightforward. First we claim that

(7.3) ITnll < cllnlly o€ H'A®, Iw]| < clwllo Vw € H'A.
Here the constant may depend on the shape regularity of the mesh, but not on
the meshsize. The second bound is obvious (with ¢ = 1), since IT} is just the L2

projection. The first bound follows by a standard scaling argument. Namely, let T
denote the reference simplex. For any 3 € P, 1A?(T), we have

(1.0 EIFE09 DIy KTV WY TY:}
i ¢

where f ranges over the faces of T', fi over a basis for PFAY( f ), and ¢ over a basis
for P | AY(T). This is true because the integrals on the right hand side of (72)
form a set of degrees of freedom for 3 € P11 A%(T) (see (B)), and so we may use
the equivalence of all norms on this finite dimensional space. We apply this result

with B = ﬂ%ﬁ, where fI,QL is the projection defined to preserve the integrals on the
right hand side of (T4). It follows that

1127, 7 SC(ZZI/fﬁAﬂ+Z/TﬁA<) < cllily
foB ¢

where we have used a standard trace inequality in the last step. Next, if 7" is an
arbitrary simplex and n € H*A%(T'), we map the reference simplex 7" onto T by an
affine map & — B# + b, and define 3 € H*A%(T) by

Mz (01, 02) = 1. (Bo1, Big),
for any x = Bz + b € T and any vectors 01, 2. It is easy to check that 1:[%7) = f[,%ﬁ,
and that

Tl < el 7 < cllill, 7 < ellnllor + hlnlir) < clnllr.

Squaring and adding this over all the simplices in the mesh 7}, gives the first bound
in (Z3).

We also need a bound on the projection of a form in H'A' into A} = P AN (T).
However, the projection operator 1:1,11 is not bounded on H', because its definition
involves integrals over edges. A similar problem has arisen before (see, e.g., [10]),

and we use the same remedy. Namely we start by defining an operator II}, :
H'A' — P AY(T;,) by the conditions

(7.5) [hwnc=[wne cernm), Tet,
T T

(7.6) /ﬁ})hw/\gz /w/\(, CeP AN, e As(Th),
f f

(7.7) /ﬁghw AC=0, CePriAe), eeAi(Th).

Note that, in contrast to f[,ll, in the definition of lzl(l)h, we have set the troublesome
edge degrees of freedom to zero. Let II§ : H*AY(T) — P} AY(T) be defined
analogously on the reference element.
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Now for p € H'AYT), dli{p € Pry1A%(T), s

it} p||0T<cZZ|/dH ﬁw|+2|/dn p AN,

where again f ranges over the faces of 7',  over a basis of PFA%( f), and ¢ over a
basis of P, | AY(T). But

/dHOP/\H [ twsonda= [ onin.
f f

where we have used Stokes’ theorem and the fact that the vanishing of the edge
quantities in the definition of II} to obtain the first equality, and the face degrees
of freedom entering the definition of II§ to obtain the second. Similarly,

Jtone= [ wpnic+ [ mipni= [ pndis [ pni= [ dinc
T at
It follows that A R
ld1L5pllg 7 < elplly 7, p € H'AYD).
When we scale this result to an arbitrary simplex and add over the mesh, we obtain
[l < (A ol +llollh),  p e HYAY(S).

To remove the problematic A~! in the last estimate, we introduce the Clement
interpolant Rj mapping H'A! into continuous piecewise linear 1-forms (still fol-
lowing [10]). Then

o= Rupll + hllp = Rply < chllpll, pe HTAL
Defining IT}, : H*A' — P A} by
(7.8) I} = 11}, (I — Ry) + Ry,
we obtain

|diThpll < Tty (T~ Ba)oll + ldRspl

< c(h™H (L = Ru)pll + (1 = Ru)plly + [[dRwpll) < cllp]ls-
Thus we have shown that
(7.9) I pll < cllpll,  p € H'AL

Having modified f[}z to obtain the bounded operator I:I}L, we now verify that the
key property (63) in Lemma [6.1] carries over to

(7.10) Syplly = 17 51,
where we now use the vector-valued forms of the projection operators. It follows
easily from (Z.8), (7)), and (7.6) that (6.4) holds with w = (I —II})o, so that the

proof of (ZI0) is the same as for ([G.3).
We can now give the proof of Theorem [Tl

Proof of Theorem [l Given u € P,.A3(Tj; V) there exists n € H'A?(V) such that
dn = p with the bound ||| < c[|u|| (since d maps H*A? onto L2A3) Similarly,
given w € P,.A?(T;,; K) there exists 7 € H'A%(K) with dr = w + Sy ,IT37 with the
bound |71 < ¢f|w + S2.41137|. Let p = S;'7 (recall that S is an isomorphism)
and set

o = dllj,p+10}n.
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We will now show that A, (0,0) = (w, it). From the definition of o, we have
_SQ’hJ = —Sg’hdﬂip - Sg,hﬂ}%’n.

Then, using (.3), (ZI0), and the commutativity dIl, = II,d, we see

Sy ndll}p = —dSy pI1}p = —dII3 S p
= —dll37T = —I3dr = —IT3 (w 4 SonT127) = —w — Sy, 1121,

Combining, we get —S3 0 = w as desired. Furthermore, from the commutativity
dlly, = IId and the definition of 7, we get

do = dllin = T dn = T = p,

and so we have established that A (0,0) = (p,w).
It remains to prove the bound (2)). Using ([Z3]), we have

152w XI5 | = [T S21T0]| < ell S| < el < cllnly < ¢lul.

Thus [jplly < cfl7]ls < e(lw]| + [|u]]). Using (@3, we then get ||dIL;pl| < cllp|l <
c(|lwl| + [lu])), and, using ([Z3), that [I7n] < c|nlly < cl|ull. Therefore [of <
c(||w]l + |lell), while ||de|| = ||u]], and thus we have the desired bound (72)). O

We have thus verified the stability conditions (A1) and (A2), and so may apply
the standard theory of mixed methods (cf. [12], [I3], [I7], [20]) and standard re-
sults about approximation by finite element spaces to obtain convergence and error
estimates.

Theorem 7.2. Suppose (o,u,p) is the solution of the elasticity system (L3) and
(0h,un,pr) is the solution of discrete system 2.I), where the finite element spaces
Yh, Vi, and Qy, are given by (1)) for some integer r > 0. Then there is a constant
C, independent of h, such that

lo = onllaiv + [lu = unll + [lp — pall

<C inf — 7l - -
<c_ ol (o= mulaw + =l + o= ail),

llo = onll + llp = pall + lun, — Wull < C(llo — 1~ | + |lp — TTp]),
lu = unl| < Cllo =1~ || + [lp = Typ| + [lu — Iul]),
ld(o = on)|| = [|do — II"do].

If uw and o are sufficiently smooth, then
lo—onll+lu—unll+Ip—pal CH* fully gz, | div(o—on) | CH™+ | div ol

Remark. Note that the errors ||o—oy,|| and ||uy, —IT7u|| depend on the approximation
of both o and p. For the choices made here, the approximation of p is one order
less than the approximation of o, and thus we do not obtain improved estimates,
as one does in the case of the approximation of Poisson’s equation, where the extra
variable p does not enter.
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8. A SIMPLIFIED ELEMENT

Recall that the lowest order element in the stable family described above, for a
discretization based on (L)), is of the form

Sp~ PN (T V), Ve~ PoA*(Th; V), Qn ~ PoA*(Th; K).

The purpose of this section is to present a stable element which is slightly simpler
than this one. More precisely, the spaces V}, and @} are unchanged, but X, will
be simplified from full linears to matrix fields whose tangential-normal components
on each two-dimensional face of a tetrahedron are only a reduced space of linears.

We will still adopt the notation of differential forms. By examining the proof
of Theorem [Tl we realize that we do not use the complete sequence (5.2)) for the
given spaces. We only use the sequences

PEA(TK) 5 PoA3(Th:K) — 0,
PrANT V) 5 PIAX(T; V) 5 PoA3(Th; V) — 0.
The purpose here is to show that it is possible to choose subspaces of some of the
spaces in (8] such that the desired properties still hold. More precisely, compared
to (8], the spaces P;"A!(7;V) and P;A%(75; V) are simplified, while the three
others remain unchanged. If we denote by PfffAl(’Z}l;V) and Py _A%(T; V) the
simplifications of the spaces Py A(7y,; V) and P;A2%(75; V), respectively, then the
properties we need are that

(8:2) PE_ANTV) 5 Py V) 5 PoA}(Tis V) — 0
is a complex and that the surjectivity assumption (&5 holds, i.e., S, = Sip

maps the space ’Pff_Al(Th;V) onto Py A%(7,;K). Note that if P A%(7;;V) C
Py _A?(T; V), then d maps P;,— A%(7; V) onto PoA3(7p,; V).

We first show how to construct P;i_A'(7;V) as a subspace of Py A (Tp; V).
Since the construction is done locally)on each tetrahedron, we will show how to
construct a space Pf_A'(T; V) as a subspace of P;” A*(T'; V). We begin by recalling

that the face degrees of freedom of P;"A*(T; V) have the form

/ww, 1€ PoA (1, V).
f

(8.1)

We then observe that this six-dimensional space can be decomposed into
PoA(f; V) = PoA(f; Tf) + PoA (f; Ny),
i.e., into forms with values in the tangent space to f, T or the normal space Ny.
This is a 4 4+ 2-dimensional decomposition. Furthermore,
PoA' (f3T5) = PoAlym (f; Tf) + PoA by, (f; T%),

where p € PoA'(f;Ty) is in PoAL,,(f;T¥) if and only if pu(s) -t = p(t) - s for
orthonormal tangent vectors s and ¢. Finally, we obtain a 3 + 3-dimensional de-
composition

PoA' (3 V) = PoAdym (f5 Tf) + Poldiw (f5 V),
where

PoAsiew (3 V) = Pol g, (f3 Tf) + PoA (f5 Ny).
In more explicit terms, if u € PoAl(F;V) has the form

w(q) = (a1t + ass + azn)q - t + (aqt + ass + agn)q - s,
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where ¢ and s are orthonormal tangent vectors on f, n is the unit normal to f, and
q is a tangent vector on f, then we can write pu = 1 + p2, with 1 € PoAL,,(f;V)
and pg € PoAL, (f;V), where

as + a as + a
o) = (o ) g (5 )0

as —a ay — a
m(q)z( 22 4s—|—a3n>q-t—|—< 42 2t—|—a6n>q-s.

The reason for this particular decomposition of the degrees of freedom is that
if we examine the proof of Lemma [61] where equation (G.3)) is established, we see
that the only degrees of freedom that are used for an element w € P;"AY(T; V) are
the subset of the face degrees of freedom given by

/w/\(S(’)V), v € PoA’(f;K).
f

However, for v € PoA°(f;K), u = Siv is given by u(q) = vq. Since the general
element v € PyA°(K) can be written in the form by (ts” — stT) + by(nt” — tnT) +
b3(nsT — sn”), vqg = (—bys+ban)q -t + (bt + bzn)q - s for ¢ a tangent vector, and
thus p € ’POAikw( f;V). Hence, we have split the degrees of freedom into three on
each face that we need to retain for the proof of Lemma and three on each
face that are not needed. The reduced space Pff _AY(T; V) that we now construct
has two properties. The first is that it still contains the space P;A(T;V) and
the second is that the unused face degrees of freedom are eliminated (by setting
them equal to zero). We can achieve these conditions by first writing an element
w € PHANT;V) as w = Hpw + (I — [})w, where II;, denotes the usual projection
operator into P; A (T; V) defined by the edge degrees of freedom. Then the elements
in (I —TI,)P;F AN (T; V) will satisfy

/w/\,uzO, pePiN(e; V), ee A(T),

i.e., their traces on the edges will be zero. Thus, they are completely defined by
the face degrees of freedom

/fmu, 1€ PoAL(f;V),  f e Ao(T).

Since this is the case, we henceforth denote (I —IIj,)P;"A*(T;V) by PfffAl(T; V).
We then define our reduced space

P _AYT; V) = PLAN(T; V) + P, _ANT; V),

where ’Pff 5. AN(T;V) denotes the set of forms w € Py AT V) satisfying

/wAMZO, ,UIG,POA;ym(f;V)a
f

i.e., we have set the unused degrees of freedom to be zero.
Then

Pi_AL(T V) ={w e PYAN T V) : wr € PY_AYT;V), VT € T}



1720 DOUGLAS N. ARNOLD, RICHARD S. FALK, AND RAGNAR WINTHER

The degrees of freedom for this space are then given by
(8.3)

/wAu, pe P (e;V), e € Ay(T), /w/\u, 1€ Polipy (f; V), f € Ao(T).
f

(&

It is clear from this definition that the space Pi _AY(T;V) will have 48 degrees
of freedom (36 edge degrees of freedom and 12 face degrees of freedom). The
unisolvency of this space follows immediately from the unisolvency of the spaces
PLAN(T; V) and P, ANT; V).

The motivation for this choice of the space ’Pff _A}(73; V) is that it easily leads
to a definition of the space P, A%(75; V) that satisfies the property that (82) is a
complex. We begin by defining

P A*(T;V) = Py A*(T; V) + dPy; _AN(T; V).

It is easy to see that this space will have 24 face degrees of freedom. Note this is a
reduction of the space P;A?(T;V), since

PIA*(T; V) = Py A*(T; V) + dP; AN T3 V).
‘We then define
P A (T3, V) = {w € PLA*(T1; V) : wir € Py _A*(T;V), VT € Tp,}.

It is clear that Py A%(75,; V) C Py, _A%(75,; V). The fact that the complex ([82) is
exact now follows directly from the fact that the complex

(8.4) PIANT;V) <L PEAX(T; V) <L PoA (T V) — 0
is exact and the definition
Py _AY(T;V) = Py AYT; V) + P, _ANT; V).

We will define appropriate degrees of freedom for the space Py _ A?(T; V) by using
a subset of the 36 degrees of freedom for Py A%(T; V), i.e., of ff WA, € P1AY(f; V).
In particular, we take as degrees of freedom for Py _A%(T; V),

/ WA, nEPLaAY(fiV),  Vf e Ao(T),
f

where Py skwA°(f; V) denotes the set of u € PiA°(f;V) that satisfy du €
PoAl,,, (f;V). It is easy to check that such p will have the form

skw
(8.5) w=po+or(z-t)n+ az(x - s)n+ azl(x - t)s — (x - s)t],

where o € PoA°(f; V).

Since P1 skwA°(f; V) is a six-dimensional space on each face, the above quantities
specify 24 degrees of freedom for the space P; _A%(T;V). To see that these are a
unisolvent set of degrees of freedom for P; _A?(T;V), we let w = wy + dw;, where
wo € PyAX(T;V) and wy € Py AY(T;V) and set all degrees of freedom equal to
zero. Then for € PyAY(f;V), since

/(wo+dw1)/\u=/wo/\u,
f f
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we see that wg = 0 by the unisolvency of the standard degrees of freedom for
P A%(T; V). In addition, for all g € Py sk A°(f;V) and wy = 0,

/w/\,u:/dwl/\,u:/wl/\d,u.
f f f

Since dp € PoAl,,, (f;V), wi = 0 by the unisolvency of the degrees of freedom of

skw
the space Py 5 A (T; V).

Using an argument completely parallel to that used previously, it is straightfor-
ward to show that the simplified spaces also satisfy assumption (B3], i.e., that Sy
is onto.

To translate the degrees of freedom of the space Py _A?(T; V) to more standard
finite element degrees of freedom, we use the identification of an element w €
A2%(T; V) with a matrix F given by w(vi,ve) = F(v; X v2). Then w(t,s) = Fn and
Jronn= [ pTFndf. Since pu € Py skwA’(f; V) and hence is of the form (8H),
we get on each face the six degrees of freedom

/an df, /f(a: -t)ynT Fn df, /f(a: -s)nT Fn df, /f[(x t)sT — (x - s)tT|Fndf.

Finally, we note that the analogue of Theorem holds with r = 0 for the
simplified spaces.
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