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THE UNITARY COMPLETION AND QR ITERATIONS
FOR A CLASS OF STRUCTURED MATRICES

D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

Abstract. We consider the problem of completion of a matrix with a specified
lower triangular part to a unitary matrix. In this paper we obtain the necessary
and sufficient conditions of existence of a unitary completion without any
additional constraints and give a general formula for this completion. The
paper is mainly focused on matrices with the specified lower triangular part of
a special form. For such a specified part the unitary completion is a structured
matrix, and we derive in this paper the formulas for its structure. Next we
apply the unitary completion method to the solution of the eigenvalue problem
for a class of structured matrices via structured QR iterations.

1. Introduction

In this paper we consider the problem of completing a given lower triangular
part UL = {uij , i ≥ j} to a unitary matrix. The problem of completing a given
lower triangular part UL of a block matrix to a unitary matrix U was stated and
studied in the paper [4] in the assumption that the completion U admits LU and
UL factorizations. In this paper we obtain the necessary and sufficient condition
for the existence of a unitary completion without any additional constraints and
give a general formula for this completion. The paper is mainly focused on a class
of structured matrices. More precisely, we consider a partially specified matrix
U = {uij}N

i,j=1 with the specified lower triangular part UL = {uij , i ≥ j} of the
form

UL(i + 1, i) = βi, i = 1, . . . , N − 1; UL(i, i) = di, i = 1, . . . , N ;

UL(i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N ;

with some βi, di, p(i), q(i) ∈ C. For such a specified part the unitary completion is
a structured matrix, and we derive in this paper the formulas for its structure.

Next we apply the unitary completion method to the solution of the eigenvalue
problem for a class of structured matrices via structured QR iterations. In partic-
ular, we solve the eigenvalue problem for the class HN of N ×N upper Hessenberg
matrices A which may be represented in the form A = U − pqT , where U is a
unitary matrix, p and q are vectors and qT denotes the transpose of q. This class
includes both companion and fellow matrices. Eigenvalue problems with these kinds
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of matrices frequently arise in signal processing [3]. An efficient QR eigenvalue al-
gorithm for such matrices was devised in our previous paper [1]. The algorithm
achieves a substantial reduction in computational complexity by working with a
structured representation of A by means of O(N) parameters instead of with the
entire matrix. A set of rules is provided which allow one to compute the parametric
description of the new iterate A(1) starting from the one of A = A(0) at a linear
cost. The combination of the structural properties of A with this O(N) updating
procedure is the core of the fast adaptation of the QR algorithm in [1]. The al-
gorithm presented in this paper has a common point with the algorithm from [1]
in the QR factorization step of the method, whereas the RQ step is carried out in
a completely different way. The procedure given here is essentially based on the
unitary completion method and decreases the arithmetic cost with respect to the
corresponding computation in [1].

The paper contains seven sections. The first section is the Introduction. The
second section contains some auxiliary relations. In Section 3 we solve the general
unitary completion problem. In Section 4 we state the structured unitary comple-
tion problem and derive necessary and sufficient conditions for the existence and
uniqueness of the unitary completion in terms of the structure of the specified lower
triangular part. In Section 5 we derive explicit formulas for the structure of the
strictly upper triangular part of the unitary completion. In Section 6 we apply
the unitary completion method to the solution of the eigenvalue problem for the
matrices A ∈ HN . In Section 7 we present results of numerical experiments.

For the indication of submatrices we use MATLAB style, i.e., for a matrix A,
A(i : j, p : k) selects rows i to j of columns p to k, and a colon without an index
range selects all of the rows or columns (A(:, p : k) or A(i : j, :)). The symbol ‖ · ‖
denotes the Euclidean norm of a vector or of a matrix.

2. The auxiliary relations

This section contains properties of some matrices partitioned in a special form.
The relations presented here are used frequently in the proofs of the results of the
paper.

At first we consider some relations for positive semidefinite matrices.

Lemma 2.1. Let

A0 =
(

A f
f∗ d

)
,

where A is a square matrix, f is a vector-column, and d is a number. Then:
(1) If the matrix A0 is positive semidefinite, then f ∈ Im(A), and for any ξ

such that Aξ = f the relation d − f∗ξ ≥ 0 holds. Moreover, if the matrix
A0 is singular and detA �= 0, then d − f∗ξ = 0.

(2) If the matrix A is positive definite and d − f∗A−1f = 0, then the matrix
A0 is positive semidefinite and singular.

Proof. Since the matrix A0 is positive semidefinite, then there exists a matrix K
such that A0 = K∗K. Let k be the last column of K, i.e., K =

[
K ′ k

]
for some

submatrix K ′. We have(
A f
f∗ d

)
=

[
(K ′)∗

k∗

] [
K ′ k

]
.
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The matrix A0 is positive semidefinite and, therefore, its submatrix A is Hermitian.
Let us prove that f⊥Ker(A), which implies f ∈ Im(A). Indeed, for any x ∈ Ker(A)
we have x∗Ax = x∗(K ′)∗K ′x = ‖K ′x‖ = 0 and, therefore, K ′x = 0. Whence
f∗x = k∗K ′x = 0.

Next let ξ be a solution of the equation Aξ = f . We use the factorization

(2.1)
(

A f
f∗ d

)
=

(
I 0
ξ∗ 1

) (
A 0
0 d − f∗ξ

)(
I ξ
0 1

)
.

Since the matrix A0 is positive semidefinite this implies that the matrix

(2.2) Ã =
(

A 0
0 d − f∗ξ

)
is positive semidefinite and, hence, the entry d − f∗ξ is nonnegative. If the matrix
A0 is singular, then Ã is also singular and, moreover, if the matrix A is nonsingular,
then we get d−f∗ξ = 0. Finally from (2.1) it follows that, if the matrix A is positive
definite and d−f∗A−1f = 0, then the matrix Ã is positive semidefinite and singular
and, hence, by using (2.2) we conclude that the matrix A0 is positive semidefinite
and singular. �

Next we consider the conditions in which a matrix partitioned in a special form
has the unit norm.

Theorem 2.2. Let ∆ be a matrix partitioned in the form

∆ =
[

g d
B f

]
,

where f is a vector column, g is a vector row and d is a number. Assume that the

matrix ∆′ =
[

g
B

]
satisfies the condition ‖∆′‖ < 1, and set

(2.3) I − (∆′)∗∆′ = V D2V ∗,

where V is a unitary matrix and D is a real diagonal invertible matrix.
The conditions ‖∆‖ = 1 and |d + a| = ρ, where

(2.4) a =
g̃∗f̃

1 + ‖g̃‖2
, ρ =

(
1 − ‖f‖2 − ‖f̃‖2

1 + ‖g̃‖2
+ |a|2

)1/2

,

g̃ = D−1V ∗g∗, f̃ = D−1V ∗B∗f,

are equivalent.

Proof. The condition ‖∆‖ = 1 holds if and only if the matrix I − ∆∗∆ is positive
semidefinite and singular.

Set f ′ =
[

d
f

]
. We have ∆ =

[
∆′ f ′ ]

and therefore

I − ∆∗∆ = I −
[

(∆′)∗

(f ′)∗

] [
∆′ f ′ ]

=
[

I − (∆′)∗∆′ −(∆′)∗f ′

−(f ′)∗∆′ 1 − (f ′)∗f ′

]
,

where the matrix I − (∆′)∗∆′ is positive definite. Hence, by Lemma 2.1 the matrix
I − ∆∗∆ is positive semidefinite and singular if and only if the equality

1 − (f ′)∗∆′(I − (∆′)∗∆′)−1(∆′)∗f ′ − (f ′)∗f = 0
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holds. Using (2.3) we rewrite this equality in the form

(2.5) ‖f ′‖2 + ‖D−1V ∗(∆′)∗f ′‖2 = 1.

By using the representations f ′ =
[

d
f

]
, ∆′ =

[
g
B

]
, one can rewrite con-

dition (2.5) in the form

|d|2 + ‖f‖2 + ‖D−1V ∗g∗d + D−1V ∗B∗f‖2 = 1,

i.e.,

(2.6) |d|2 + ‖g̃d + f̃‖2 = 1 − ‖f‖2.

Straightforward computations show that

(2.7) |d|2 + ‖dg̃ + f̃‖2 = (1 + ‖g̃‖2)(|d + a|2 − |a|2) + ‖f̃‖2

with a defined by (2.4). From (2.7) and (2.6) we obtain

(1 + ‖g̃‖2)(|d + a|2 − |a|2) + ‖f̃‖2 = 1 − ‖f‖2,

which is equivalent to the condition |d + a| = ρ. �

3. The general unitary completion problem

Let U = {uij}N
i,j=1 be a partially specified matrix with the specified lower trian-

gular part UL = {uij , i ≥ j}. In this section we consider the problem of completing
a given lower triangular part UL to a unitary matrix U . Throughout the paper
we set up the following notations for denoting certain submatrices of the specified
part:

Uj =UL(j : N, 1 : j), j = 1, . . . , N,

U ′
j =UL(j + 1 : N, 1 : j), j = 1, . . . , N − 1,

fj =UL(j : N, j), j = 1, . . . , N.

We also use the notations Ûj = U(1 : j, 1 : j), j = 1, . . . , N, for the principal leading
submatrices of the completed matrix U and the notations xj = U(1 : j − 1, j), j =
2, . . . , N , for certain j−1-dimensional columns in the strictly upper triangular part
of U .

The problem of completing a given lower triangular part UL of a block matrix to
a unitary matrix U was stated and studied in the paper [4] under the assumption
that the completion U admits LU and UL factorizations. Differently, in this sec-
tion we obtain the necessary and sufficient condition for the existence of a unitary
completion without any additional constraints and give a general formula for this
completion.

Theorem 3.1. Let U = {uij}N
i,j=1 be a partially specified matrix with a specified

lower triangular part UL = {uij , i ≥ j}. The specified part UL has a unitary
completion U if and only if

(3.1) ‖Uj‖ = 1, j = 1, . . . , N.

Moreover the unspecified entries of this completion are determined consecutively by
the relations

(3.2) xj = x
(1)
j + x

(2)
j , j = 2, . . . , N,
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where

(3.3) x
(1)
j = Ûj−1ξj ,

the vector ξj is a solution of the equation

(3.4) (I − (U ′
j−1)

∗U ′
j−1)ξj = −(U ′

j−1)
∗fj ,

and the vector x
(2)
j is an arbitrary solution of the equation

(3.5) Û∗
j−1x

(2)
j = 0

satisfying the condition

(3.6) (x(2)
j )∗x(2)

j = 1 − f∗
j fj − (x(1)

j )∗x(1)
j .

The element x
(1)
j is defined uniquely, i.e., does not depend on the choice of solution

ξj of equation (3.4). If condition (3.1) holds and additionally

(3.7) ‖U ′
j‖ < 1, j = 1, . . . , N − 1,

then the matrices Ûj are nonsingular, the unitary completion U is unique and the
unspecified entries of U are determined consecutively by the relations

(3.8) xj = −Ûj−1(I − (U ′
j−1)

∗U ′
j−1)

−1(U ′
j−1)

∗fj , j = 2, . . . , N.

Proof. First we prove the sufficiency. Assume that the condition of the theorem
holds. This in particular means that the first column U(:, 1) = U1 = UL(1 : N, 1)
has the unit norm. Then for j = 2, . . . , N we subsequently determine the columns
U(:, j) of the completion U in such a way that these columns will be orthonormal.
Suppose that for some j, 1 < j < N , the first j − 1 columns, i.e., the submatrix
U(:, 1 : j − 1), have been just constructed. We show that one can determine the

vector-column xj of size j − 1 in such a way that
(

xj

fj

)
is orthogonal to the

columns U(:, k), k = 1, . . . , j − 1, and has the unit norm. Then we set

U(:, j) =
(

xj

fj

)
.

By using the representation

(3.9) U(:, 1 : j − 1) =
[

Ûj−1

U ′
j−1

]
we obtain that the vector xj is defined by the relations

Û∗
j−1xj + (U ′

j−1)
∗fj = 0,(3.10)

x∗
jxj + f∗

j fj = 1.(3.11)

We prove that the system of equations (3.10), (3.11) has a solution which is given
by the relations (3.2)-(3.6).

Since the columns of the matrix U(:, 1 : j − 1) are orthonormal, by using the
representation (3.9) we obtain the equality

(3.12) Û∗
j−1Ûj−1 = I − (U ′

j−1)
∗U ′

j−1.

Next condition (3.1) implies that the matrix I − U∗
j Uj is positive semidefinite and

singular. By using the representation

Uj =
[

U ′
j−1 fj

]



358 D. A. BINI, Y. EIDELMAN, L. GEMIGNANI, AND I. GOHBERG

we obtain

(3.13) I − U∗
j Uj =

[
I − (U ′

j−1)
∗U ′

j−1 −(U ′
j−1)

∗fj

−f∗
j U ′

j−1 1 − f∗
j fj

]
.

By applying the first part of Lemma 2.1 to the matrix I − U∗
j Uj we conclude that

equation (3.4) has a solution. Moreover, one can easily check that the formula (3.3)
yields a solution of equation (3.10). In fact, from (3.12) we obtain

Û∗
j−1x

(1)
j = Û∗

j−1Ûj−1ξj = (I − (U ′
j−1)

∗U ′
j−1)ξj = −(U ′

j−1)
∗fj .

Furthermore, the vector x
(1)
j does not depend on the choice of the solution ξj of

equation (3.4). Indeed, for any ξ such that (I − (U ′
j−1)

∗U ′
j−1)ξ = 0 by using (3.12)

we obtain that Ûj−1ξ = 0. Thus (3.10) has a solution x
(1)
j and, moreover, any

solution of equation (3.10) has the form xj = x
(1)
j + x

(2)
j , where x

(2)
j is an arbitrary

solution of equation Û∗
j−1x

(2)
j = 0.

In order to satisfy equation (3.11) one should determine the vector x
(2)
j ∈

Ker(Û∗
j−1) such that the relation (3.6) holds. The latter is possible if and only if the

right-hand part of the equality (3.6) is nonnegative and in the case Ker(Û∗
j−1) = {0}

is vanishing. Notice that one can write the right-hand part of the equality (3.6) in
the form

1 − f∗
j fj − (x(1)

j )∗x(1)
j =1 − f∗

j fj − ξ∗j Û∗
j−1Ûj−1ξj

=1 − f∗
j fj − [(I − (U ′

j−1)
∗U ′

j−1)ξj ]∗ξj

=1 − f∗
j fj + f∗

j U ′
j−1ξj ,

where ξj is a solution of equation (3.4). By applying the first part of Lemma 2.1
to the matrix I − U∗

j Uj represented in the form (3.13) we obtain the inequality

1 − f∗
j fj + f∗

j U ′
j−1ξj ≥ 0.

Finally, in the case Ker(Û∗
j−1) = {0}, by using the equality (3.12) we have

Ker(I − (U ′
j−1)

∗U ′
j−1) = {0}.

Hence, by Lemma 2.1 we obtain 1 − f∗
j fj + f∗

j U ′
j−1ξj = 0.

Now we prove the necessity. Let U be a unitary completion of the lower triangular
part UL. For j = 1 we have U1 = U(:, 1) and, hence, U∗

1 U1 = 1. For j = 2, . . . , N
we use the representations

Uj =
[

U ′
j−1 fj

]
, U(:, 1 : j) =

[
Ûj−1 xj

U ′
j−1 fj

]
.

The orthonormality of the columns of the matrix U(:, 1 : j) implies that

Û∗
j−1xj + (U ′

j−1)
∗fj = 0,

x∗
jxj + f∗

j fj = 1, j = 2, . . . , N.

Û∗
j−1Ûj−1 + (U ′

j−1)
∗U ′

j−1 = I.

One can write these equalities in the form

−(U ′
j−1)

∗fj = Û∗
j−1xj , −f∗

j U ′
j−1 = x∗

j Ûj−1,

I − (U ′
j−1)

∗U ′
j−1 = Û∗

j−1Ûj−1, 1 − f∗
j fj = x∗

jxj ,
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i.e.,[
I − (U ′

j−1)
∗U ′

j−1 −(U ′
j−1)

∗fj

−f∗
j U ′

j−1 1 − f∗
j fj

]
=

[
Û∗

j−1

x∗
j

] [
Ûj−1 xj

]
, j = 2, . . . , N.

This implies Ij − U∗
j Uj = K∗

j Kj , j = 2, . . . , N, where Kj =
[

Ûj−1 xj

]
. Hence,

it follows that ‖Uj‖ ≤ 1. Moreover, since the matrix Kj has size (j − 1) × j, the
matrix K∗

j Kj turns out to be singular. Whence ‖Uj‖ = 1.
Finally we check that if the conditions (3.7) hold, then the unitary completion

U is unique and the formulas (3.8) also hold. The conditions (3.7) imply that
the matrices I − (U ′

j−1)
∗U ′

j−1, j = 2, . . . , N, are invertible. Moreover, by using the
formulas (3.2)-(3.5) we obtain that the unspecified entries of the unitary completion
are determined by the relations

xj = −Ûj−1(I − (U ′
j−1)

∗U ′
j−1)

−1(U ′
j−1)

∗fj + x
(2)
j , j = 2, . . . , N,

where x
(2)
j ∈ Ker(Û∗

j−1). But the equality (3.12) implies that Ker(Û∗
j−1) = {0} and,

therefore, x
(2)
j = 0. Hence, we conclude that the unitary completion U is unique

and the relations (3.8) hold. �

From the equalities (3.12) it follows that the uniqueness conditions (3.7) imply
the strong regularity of the completion U . The conditions (3.7) look like the ones
in [4]. However, here instead of the factorized form we use the element-wise rep-
resentations (3.8), which turn out to be more appropriate for the solution of the
structured completion problem addressed in the next section.

In conclusion we give a simple example showing that the unitary completion can
not be unique. Consider the matrix C = (ci,j) such that ci+1,i = 1, i = 1, . . . , n−1,
c1,N = z and ci,j = 0 elsewhere. For any choice of z with |z| = 1 this matrix may
be treated as a unitary completion of its specified lower triangular part.

4. The structured unitary completion

Now we consider a partially specified matrix U = {uij}N
i,j=1 with the specified

lower triangular part UL = {uij , i ≥ j} of the form

(4.1) UL(i + 1, i) = βi, i = 1, . . . , N − 1; UL(i, i) = di, i = 1, . . . , N ;

(4.2) UL(i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N,

with some βi, di, p(i), q(i) ∈ C. For notational convenience we also define the values
q(−1), q(0), q(N − 1), q(N), β0, βN , p(1), p(2), p(N + 1), p(N + 2) assuming them
to be zeros.

By means of the elements p(i) and q(j) of the structure (4.2) we define the
numbers

αk =
k∑

j=1

|q(j)|2, k = 1, . . . , N − 2,(4.3)

zk =
N∑

j=k

|p(j)|2, k = N, . . . , 3,(4.4)
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and the vector-columns and the vector-rows
(4.5)

pi =

⎛
⎜⎝

p(i)
...

p(N)

⎞
⎟⎠ , i = 3, . . . , N, qj =

(
q(1) . . . q(j)

)
, j = 1, . . . , N − 2.

Obviously, we have

pN = p(N), pi =
(

p(i)
pi+1

)
, i = 3, . . . , N − 1,(4.6)

q1 = q(1), qj =
(

qj−1 q(j)
)
, j = 1, . . . , N − 2.

We also set q−1 = q0 = 0, pN+1 = pN+2 = 0, α−1 = α0 = zN+1 = zN+2 = 0. It
is clear that ‖qk‖ =

√
αk, ‖pk‖ =

√
zk. Furthermore, we introduce the unit vectors

q
(0)
j and p

(0)
j such that

(4.7) qj =
√

αjq
(0)
j , pj =

√
zjp

(0)
j .

In the case under consideration the condition of Theorem 3.1 may be expressed
via the corresponding properties of certain 3 × 3 matrices formed by the elements
of the structure (4.1)-(4.4).

Theorem 4.1. Let U = {uij}N
i,j=1 be a partially specified matrix with a specified

lower triangular part UL = {uij , i ≥ j} of the form (4.1), (4.2). Set

(4.8) ∆j =

⎛
⎝ p(j)√αj−2 βj−1 dj

p(j + 1)√αj−2 p(j + 1)q(j − 1) βj√
zj+2

√
αj−2

√
zj+2q(j − 1) √

zj+2q(j)

⎞
⎠ , j = 1, . . . , N.

The specified part UL has a unitary completion U if and only if

(4.9) ‖∆j‖ = 1, j = 1, . . . , N.

If the condition ( 4.9) holds and additionally the matrices

(4.10) Aj =
(

p(j + 1)√αj−1 βj√
zj+2

√
αj−1

√
zj+2q(j)

)
, j = 1, . . . , N − 1,

satisfy the condition

(4.11) ‖Aj‖ < 1, j = 1, . . . , N − 1,

then the unitary completion U is unique.

Proof. Set

L1 =
[

0 0 U1

]
, L2 =

[
0 U2

]
,

Lj = Uj , j = 3, . . . , N − 2,

LN−1 =
[

UN−1

0

]
, LN =

⎡
⎣ UN

0
0

⎤
⎦ ,

where zeros mean zero columns and zero rows of the corresponding sizes. The
relations (4.1), (4.2) and (4.5) imply

Lj =

⎛
⎝ p(j)qj−2 βj−1 dj

p(j + 1)qj−2 p(j + 1)q(j − 1) βj

pj+2qj−2 pj+2q(j − 1) pj+2q(j)

⎞
⎠ , j = 1, . . . , N.
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Obviously we have ‖Uj‖ = ‖Lj‖, j = 1, . . . , N, and, hence, by Theorem 3.1 the
specified part UL has a unitary completion if and only if ‖Lj‖ = 1, j = 1, . . . , N.
One can easily check that Lj = Pj · ∆j · Qj , j = 1, . . . , N, where

Qj =

⎛
⎝ q

(0)
j−2 0 0
0 1 0
0 0 1

⎞
⎠ , Pj =

⎛
⎝ 1 0 0

0 1 0
0 0 p

(0)
j+2

⎞
⎠

and the matrices ∆j and the unit vectors q
(0)
j−2, p

(0)
j+2 are defined as in (4.8) and

in (4.7), respectively. Since the operators Pj and Q∗
j are isometries we conclude

that ‖Lj‖ = ‖∆j‖, j = 1, . . . , N. Hence it follows that the specified part UL has a
unitary completion U if and only if the condition (4.9) holds.

Now we prove the uniqueness of the completion. Similarly as above we set

(4.12) L′
1 =

[
0 U ′

1

]
, L′

j = U ′
j , j = 2, . . . , N − 2; L′

N−1 =
[

U ′
N−1

0

]
,

where zeros mean zero columns and zero rows of the corresponding sizes. By virtue
of (4.1), (4.2) and (4.5) we obtain

(4.13) L′
j =

(
p(j + 1)qj−1 βj

pj+2qj−1 pj+2q(j)

)
, j = 1, . . . , N − 1.

Again we find ‖U ′
j‖ = ‖L′

j‖, j = 1, . . . , N − 1, and, hence, the condition (3.7) is
equivalent to the condition ‖L′

j‖ < 1, j = 1, . . . , N − 1. One can easily check that

(4.14) L′
j = P ′

j · Aj · Q′
j , j = 1, . . . , N − 1,

where

Q′
j =

(
q
(0)
j−1 0
0 1

)
, P ′

j =
(

1 0
0 p

(0)
j+2

)

and the matrices Aj and the unit vectors q
(0)
j−1, p

(0)
j+2 are defined as in (4.10) and

in (4.7), respectively. Since the operators P ′
j and (Q′)∗j are isometries we conclude

that ‖L′
j‖ = ‖Aj‖, j = 1, . . . , N − 1, which completes the proof. �

Remark 4.2. Under the hypotheses of Theorem 4.1 the unitary matrix U with
a specified lower triangular part UL = {uij , i ≥ j} of the form (4.1), (4.2) is
completely defined via the parameters di, i = 1, . . . , N, βi, i = 1, . . . , N − 1, p(i),
i = 3, . . . , N − 1 and q(i), i = 1, . . . , N − 2.

In the next theorem we reformulate the necessary and sufficient conditions for
the existence of a unitary completion of the specified part UL under the assumption
that all the parameters of the structure (4.1), (4.2) are fixed except the diagonal
entries dj . In this theorem we assume that the conditions (4.10) and (4.11) hold
and therefore, this completion will be unique automatically.

Theorem 4.3. Let U = {uij}N
i,j=1 be a partially specified matrix with a specified

lower triangular part UL = {uij , i ≥ j} of the form (4.1), (4.2), let the conditions
(4.10), (4.11) hold and let

(4.15) I − A∗
jAj = VjD

2
j V ∗

j , j = 1, . . . , N − 1,

where Vj are unitary and Dj are real diagonal invertible matrices.
Then the specified part UL has a unique unitary completion if and only if

(4.16) |dj + aj | = ρj , j = 1, . . . , N,
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where

aj =
g̃∗j f̃j

1 + ‖g̃j‖2
, ρj =

(
1 − |βj |2 − zj+2|q(j)|2 − ‖f̃j‖2

1 + ‖g̃j‖2
+ |aj |2

)1/2

, j = 1, . . . , N,

(4.17)

f̃1 = g̃1 = 0; g̃j = D−1
j−1V

∗
j−1

( √
αj−2p

∗(j)
β∗

j−1

)
, f̃j = D−1

j−1V
∗
j−1

( √
αj−2

q∗(j − 1)

)
β′

j ,

(4.18)

β′
j = p∗(j + 1)βj + zj+2q(j), j = 2, . . . , N.(4.19)

Proof. By Theorem 4.1 we should prove the equivalence of the conditions (4.9),
involving the matrices ∆j , j = 1, . . . , N , defined in (4.8), and the conditions (4.16).
We use the representations

∆j =
[

gj−1 dj

Bj−1 fj

]
, j = 1, . . . , N,

where

gj−1 =
(

p(j)√αj−2 βj−1

)
, fj =

(
βj√

zj+2q(j)

)
,

Bj−1 =
(

p(j + 1)√αj−2 p(j + 1)q(j − 1)√
zj+2

√
αj−2

√
zj+2q(j − 1)

)
.

For j = 1 we have g0 = 0, B0 = 0 and, hence, the condition ‖∆1‖ = 1 holds if
and only if ‖f1‖2 + |d1|2 = 1, i.e., |d1|2 = 1 − |β1|2 − z3|q(1)|2.

For j = 2, . . . , N we show that

(4.20) (∆′
j−1)

∗∆′
j−1 = A∗

j−1Aj−1, j = 2, . . . , N.

Set

(4.21)

Γk =
(

p(k + 1) βk

1 q(k)

)
,

Λk =
( √

αk−1 0
0 1

)
, k = 1, . . . , N − 1.

Zk =
(

1 0
0 √

zk+2

)
,

By direct computations it is verified that Ak = ZkΓkΛk, k = 1, . . . , N − 1. Fur-
thermore, we have

(4.22) ∆′
j−1 = Z ′

jΓj−1Λj−1,

where

(4.23) Z ′
j =

⎛
⎝ 1 0

0 p(j + 1)
0 √

zj+2

⎞
⎠ .

By using the equality (Z ′
j)

∗Z ′
j = Z∗

j−1Zj−1 we obtain (4.20). Furthermore using
(4.15) we obtain

(4.24) I − (∆′
j−1)

∗∆′
j−1 = Vj−1D

2
j−1V

∗
j−1.
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Moreover, it is easily verified that

B∗
j−1fj =

( √
αj−2

q(j − 1)∗

)
β′

j ,

where β′
j is given by the formula (4.19). Thus, by applying Theorem 2.2, we

conclude that for j = 2, . . . , N the corresponding equalities in the conditions (4.9)
and (4.16) are equivalent. �

5. The generators

Let U = {uij}N
i,j=1 be a unitary matrix whose entries below the first subdiagonal

have the form (4.2), i.e., U(i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N. Hence, it
follows that rankU(k + 1 : N, 1 : k) ≤ 2, k = 1, . . . , N − 1. Since the matrix U is
unitary, Corollary 2.2 from [6] implies that

rankU−1(k + 1 : N, 1 : k) = rankU(1 : k, k + 1 : N) ≤ 2, k = 1, . . . , N − 1.

Therefore, by Theorem 3.5 from [5] we find that the entries in the strictly upper
triangular part of the matrix U have the form

(5.1) U(i, j) = v(i)b×iju(j), 1 ≤ i < j ≤ N,

where v(i), i = 1, . . . , N −1, are two-dimensional rows, u(j), j = 2, . . . , N , are two-
dimensional columns, b×ij = b(i + 1) · · · b(j − 1) for N ≥ j > i + 1 ≥ 2, b×k,k+1 = I

for 1 ≤ k ≤ N − 1 and b(k), k = 2, . . . , N − 1, are 2 × 2 matrices. The elements
v(i), u(j), b(k) are called upper generators of the matrix U . Notice that the relations
(5.1) may be written down column-by-column in the form

U(1 : j − 1, j) = W̃j−1u(j), j = 2, . . . , N,

where W̃j−1 are (j−1)×2 matrices given by W̃j−1 = col(v(i)b×ij)
j−1
i=1 , j = 2, . . . , N.

One can easily check that the matrices W̃k satisfy the recursive relations:

(5.2) W̃1 = v(1); W̃i =
(

W̃i−1b(i)
v(i)

)
, i = 2, . . . , N − 1.

In the next theorem we derive explicit formulas for the upper generators of the
unitary completion of a partially specified matrix with the specified lower triangular
part of the form (4.1), (4.2).

Theorem 5.1. Let U = {uij}N
i,j=1 be a partially specified matrix with a specified

lower triangular part UL = {uij , i ≥ j} of the form

UL(i + 1, i) = βi, i = 1, . . . , N − 1, UL(i, i) = di, i = 1, . . . , N,(5.3)

UL(i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N,(5.4)
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and let condition (4.9) of Theorem 4.1 hold. Set

α−1 = α0 = 0, αk =
k∑

j=1

|q(j)|2, k = 1, . . . , N − 2,(5.5)

zN+2 = zN+1 = 0, zk =
N∑

j=k

|p(j)|2, k = N, . . . , 3,(5.6)

Γk =
(

p(k + 1) βk

1 q(k)

)
, Λk =

( √
αk−1 0
0 1

)
, Zk =

(
1 0
0 √

zk+2

)
,(5.7)

Ak = ZkΓkΛk, k = 1, . . . , N − 1,(5.8)

and assume that ‖Aj‖ < 1, j = 1, . . . , N − 1. Also set

(5.9) I − A∗
kAk = VkD2

kV ∗
k , k = 1, . . . , N − 1,

where Vk is a unitary matrix and Dk is a real diagonal invertible matrix.
Then the specified part UL has the unique unitary completion U and the upper

generators v(i), i = 1, . . . , N − 1, u(j), j = 2, . . . , N , b(k), k = 2, . . . , N − 1, of the
matrix U are given by the formulas

v(i) = −
[

p(i)√αi−2α
′
i + βi−1α

′′
i di

]
ViD

−1
i , i = 1, . . . , N − 1,(5.10)

u(j) = D−1
j−1V

∗
j−1Λj−1Γ∗

j−1

(
dj

p(j + 1)∗βj + zj+2q(j)

)
, j = 2, . . . , N,(5.11)

b(k) =
[

Dk−1V
∗
k−1q

′
k −u(k)

]
VkD−1

k , k = 2, . . . , N − 1,(5.12)

where
(5.13)

α′
i =

{ √
αi−2
αi−1

, αi−1 �= 0,

0, αi−1 = 0,
α′′

i =

{
q∗(i−1)√

αi−1
, αi−1 �= 0,

1, αi−1 = 0,
q′i =

(
α′

i

α′′
i

)
.

Proof. Theorem 4.1 implies that the specified part UL has the unique unitary com-
pletion U . Moreover, by the last part of Theorem 3.1, the unspecified entries of
this completion are given by the relations

(5.14) xj := U(1 : j−1, j) = −Ûj−1(I−(U ′
j−1)

∗U ′
j−1)

−1(U ′
j−1)

∗fj , j = 2, . . . , N,

where U ′
j = UL(j + 1 : N, 1 : j), j = 1, . . . , N − 1, and fj = UL(j : N, j),

Ûj = U(1 : j, 1 : j), j = 1, . . . , N .
Set

W1 =
[

0 Û1

]
, Wj = Ûj , j = 2, . . . , N − 1,(5.15)

wj = fj , j = 2, . . . , N − 1, wN =
[

fN

0

]
,

and define the matrices L′
j , j = 1, . . . , N − 1, via the relations (4.12). Clearly, we

have

Ûj−1(I − (U ′
j−1)

∗U ′
j−1)

−1(U ′
j−1)

∗wj

= Wj−1(I − (L′
j−1)

∗L′
j−1)

−1(L′
j−1)

∗wj , j = 2, . . . , N,

and, hence, the formula (5.14) gives

(5.16) xj = −Wj−1(I − (L′
j−1)

∗L′
j−1)

−1(L′
j−1)

∗wj , j = 2, . . . , N.
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Next set

(5.17) Q′
i =

(
q
(0)
i−1 0
0 1

)
, i = 1, . . . , N − 1,

where

q
(0)
i−1 =

{ 1√
αi−1

qi−1, αi−1 �= 0,

eT
i−1, αi−1 = 0,

e0 = 1 and ei, i = 1, . . . , N − 1, is the i-th vector of the standard basis. By virtue
of (4.14) we have

(5.18) (L′
j−1)

∗L′
j−1 = (Q′

j−1)
∗A∗

j−1Aj−1Q
′
j−1, j = 2, . . . , N,

and from (4.13) we obtain

(5.19) (L′
j−1)

∗ = (Q′
j−1)

∗Λj−1Γ∗
j−1

(
1 0
0 p∗j+1

)
, j = 2, . . . , N.

Consider the products

(5.20) f̂j =
(

1 0
0 p∗j+1

)
wj , j = 2, . . . , N.

By using the relations (4.1), (4.2) and (4.5) we obtain

wj =

⎛
⎝ dj

βj

pj+2q(j)

⎞
⎠ , j = 2, . . . , N − 2, wN−1 =

(
dN−1

βN−1

)
, wN =

(
dN

0

)

and, hence, from (4.6) and the initializations βN = zN+1 = zN+2 = 0 we get

(5.21) f̂j =
(

dj

p∗(j + 1)βj + zj+2q(j)

)
, j = 2, . . . , N.

In this way, by combining together (5.16), (5.18), (5.19) and (5.20) we obtain
(5.22)
xj = −Wj−1(I − (Q′

j−1)
∗A∗

j−1Aj−1Q
′
j−1)

−1(Q′
j−1)

∗Λj−1Γ∗
j−1f̃j , j = 2, . . . , N,

where f̂j are defined as in (5.21). Next consider the matrix

Υj = (I − (Q′
j−1)

∗A∗
j−1Aj−1Q

′
j−1)

−1(Q′
j−1)

∗.

Recall that if V and B are matrices of appropriate sizes such that I − V B is
invertible, then the Sherman-Morrison-Woodbury formula [9] states that

(5.23) (I − V B)−1 = I + V (I − BV )−1B.

By taking V = (Q′
j−1)

∗, B = A∗
j−1Aj−1Q

′
j−1 and using the fact that the columns

of the matrix (Q′
j−1)

∗ are orthonormal we obtain

Υj =[I + (Q′
j−1)

∗(I − A∗
j−1Aj−1)−1A∗

j−1Aj−1Q
′
j−1](Q

′
j−1)

∗

=(Q′
j−1)

∗[I + (I − A∗
j−1Aj−1)−1A∗

j−1Aj−1].

Now by the formula (5.23) applied with V = I and B = A∗
j−1Aj−1 we get

Υj = (Q′
j−1)

∗(I − A∗
j−1Aj−1)−1.

Substituting the latter expression in (5.22) and then using the decomposition (5.9)
gives

xj = −Wj−1(Q′
j−1)

∗Vj−1D
−2
j−1V

∗
j−1Λj−1Γ∗

j−1f̂j , j = 2, . . . , N.
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Hence, it follows that

(5.24) xj = W̃j−1u(j), j = 2, . . . , N,

where

(5.25) W̃i = −Wi(Q′
i)

∗ViD
−1
i , i = 1, . . . , N − 1,

and u(j), j = 2, . . . , N , are defined as in (5.11).
It remains to show that the matrices W̃i, i = 1, . . . , N − 1, satisfy the relations

(5.2) with two-dimensional rows v(i) and 2×2 matrices b(i) defined as in (5.10) and
(5.12). Without restriction we can suppose that 3 ≤ i ≤ N −1. The proof for i = 1
and i = 2 follows as in the general case 3 ≤ i ≤ N − 1 by using the appropriate
initializations. By virtue of (5.15) and (4.1)-(4.2) we have

(5.26) Wi = Ûi =
[

Wi−1 xi

gi di

]
, i = 3, . . . , N − 1,

where

(5.27) gi =
[

p(i)qi−2 βi−1

]
.

Next we show that

(5.28) (Q′
i)

∗ =
(

(Q′
i−1)

∗q′i 0
0 1

)
, i = 3, . . . , N − 1.

By virtue of (5.17) one should check that

(5.29) (q(0)
i−1)

∗ =
(

(q(0)
i−2)

∗ 0
0 1

)
q′i, i = 3, . . . , N − 1.

In the case αi−1 �= 0, from the equalities

√
αi−1(q

(0)
i−1)

∗ = q∗i−1,
√

αi−2(q
(0)
i−2)

∗ = q∗i−2, q∗i−1 =
(

q∗i−2

q∗(i − 1)

)
,

we obtain

√
αi−1(q

(0)
i−1)

∗ =
( √

αi−2(q
(0)
i−2)

∗

q∗(i − 1)

)
=

(
(q(0)

i−2)
∗ 0

0 1

) ( √
αi−2

q∗(i − 1)

)
,

which, by virtue of (5.13), implies (5.29). If, otherwise, αi−1 = 0, then αi−2 = 0,
too. Hence

(q(0)
i−1)

∗ = ei−1 =
(

ei−2 0
0 1

) (
0
1

)
=

(
(q(0)

i−2)
∗ 0

0 1

)
q′i.

Thus, by using (5.26), (5.28) and (5.24) we obtain

−Wi(Q′
i)

∗ = −
[

Wi−1 W̃i−1u(i)
gi di

] [
(Q′

i−1)
∗q′i 0

0 1

]
,

i.e.,

(5.30) −Wi(Q′
i)

∗ = −
[

Wi−1(Q′
i−1)

∗q′i W̃i−1u(i)
gi(Q′

i−1)
∗q′i di

]
.

Moreover, by using (5.25) we get

−Wi−1(Q′
i−1)

∗ = −Wi−1(Q′
i−1)

∗Vi−1D
−1
i−1Di−1V

∗
i−1 = W̃i−1Di−1V

∗
i−1
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and, therefore,

(5.31)
−

[
Wi−1(Q′

i−1)
∗q′i W̃i−1u(i)

]
ViD

−1
i

= W̃i−1

[
Di−1V

∗
i−1q

′
i −u(i)

]
ViD

−1
i = W̃i−1b(i).

Furthermore, by virtue of (5.27), (5.17), (5.13) and the equality qi−2(q
(0)
i−2)

∗ =√
αi−2 we obtain

gi(Q′
i−1)

∗q′i =
[

p(i)qi−2 βi−1

] [
(q(0)

i−2)
∗ 0

0 1

] [
α′

i

α′′
i

]
= p(i)

√
αi−2α

′
i + βi−1α

′′
i ,

and, hence,
(5.32)
−

[
gi(Q′

i−1)
∗q′i di

]
ViD

−1
i = −

[
p(i)√αi−2α

′
i + βi−1α

′′
i di

]
ViD

−1
i = v(i).

Finally, by combining together (5.25), (5.30), (5.31) and (5.32) we obtain (5.2),
with v(i) and b(i) given as in (5.10) and (5.12), respectively, which completes the
proof. �

6. The QR iteration step

In this section we apply the unitary completion method to the efficient solution
of the eigenvalue problem for a class of structured matrices via structured QR
iterations. Exploiting the structure of the associated eigenvalue problems enables
us to perform the QR iteration in linear time using a linear memory space. At
the same time the novel algorithm is just a fast adaptation of the classical QR
iteration and, therefore, it remains robust and converges as fast as the customary
QR algorithm.

6.1. The class HN . We consider the class HN of upper Hessenberg matrices A ∈
C

N×N of the form

(6.1) A = U − pqT ,

where U ∈ CN×N is unitary and p, q ∈ CN . The vectors p = (p(i))N
i=1, q = (q(i))N

i=1

are called the perturbation vectors of the matrix A. This class includes three well-
known subclasses of matrices: unitary Hessenberg matrices, companion matrices
and fellow matrices.

Since the matrix A is upper Hessenberg the entries below the first subdiagonal
of the matrix U have the form (4.2), i.e.,

U(i, j) = p(i)q(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N.

Hence, the matrix U has upper generators v(i), i = 1, . . . , N−1, u(j), j = 2, . . . , N ,
and b(k), k = 2, . . . , N − 1, given in accordance with the definition (5.1). Next set

U(i + 1, i) = βi, i = 1, . . . , N − 1, U(i, i) = di, i = 1, . . . , N.

Therefore, the matrix A is completely defined by the following parameters:
(1) the subdiagonal entries βk =U(k + 1, k), k=1, . . . , N − 1, of the matrix U ;
(2) the diagonal entries dk = U(k, k), k = 1, . . . , N , of the matrix U ;
(3) the upper generators v(i), i = 1, . . . , N − 1, u(j), j = 2, . . . , N , b(k), k =

2, . . . , N − 1, of the matrix U ;
(4) the perturbation vectors p = (p(i))N

i=1, q = (q(i))N
i=1.
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These parameters are also called the generating elements of the matrix A.
Thus the entries of the matrix A are specified as follows:

A(i, i) = di − p(i)q(i), i = 1, . . . , N,
A(i + 1, i) = βi − p(i + 1)q(i), i = 1, . . . , N − 1,
A(i, j) = 0, i − j > 1,

(6.2)

A(i, j) = −p(i)q(j) + v(i)b×iju(j), 1 ≤ i < j ≤ N.(6.3)

Let A be a matrix from the class HN . Consider one single step of the QR
iteration for this matrix with the shift α:{

A − αI = QR,
A(1) = αI + RQ,

where Q is a unitary matrix and R is an upper triangular matrix. Since A is upper
Hessenberg, then the matrix Q may be taken in the upper Hessenberg form (see for
instance [9]) and, therefore, the matrix A(1) = αI + RQ is still upper Hessenberg.
Moreover, the unitary factor Q can be represented by its Schur parametrization [7]

(6.4) Q = Q̃1Q̃2 · · · Q̃N−1,

where

(6.5) Q̃i =

⎛
⎝ Ii−1 0 0

0 Qi 0
0 0 IN−i−1

⎞
⎠ , Qi =

(
ci −si

si ci

)
, i = 1, . . . , N − 1,

with ci real, c2
i + |si|2 = 1, i = 1, . . . , N − 1,. From R = Q̃∗

N−1 · · · Q̃∗
1(A − αI)

it follows that the entries of R can also be specified in terms of a small set of
generators:

R(i, i) = d′i, i = 1, . . . , N,(6.6)

R(i, i + 1) = γi, i = 1, . . . , N − 1,(6.7)

R(i, j) = ṽ(i)b×i+1,ju(j) − p(1)(i)q(j), 1 ≤ i < j − 1 ≤ N − 1,(6.8)

R(i, j) = 0, i > j.(6.9)

Further, we have A(1) = Q∗AQ and, by virtue of (6.1),

(6.10) A(1) = Q∗UQ − (Q∗p) · (qT Q).

Hence, A(1) is again a matrix from the class HN and, therefore, our goal is to
compute the decomposition (6.4), a complete set of generators of R as well as the
generating elements of the new iterate A(1) in an efficient way.

6.2. The QR factorization. Let us start by considering the QR factorization of
the matrix A from the class HN . An algorithm for computing the decomposition
(6.4) together with a condensed representation for the factor R was derived in our
previous paper [1]. For the sake of completeness, the algorithm is summarized
below and a (different) proof of its correctness is also given.

Theorem 6.1. Let A be a matrix from the class HN with generating elements dk,
k = 1, . . . , N , βk, v(k), k = 1, . . . , N −1, u(k), k = 2, . . . , n, b(k), k = 2, . . . , N −1,
and p = (p(i))N

i=1, q = (q(i))N
i=1. Then the elements ci, si, i = 1, N − 1, and d′i,

i = 1, . . . , N , γi, ṽ(i), i = 1, . . . , N − 1, p(1)(i), i = 1, . . . , N , which define the
unitary factor Q in (6.4)-(6.5) and the upper triangular factor R in (6.6)-(6.8),
respectively, are generated by the following algorithm:
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(1) Initialize p′(1) = p(1), v′(1) = v(1), ε1 = d1 − α − p(1)q(1), v(N) =
01×2, b(N) = 02×2.

(2) For i = 1, . . . , N − 1 do:
(a) Find the complex Givens rotation matrix Qi such that

(6.11) Q∗
i

(
εi

βi − p(i + 1)q(i)

)
=

(
d′i
0

)
.

(b) Compute

ρi = v′(i)u(i + 1) − p′(i)q(i + 1), ρ′i = di+1 − α − p(i + 1)q(i + 1),(6.12) (
γi p(1)(i) ṽ(i)

εi+1 p′(i + 1) v′(i + 1)

)
= Q∗

i

(
ρi p′(i) v′(i)b(i + 1)
ρ′i p(i + 1) v(i + 1)

)
.(6.13)

(c) Set d′N = εN , p(1)(N) = p′(N).

Proof. We set Aα = A − αI and, moreover,

Ak = Q̃∗
k · · · Q̃∗

1Aα, k = 1, . . . , N − 1, AN−1 = Q∗Aα := R,

where the unitary matrices Q̃k,k = 1, . . . , N − 1, are defined by the conditions of
the theorem. One should check that the matrix R satisfies the relations (6.6)-(6.9).
The multiplication by the matrix Q̃∗

1 changes only the first two rows of the matrix
Aα, the multiplication by Q̃∗

2 affects only the second and the third row of the matrix
A1 and so on. Hence, we have

Ak =

⎛
⎝ R(1 : k, :)

yk+1

Aα(k + 2 : N, :)

⎞
⎠, k = 1, . . . , N−2, R = AN−1 =

(
R(1 : N − 1, :)

yN

)
,

where the rows R(i, :) and yi, i = 1, . . . , N , are defined recursively via the following
relations:

y1 = Aα(1, :),(
R(k, :)
yk+1

)
= Q∗

k

(
yk

Aα(k + 1, :)

)
, k = 1, . . . , N − 1,(6.14)

R(N, :) = yN .

Let us introduce the 2 × i matrices Hi and i-dimensional rows qi defined in terms
of the generating elements q(k), u(k), b(k) by

(6.15) Hi = row(b×i−1,ku(k))N
k=i, qi = [q(i), . . . , q(N)], i = 2, . . . , N.

It is clear that

(6.16) Hi =
[

u(i) b(i)Hi+1

]
, qi =

[
q(i) qi+1

]
, i = 2, . . . , N − 1,

HN = u(N), qN = q(N).

From the relations (6.2) and (6.3) it follows that

Aα(1, :) =
(

d1 − α v(1)H2

)
− p(1)q1,(6.17)

Aα(i, :) =
(

01×(i−2) βi−1 di − α v(i)Hi+1

)
−

(
01×(i−2) p(i)qi−1

)
, i = 2, . . . , N − 1,

(6.18)

Aα(N, :) =
(

01×(N−2) βN−1 − p(N)q(N − 1) dN − α − p(N)q(N)
)
.(6.19)
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Now we prove by induction that
(6.20)
yk =

(
01×(k−1) εk v′(k)Hk+1

)
−

(
01×k p′(k)qk+1

)
, k = 1, . . . , N − 1,

and, moreover, that

(6.21)
R(k, :) =

(
01×(k−1) d′k γk ṽ(k)Hk+2

)
−

(
01×k p(1)(k)qk+1

)
, k = 1, . . . , N − 2.

For k = 1 the relation (6.20) follows from the formula (6.17) and the equalities
y1 = Aα(1, :) and p′(1) = p(1), v′(1) = v(1), ε1 = d1 − α. Assume that (6.20) is
valid for some k with 1 ≤ k ≤ N − 2. By using the recursive relations (6.16), the
relation (6.20) may be given in the form

(6.22) yk =
(

01×(k−1) εk ρk v′(k)b(k + 1)Hk+2

)
−

(
01×(k+1) p′(k)qk+2

)
and moreover from (6.18) we obtain

(6.23)
Aα(k + 1, :) =

(
01×(k−1) βk − p(k + 1)q(k) ρ′k v(k + 1)Hk+2

)
−

(
01×(k+1) p(k + 1)qk+2

)
,

with ρk, ρ′k defined in (6.12). By substituting (6.22) and (6.23) in (6.14) and using
(6.11), (6.13) we conclude that

yk+1 =
(

01×k εk+1 v′(k + 1)Hk+2

)
−

(
01×(k+1) p′(k + 1)qk+2

)
and, moreover, the relation (6.21) holds.

From (6.21) using (6.15) we obtain the relations (6.6)-(6.9) for i = 1, . . . , N − 2.
Next by using (6.14) and (6.20) with k = N − 1 together with the equalities yN =
R(N, :), HN = u(N), qN = q(N) and (6.2) we get(

R(N − 1, :)
R(N, :)

)
= Q∗

N−1

(
01×(N−2) εN−1 ρN−1

01×(N−2) βN−1 − p(N)q(N − 1) ρ′N−1

)
.

Thus, from (6.11) and (6.13) with i = N − 1 we get

R(N − 1, :) =
(

01×(N−2) d′N−1 γN−1

)
, R(N, :) =

(
01×(N−1) d′N

)
,

which implies (6.6), (6.7) and (6.9) for i = N − 1, N . �

Remark 6.2. It is immediately seen that the elements p(1)(i), i = 1, . . . , N, com-
puted by the previous algorithm are determined via recursive relations as follows:

p′(1) = p(1),
(

p(1)(i)
p′(i + 1)

)
= Q∗

i

(
p′(i)

p(i + 1)

)
, i = 1, . . . , N−1, p(1)(N) = p′(N),

which, by virtue of (6.4) and (6.5), imply p(1) = col(p(1)
i )N

i=1 = Q∗p. In this
way, by using the formula (6.10), we may conclude that p(1) is the corresponding
perturbation vector of the matrix A(1).

6.3. The RQ step via unitary completion. Once the QR factorization of A−αI
has been computed, at the second stage of the QR iteration the unitary factor Q
and the upper triangular factor R are multiplied back together in the reverse order
to produce A(1) = RQ + αI. In this section we describe how this computation can
be carried out in terms of generating elements. In particular, we determine the
generating elements of the new iterate A(1) = RQ+αI by means of the parameters
defining the structure of the matrices Q and R obtained at the previous stage.
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Since R is upper triangular and Q is upper Hessenberg, we have

A(1)(i, i) =R(i, i)Q(i, i) + R(i, i + 1)Q(i + 1, i) + α, i = 1, . . . , N − 1,

A(1)(N, N) =R(N, N)Q(N, N) + α,

A(1)(i + 1, i) =R(i + 1, i + 1)Q(i + 1, i), i = 1, . . . , N − 1.

From (6.4), (6.5) one can easily see that

Q(i, i) = ci−1ci, i = 1, . . . , N, Q(i + 1, i) = si, i = 1, . . . , N − 1.

Hence, by using the formulas (6.6), (6.7) we obtain

A(1)(i, i) = d′ici−1ci + γisi + α, i = 1, . . . , N − 1, A(1)(N, N) = d′NcN−1cN + α,

(6.24)

A(1)(i + 1, i) = d′i+1si, i = 1, . . . , N − 1.(6.25)

From (6.10) one deduces that the second perturbation vector q(1) = (q(1)(i))N
i=1 of

the matrix A(1) has the form q(1) = QT q; moreover, by using (6.4) we have

q(1) = Q̃T
N−1 · · · Q̃T

1 q.

Due to (6.5) the perturbation vector q(1) can be computed as follows:
(6.26)

q′(1) = q(1),
(

q(1)(i)
q′(i + 1)

)
=QT

i

(
q′(i)

q(i + 1)

)
, i = 1, . . . , N−1, q(1)(N) = q′(N).

Now let us consider the unitary matrix U (1) = A(1) + p(1)(q(1))T . Using (6.24),
(6.25) we obtain the formulas

d
(1)
i := U (1)(i, i) = d′ici−1ci + γisi + α + p(1)(i)q(1)(i), i = 1, . . . , N − 1,

d
(1)
i := U (1)(N, N) = d′NcN−1cN + α + p(1)(N)q(1)(N),(6.27)

β
(1)
i := U (1)(i + 1, i) = d′i+1si + p(1)(i + 1)q(1)(i), i = 1, . . . , N − 1.(6.28)

Furthermore, the entries of U (1) below the subdiagonal have the form

U (1)(i, j) = p(1)(i)q(1)(j), 1 ≤ j ≤ i − 2, 3 ≤ i ≤ N.

By Theorem 4.3 the data d
(1)
i , β

(1)
i , p(1)(i), q(1)(i) have to satisfy the condi-

tions (4.16)-(4.19). However, because of rounding errors, a progressive violation
of the conditions (4.16)-(4.19) may take place during the iterative process, and
this leads to a deterioration for the matrix U (1) to be unitary. To overcome this
drawback we replace the diagonal entries d

(1)
i with suitably corrected values d̂

(1)
i

leaving unchanged the other elements β
(1)
i , p(1)(i), q(1)(i) of the structure of the

lower triangular part of the matrix U (1). By Theorem 4.3 in this case the corrected
values (d̂U )i have to be chosen so that the relations

(6.29) |d̂(1)
i + ai| = ρi, i = 1, . . . , N,

hold. Here the values ρi, ai are defined via the elements β
(1)
i , p(1)(i), q(1)(i) by the

formulas (4.17)-(4.19). Thus for every i = 1, . . . , N we choose the value d̂
(1)
i such
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that equation (6.29) is valid and the value |d̂(1)
i − d

(1)
i | is minimal. One can easily

check that the desired values d̂
(1)
i are given by the formulas

(6.30) d̂
(1)
i = ρi

d
(1)
i + ai

|d(1)
i + ai|

− ai, i = 1, . . . , N.

Notice that if the elements β
(1)
i , p(1)(i), q(1)(i) are fixed, then the corrected values

d̂
(1)
i are uniquely defined. If the computations were made without rounding errors,

then the values d
(1)
i and d̂

(1)
i would coincide and the the matrix U (1) is unitary.

Replacing d
(1)
i with d̂

(1)
i by Theorem 4.3 we obtain a new matrix Û (1) which is

unitary, and hence the new step of the algorithm will continue starting with the
unitary matrix.

Now we are in a position to compute the upper generators of the unitary matrix
U (1) by the formulas (5.10)-(5.13) in Theorem 5.1.

6.4. The full description of the algorithm and its complexity. The pro-
cedure presented below finds the generating elements of the matrix A(1) given in
input the generating elements of A = A(0).

Algorithm 6.3. – Structured QR Iteration:
1: Using the algorithm of Theorem 6.1 and the formulas (6.26)-(6.27) compute

the perturbation vectors p(1), q(1) of the matrix A(1) and the diagonal entries
d
(1)
k , k = 1, . . . , N , and the subdiagonal entries β

(1)
k , k = 1, . . . , N − 1, of

the matrix U (1).

2.1: Using the values p(1)(i), q(1)(i) compute the auxiliary variables αk, k =
−1, . . . , N − 2, zk, k = 3, . . . , N + 2, by the formulas (5.5), (5.6)

2.2: For k = 1, . . . , N − 1 using the values p(1)(k), q(1)(k), βk, αk, zk compute
the matrices Γk, Λk, Zk, Ak by the formulas (5.7), (5.8) and determine the
unitary matrices Vk and the real diagonal matrices Dk such that I−A∗

kAk =
VkD2

kV ∗
k .

2.3: For k = 1, . . . , N using the formulas (4.18), (4.19), (4.17) compute the
values ak, ρk.

Thus we have obtained the preliminary data to compute the upper gen-
erators of the matrix U (1).

3: Using the formulas (6.30) compute the corrected values d̂
(1)
i of the diagonal

entries of the matrix U (1). Thus we have performed the correction of the
diagonal entries of the matrix U (1) in order to preserve the property of this
matrix of being unitary.

4: Using the formulas (5.13), (5.10)-(5.12) compute upper generators of the
matrix U (1).

Straightforward computations show that the total complexity of Algorithm 6.3
is about (97+ρ+3s+σ)N flops, i.e., arithmetic operations of the form a±bc. Here
the parameters ρ and s denote the complexity of the computation of the complex
Givens rotation and of the square root of a positive number. Moreover, σ yields
the complexity of computing the decomposition Â = V D2V ∗, where Â is a 2 × 2
positive definite matrix, V is unitary and D is diagonal.
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7. Numerical experiments

The purpose of this section is to show that the algorithms for the structured
unitary completion problem presented above can be used as building blocks in the
design of a numerically robust and computationally efficient QR-based eigenvalue
algorithm for input matrices A ∈ HN . Very recently, a fast adaptation of the QR
eigenvalue algorithm for such matrices has been devised in [1]. Some other fast QR
methods have been announced in the talks by J. Demmel at the late Householder
Symposium XVI and by M. Gu at the late Sixteenth IWOTA Conference. The cost
per step of the algorithm in [1] is about twice that of the QR iteration described
in Sect. 6.4. These two algorithms only differ by the way used to carry out the RQ
step where the factors Q(k) and R(k) are multiplied back together in the reverse
order to produce A(k+1). Our initial rough implementation of the algorithm in [1]
starts being faster than the highly tuned LAPACK QR eigensolver employed in
MATLAB for N between 300 and 400, and becomes definitely faster for larger N .
Thus, although theoretically the complexity of the algorithm in [1] is within the
optimal liner bound, in practice it seems that more work needs to be done to make
the algorithm competitive for moderate values of the size of the input matrix.

Computational savings can be obtained by using the techniques described in [2]
but, unfortunately, this turns out in a numerically unstable algorithm. Here we
pursue a different approach to perform the RQ step based on the combination of
both the procedure in Sect. 6.4 and the one in [1]. The latter behaved stably on all
the examples we have tried so far, while the former is faster but its accuracy can
deteriorate if matrices Dk with small diagonal entries are encountered in the itera-
tive process. These considerations, therefore, motivate the following strategy: The
RQ step for the matrix A(k), generated at the k-th iteration of the QR eigenvalue
algorithm applied to the input matrix A = A(0) ∈ HN , is carried out in two differ-
ent ways depending on the magnitude of the entries of the matrices Dk computed
in step 2.4 of the algorithm in Sect. 6.4. In particular, given a fixed prescribed
tolerance tol, the proposed composite method executes the RQ step as specified in
Sect. 6.4 if all the diagonal entries of the matrices Dk are greater than tol; otherwise,
the RQ step is performed as stated in the algorithm in [1]. If p denotes the relative
frequency of calls to the algorithm in [1], we find that the resulting algorithm has a
cost per step of about 200 · p + 100 · (1− p). The algorithm has been implemented
in MATLAB, and numerical experiments have been performed to get indications
about the behavior of p and errors as functions of tol.

The main program incorporates the following shifting strategy suggested in
[12, p. 549]. At the beginning the shift parameter α is equal to zero. If A(s) =
(a(s)

i,j ) ∈ CN×N satisfies

(7.1) |a(s−1)
N,N − a

(s)
N,N | ≤ 0.3 · |a(s−1)

N,N |,

then we apply nonzero shifts by setting αk = a
(k)
N,N , k = s, s + 1, . . .. This is

called the Rayleigh quotient shifting strategy because a
(k)
N,N can be viewed as a

Rayleigh quotient [11]. We say that a
(k)
N,N provides a numerical approximation of

an eigenvalue λ of A = A(0) whenever

|β(k)
N | ≤ eps (|a(k)

N,N | + |a(k)
N−1,N−1|),
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where eps is the machine precision, i.e., eps � 2.2 · 10−16. If this condition is
fulfilled, then we set λ = a

(k)
N,N and deflate the matrix. It is worth noting that

the strategy is not tailored for real matrices with possible complex eigenvalues. In
this case the use of a different shift strategy (the Wilkinson shift rather than the
Rayleigh quotient shift) or, alternatively, the application of an initial random com-
plex shift of the input matrix generally allows one to find all the eigenvalues using
complex arithmetic. Differently, we can avoid complex numbers by implementing a
structured adaptation of the double-step QR method. The customary approach is
based on the double-step version of the implicit QR algorithm [11]. Here we only
remark that the results presented in this paper on the unitary completion problem
can also be used in the framework of implicit QR methods to provide fast adap-
tations for dealing with unitary+low-rank structures. These generalizations and
extensions will be described elsewhere.

After nonzero shifting has begun, we check for the convergence of the last diag-
onal entry of the currently computed iterate Ak. If convergence fails to occur after
15 iterations, then at the 16-th iteration we set αk = 1.5 (|a(k)

N,N |+ |β(k)
N |) and con-

tinue with non-zero shifting. If a
(k)
N,N does not converge in the next 15 iterations,

then the program reports failure. In our experience such failure has never been
encountered.

We tested fellow [3] and companion matrices A ∈ HN with random entries
generated by the internal MATLAB function rand. Specifically, the input matrices
are constructed as follows:

(1) Fellow matrices: A = U + pqT , where U is unitary Hessenberg with Schur
parameters a0 = 1, aj = rand · ei2π·rand, 1 ≤ j ≤ N − 1, aN = ei2π·rand

and complementary parameters bj =
√

1 − |aj |2, 1 ≤ j ≤ N − 1; moreover,
q = eN and p = [p(1), . . . , p(N)] with p(j) = rand + i rand, 1 ≤ j ≤ N .

(2) Companion matrices: A = C + pqT , where C = (ci,j), ci,j = 1 for i− j = 1
mod N , ci,j = 0 otherwise, is the generator of the circulant matrix algebra,
and p and q are as above.

A computable worst-case estimate for the maximum error expected in the com-
putation of the eigenvalues of A by using the shifted QR eigenvalue algorithm
without balancing is eps max(condeig(A))· ‖ A ‖, where condeig(A) is the vec-
tor of condition numbers for the eigenvalues of A. Roughly speaking, this means
that (rcond)−1 = max(condeig(A))· ‖ A ‖ is such that the base 10 logarithm of
(rcond)−1 provides an estimate of the number of digits of accuracy which can be
lost during the computation in the customary QR process (see for instance [12]).
In our program the quantity rcond is computed by using the internal MATLAB
function condeig and returned as output. To compare the accuracy of our method
and the QR eigensolver in MATLAB we measure the distance between the set of
the computed eigenvalues and the set of the eigenvalues returned by the function
eig with the same input data. Let λ(A) be the set of eigenvalues computed by the
MATLAB function eig. Let λ̃(A) denote the set of eigenvalues computed by our
algorithm, and define the distance between the sets λ(A) and λ̃(A) by

dist(λ(A), λ̃(A)) = max{ max
λ̃∈λ̃(A)

δ(λ̃, λ(A)), max
λ∈λ(A)

δ(λ, λ̃(A))},
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where δ(λ, λ̃(A)) = minλ̃∈λ̃(A) |λ − λ̃|. We refer to this distance as the error in
the eigenvalues computed by our algorithm. Therefore, we tacitly assume that the
MATLAB function eig computes the eigenvalues exactly.

Figures 1, 2, 3 and 4 show the results of our numerical experiments. Specifically,
Figures 1 and 2 cover our tests with fellow matrices of order N(n) = 21+n, 1 ≤
n ≤ 9, for tol=0.1 and for tol=0.001, respectively. Analogously, Figures 3 and 4
cover our tests with companion matrices of order N(n) = 21+n, 1 ≤ n ≤ 9, for
tol=0.1 and for tol=0.001, respectively. For each size of the matrix we carried out
100 numerical experiments and report the average values. Each figure is subdivided
into two graphs: The first plot reports the error and the value of rcond; the second
plot indicates the relative frequencies of calls to the algorithm in [1] (circle).

The tests reported in Figures 2 and 4 illustrate the numerical behavior of the
algorithm stated in the previous section. The potential occurrence of matrices Dk

with small diagonal entries leads to an acceptable deterioration of the final accuracy
of the computed results without producing any apparently relevant phenomenon of
error amplification. In particular, experimental considerations lead to the following
useful rule of thumb. If the diagonal entries of the matrices Dk are greater than
10−k, then the final error is bounded from above by (rcond)−1 ·10k. In other words,
in the worst-case situation we can lose k digits more than the number predicted by
the conditioning estimates. A few steps of some iterative refinement method would
be sufficient to recover the full accuracy of the eigenvalues.

The test reported in Figures 1 and 3 provide support for the composite strategy.
Since here we use a very tight condition on the diagonal entries of the matrices
Dk (tol=0.1), the method results are as accurate as the customary QR iteration.
Furthermore, for moderate values of N , say 128 ≤ N ≤ 512, the relative frequency
p is about thirty percent. Therefore, the cost per step of the composite method
is about 130 N with a significant acceleration with respect to the algorithm in
[1]. Finally, it is worth observing that our composite method applied to an input
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Figure 1. Fellow matrices of kind 1). Errors and relative frequen-
cies for tol=0.1.
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companion matrix A = A(0) always employs the algorithm in [1] at the very first
iteration until we start with the nonzero shifting strategy. This explains the values
for the relative frequencies in Figure 4 and also suggests that nonzero shifting
could be used right from the start to further reduce the number of calls to the most
expensive algorithm. Figure 5 reports the results obtained with this variant.
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Figure 2. Fellow matrices of kind 1). Errors and relative frequen-
cies for tol=0.001.
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Figure 3. Companion matrices of kind 2). Errors and relative
frequencies for tol=0.1.
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Figure 4. Companion matrices of kind 2). Errors and relative
frequencies for tol=0.001.
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Figure 5. Companion matrices of kind 2). Errors and relative
frequencies for tol=0.001 generated by the variant employing non-
zero shifting right from the start.
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