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ROBUST A-POSTERIORI ESTIMATOR FOR
ADVECTION-DIFFUSION-REACTION PROBLEMS

GIANCARLO SANGALLI

Abstract. We propose an almost-robust residual-based a-posteriori estimator
for the advection-diffusion-reaction model problem.

The theory is developed in the one-dimensional setting. The numerical er-
ror is measured with respect to a norm which was introduced by the author
in 2005 and somehow plays the role that the energy norm has with respect
to symmetric and coercive differential operators. In particular, the mentioned
norm possesses features that allow us to obtain a meaningful a-posteriori esti-
mator, robust up to a

√
log(Pe) factor, where Pe is the global Péclet number

of the problem. Various numerical tests are performed in one dimension, to

confirm the theoretical results and show that the proposed estimator performs
better than the usual one known in literature.

We also consider a possible two-dimensional extension of our result and
only present a few basic numerical tests, indicating that the estimator seems
to preserve the good features of the one-dimensional setting.

1. Introduction

In the last few decades adaptive finite element methods (FEM) have gained
importance for the numerical solution of partial differential equations. A-posteriori
error estimators are an essential ingredient for adaptivity. In fact, a-posteriori error
estimators are computable quantities that provide information about the numerical
error, so that they may be used for making judicious mesh modifications.

The mathematical a-posteriori error theory of elliptic problems is by now rather
mature. Indeed, this has been a very active area of research, from the eighties [5]
to the present day (e.g., the convergence of an adaptive algorithm has been proved
recently in [15]); a reference to this topic is, for example, [2].

On the contrary, the theory for advection-dominated problems is more recent
(starting with [11, 23]) and still under development. Important advances have been
achieved, but the developed analysis is not fully satisfactory even for the simplest
one-dimensional problem. In this paper, we aim to provide a new insight in the
theory.

We will mainly work with the one-dimensional linear advection-diffusion-reaction
model problem:

�Lu := −εu′′ + βu′ + ρu = f in (0, L), u(0) = u(L) = 0,(1.1)
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where f is the source term and ε > 0, β and ρ ≥ 0 are the coefficients of the
differential operator �L. To keep the exposition as simple as possible, we restrict to
constant coefficients, but this is not necessary to the theory we present.

The goal here is to estimate the numerical error ‖u−uh‖, uh being a finite element
approximation of the exact solution u, by a residual-based estimator η, that is, an
easily-computable expression which depends only on the numerical residual f− �Luh.
The quality of an a-posteriori error estimator is often measured by its effectivity
index η/‖u−uh‖. We are interested in deriving a robust estimator, whose effectivity
index is bounded from above and bounded away from zero uniformly with respect
to f , the mesh-size h and the operator coefficients ε, β, ρ.

The mathematical analysis of robustness of a-posteriori estimators for advection-
diffusion-reaction problems was first addressed in [23]. The estimator proposed in
[23] yields to upper and lower bound of the error measured in the energy norm

(1.2) ‖u − uh‖E :=
(
ε|u − uh|2H1

0
+ ρ‖u − uh‖2

L2

)1/2

.

These estimators are shown to be robust, but only when the element Péclet num-
ber |β|h/ε is small, which is restrictive in the advection-dominated regime. Later
extensions of this approach are [6, 12, 16, 18, 26].

More recent contributions are [18, 25]. There, robust estimators are obtained,
but the numerical error is evaluated in an ad hoc norm which is, in our opinion, not
the most appropriate for problem (1.1). It is clear that the choice of the norm to be
used is a crucial point; on one hand, one would like ‖u−uh‖ to be a good indicator
of the quality of the numerical approximation (for example, in view of adaptivity),
and on the other hand, the possibility and difficulties in deriving a-posteriori error
estimates depend on the norm one selects.

In this paper, we first discuss the choice of a suitable norm for measuring the
numerical error. Our choice is based on the results of [21], where a norm, having
for (1.1) the role that the energy norm (1.2) has in the symmetric case (β = 0), is
constructed. The norm is denoted as ‖·‖V in the present paper, and has a structure
like

(1.3) ‖ · ‖V ≈
(
ε| · |2H1

0
+ |β|| · |21/2 + ρ‖ · ‖2

L2

)1/2

,

where | · |1/2 is a seminorm of order 1/2. Then, we address the construction of an
a-posteriori estimator for ‖u − uh‖V . The main tools for achieving this goal are
some results of [21] and the techniques of [23]. The proposed estimator is shown
to be almost-robust. We mean, roughly speaking, that it is robust up to a factor
which is only logarithmic with respect to the global Péctlet number Pe = |β|L/ε,
for large Pe.

Our results have some similarities to those obtained in [7]; there, the authors
estimate the numerical error in a norm which has a structure similar to (1.3), but
they address wavelet numerical methods and use wavelet techniques.

The theory of residual-based a-posteriori estimates can be linked to the multi-
scale approach. We do not follow this point of view in the paper, and just refer the
interested reader to [3, 4, 10, 17].

Here, the theoretical analysis and the general discussion is restricted to one-
dimensional model problem (1.1); we wish to stress that, in spite of its simplicity,
the a-posteriori analysis of (1.1) is harder than it might seem at first. However, we
also test a natural extension to two dimensions of our estimator, and, though we
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do not give any mathematical justification, the numerical experiments show that
the estimator is still robust, at least in the model cases considered. Therefore, we
hope that the paper can give some insight for dealing with the multi-dimensional
case, surely more difficult from the theoretical standpoint.

The outline of the paper is as follows. The first part, §2, is devoted to the
one-dimensional problem. In §2.1 we review some of the main ideas proposed in
the literature for the construction of residual-based a-posteriori estimators, and
we identify the difficulties encountered when trying to apply the general elliptic
theory to advection-dominated problems. In §2.2 we recall the construction and
some properties of the norm ‖ · ‖V . Next, §2.3 contains some technical lemmas
required for the analysis. The construction of the a-posteriori estimator is given in
§2.4. In §2.5 we present a variety of one-dimensional numerical tests that support
the theory. In the second part, §3, we present two tests of the two-dimensional
extension of the estimator. Finally, we draw the conclusions in §4.

2. Theory and numerical tests in one-dimension

2.1. Preliminaries on residual-based estimators. Let Ω denote the interval
(0, L). We denote by L2 ≡ L2(Ω) the usual Lebesgue space endowed with the
norm ‖ · ‖L2 , while H1 ≡ H1(Ω) is the usual Sobolev space endowed with the norm
‖ · ‖H1 and seminorm | · |H1 ; H1

0 denotes the subspace of functions vanishing at 0
and L, endowed with the norm | · |H1 ; finally H−1 ≡ H−1(Ω) := (H1

0 )∗ denotes
the dual space of H1

0 endowed with the dual norm ‖ · ‖H−1 ; 〈·, ·〉 ≡ H−1〈·, ·〉H1
0

is
the usual pairing between H−1 and H1

0 . We shall make use of the 1/2-order spaces
H1/2 ≡ H1/2(Ω) and H

1/2
00 ≡ H

1/2
00 (Ω), endowed with their standard norms and

seminorms (see [13] fore more details).
Let {Th}h be a family of subdivisions of the domain Ω into subintervals T . The

family {Th}h is assumed to be locally quasi uniform, that is, the ratio of the sizes of
two adjacent elements of Th is bounded uniformly with respect to the family index
h. We denote by T− and T+ the first and the last element of Th, respectively, and
by T ◦

h the set of all internal elements, that is, T ◦
h := Th\{T−, T+}. Let Zh be the

set of all the nodes of Th and let Z◦
h be the subset of the internal nodes, that is,

Z◦
h = Zh\{0, L}. Let Vh ⊂ H1(Ω) be the usual p-degree finite element space

Vh := {v ∈ H1(Ω)|v|T is polynomial of degree ≤ p, ∀T ∈ Th},

and Vh,0 := Vh ∩ H1
0 (Ω). We denote by hT the length of T ∈ Th and, for a node z

which is shared between T1 and T2, hz is the minimum of hT1 and hT2 .
In what follows, C denotes a constant, possibly different at any occurrence, but

independent of the mesh-size, the domain length L and the coefficients ε, β, ρ.
Moreover, a � b means a ≤ Cb, and a 
 b means a � b and b � a at the same time.

Let a(·, ·) be the bilinear form associated with the operator �L, that is,

a(w, v) := ε

∫ L

0

w′v′ + β

∫ L

0

w′v + ρ

∫ L

0

wv, ∀w, v ∈ H1
0 .

Let uh ∈ Vh,0 be the numerical solution of (1.1) either by a plain Galerkin
formulation,

(2.1) a(uh, vh) = 〈f, vh〉, ∀vh ∈ Vh,0,
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or by a (one-dimensional) SUPG formulation (see [9])

(2.2) a(uh, vh)+
∑

T∈Th

τT

∫
T

�Luh βv′h = 〈f, vh〉 +
∑

T∈Th

τT

∫
T

f βv′h, ∀vh ∈ Vh,0;

where

(2.3) 0 ≤ τT � hT /|β|, ∀T ∈ Th,

which actually includes (2.1). We also assume, for the sake of simplicity, that f is
piecewise polynomial of degree at most k on Th.

Consider first the simplest case when ε = 1 and β = ρ = 0, that is, �Lw = −w′′

is the one-dimensional Laplace operator. The construction and analysis of the
residual-based estimator relies on two key steps,

(2.4)

‖u − uh‖H1
0

1


‖f − �Luh‖H−1

2




⎛⎝ ∑
T∈Th

h2
T ‖f − �Luh‖2

L2(T ) +
∑

z∈Z◦
h

hz([u′
h](z))2

⎞⎠1/2

,

where [u′
h](z) := limδ→0+ u′

h(z + δ) − u′
h(z − δ). Step 1 is due to the fact that

�L is an isometry from H1
0 into H−1; precisely ‖w‖H1

0
≡ |w|H1 = ‖�Lw‖H−1 , for all

w ∈ H1
0 . Step 2 is due to the properties of the residual f − �Luh; in particular,

(2.5) ‖f − �Luh‖H−1 �

⎛⎝ ∑
T∈Th

h2
T ‖f − �Luh‖2

L2(T ) +
∑

z∈Z◦
h

hz([u′
h](z))2

⎞⎠1/2

is based on the consistency of the numerical scheme, while

(2.6)

⎛⎝ ∑
T∈Th

h2
T ‖f − �Luh‖2

L2(T ) +
∑

z∈Z◦
h

hz([u′
h](z))2

⎞⎠1/2

� ‖f − �Luh‖H−1

relies on the fact that f − �Luh is discrete, f being piecewise polynomial1.
Observe that the residual f − �Luh ∈ H−1 is the sum of the smooth part, which is

its restriction inside the elements T ∈ Th, and the distributional part concentrated
on the nodes z ∈ Z◦

h; these two components lead to the two terms of the estimator
stated in (2.4).

Steps 1 and 2 , emphasized in (2.4), are general for a-posteriori estimates of
this kind. In the first step we express the numerical error in terms of the residual
f − �Lu: the residual is computable, but we have to evaluate a dual norm of it,
typically. The second step consists of finding a computable approximation of this
dual norm. The first step relies on the properties of the operator �L and the norms
involved, the second step is based on the structure of the residual, as discussed
above.

1If f is not piecewise polynomial, one can use a discrete approximation of f and reason as
before; another term, which depends on the difference between f and its approximation, will
appear in (2.5)–(2.6); we refer to [15] for further details.
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We consider now the (symmetric) reaction-diffusion operator �Lw = −εw′′ + ρw,
and reason as above (see also [24]): step 1 requires the so-called energy norm

(2.7) ‖v‖E :=
(
ε|v|2H1

0
+ ρ‖v‖2

L2

)1/2

, ∀v ∈ H1
0 ,

and the corresponding dual energy norm

‖w‖E∗ := sup
v∈H1

0

〈w, v〉
‖v‖E

, ∀w ∈ H1
0 ,

which give

(2.8) ‖u − uh‖E = ‖f − �Luh‖E∗ .

Step 2 is performed exploiting the structure of the residual, more or less as in
(2.5)–(2.6). The final estimate, for a piecewise polynomial f , is

(2.9)

‖u − uh‖E

1


‖f − �Luh‖E∗

2



( ∑

T∈Th

min{ρ−1, ε−1h2
T }‖f − �Luh‖2

L2(T )

+
∑

z∈Z◦
h

min{ρ−1/2ε−1/2, ε−1hz}ε([u′
h](z))2

)1/2

=: η̂E .

Details on (2.9) are omitted, since it is a particular case of what is proved in §2.4.
Consider now the full advection-diffusion-reaction case, that is, �Lw = −εw′′ +

βw′+ρw. First, try to reason as in (2.9), still looking for an estimator of ‖u−uh‖E =(
ε|u − uh|2H1

0
+ ρ‖u − uh‖2

L2

)1/2

. In fact, the coercivity of �L (i.e., 〈�Lv, v〉 = ‖v‖2
E)

yields ‖v‖E ≤ ‖�Lv‖E∗ but, due to the presence of the advective term, ‖�Lv‖E∗ ��
‖v‖E in this case. In other words, step 1 of (2.9) now reduces to a bound only
from above for the error. However, we still have step 2 of (2.9), which is only
due to the properties of the residual. Summarizing, we obtain an error bound from
above for the error ‖u − uh‖E , by the estimator η̂E defined in (2.9), as in [23]:

(2.10) ‖u − uh‖E

1

≤‖f − �Luh‖E∗
2


 η̂E .

In many situations, η̂E overestimates the error ‖u − uh‖E , as we will see in §2.5.
It is clear that the loss of robustness in the estimate (2.10) occurs in step 1 .

Indeed, it holds (see [21, Lemma 1])

(2.11) ‖v‖E + ‖βv′‖E∗ 
 ‖�Lv‖E∗ , ∀v ∈ H1
0 ,

and robustness of the a-posteriori estimate is recovered if we replace ‖u− uh‖E by
‖u − uh‖E + ‖β(u′ − u′

h)‖E∗ :

(2.12) ‖u − uh‖E + ‖β(u′ − u′
h)‖E∗

1


‖f − �Luh‖E∗
2


 η̂E .
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Figure 1. Behavior of η̂E vs. h, when β = ρ = L = 1

In other words, η̂E is a robust estimator for ‖u − uh‖E + ‖β(u′ − u′
h)‖E∗ , and not

for ‖u−uh‖E . This is the result of [18] and [25] ([18] is restricted to the advection-
diffusion case, that is, ρ = 0 and deals with the Residual-free Bubbles FEM [8], but
the analysis also applies to the plain Galerkin or SUPG FEM’s).

Even though the a-posteriori estimate (2.12) is robust, we believe ‖u − uh‖E +
‖β(u′ − u′

h)‖E∗ is not an appropriate indicator of the quality of the numerical ap-
proximation, when advection dominates. This opinion is supported by the following
example. We take β = ρ = 1, L = 1 and f = 1. When ε is small, the exact solution
u has a boundary layer at x = 1. We consider as a discrete solution uh the one given
by the SUPG scheme (2.2) with (2.91), which is monotone and nodally accurate
in this case. In Figure 1, we plot η̂E versus the mesh-size h (uniform meshes are
considered). We see that, when ε � h2ρ, refining the mesh results in an increase of
η̂E and therefore, by virtue of (2.12), of ‖u− uh‖E + ‖β(u′ − u′

h)‖E∗ . Precisely, η̂E

is proportional to h−1/2 in this region and reaches a maximum value proportional
to ε−1/4. This behavior makes it difficult to handle an adaptive mesh refinement.

In [21], we introduced, for general coercive and non-symmetric problems, a norm
‖ · ‖V which plays the same role of the energy norm for symmetric operators.

Roughly speaking, this norm looks like
(
ε| · |2

H1
0

+ |β|| · |21/2 + ρ‖ · ‖2
L2

)1/2

, where
| · |1/2 is a non-standard seminorm of order 1/2. The key property of ‖ · ‖V is stated
in [21, Corollary 1]:

(2.13) ‖v‖V 
 ‖�Lv‖V ∗ , ∀v ∈ H1
0 .

The construction of such a norm is addressed in the next section. For what concerns
the a-posteriori estimation, (2.13) can be used to perform the analogous of step 1
in (2.9):

(2.14) ‖u − uh‖V

1


‖f − �Luh‖V ∗ .
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Next, following this path, we shall construct an estimator η̂V for ‖f− �Luh‖V ∗ which
is almost-robust, that is, robust up to a factor (log(Pe))1/2 for large Péclet numbers
Pe := |β|L/ε. For practical purposes, the loss of robustness is weak (see the tests
in §2.5).

The ideas discussed above can be extended straightforwardly in multi-dimensions,
with the exception of the construction of the a-posteriori estimator for ‖f− �Luh‖V ∗ .

2.2. Construction and properties of the norm ‖ · ‖V . We first recall some
results of [21], specializing them for the one-dimensional operator �Lw = −εw′′ +
βw′ + ρw. We introduce the sets A0 = A1 = V = H1

0 (Ω), which are Hilbert spaces
endowed with the norms

(2.15)
‖v‖A0 := ‖v‖E ,

‖v‖A1 :=
(
‖v‖2

E + ‖βv′‖2
E∗

)1/2
,

and, making use of the the interpolation theory of function spaces,

(2.16) ‖v‖V := ‖v‖(A0,A1)1/2,2
.

For the reader’s convenience, we recall a possible definition of interpolated norm:
given 0 < θ < 1 and 1 ≤ p < +∞ we set

(2.17) ‖v‖(A0,A1)θ,p
:=

⎡⎢⎢⎣∫ +∞

0

inf
v0∈A0,
v1∈A1,

v0+v1=v

(
t−2θ‖v0‖2

A0
+ t2−2θ‖v1‖2

A1

) p
2 dt

t

⎤⎥⎥⎦
1
p

,

while, for p = ∞,

(2.18) ‖v‖(A0,A1)θ,∞ := sup
0<t<+∞

inf
v0∈A0,v1∈A1,

v0+v1=v

(
t−θ‖v0‖A0 + t1−θ‖v1‖A1

)
.

These are classical definitions, according to the K-method (see, for example,
[22, §1.3.2], noting that (2.17) is modified to make (2.16) an Hilbertian norm).

The next result is needed for the construction of the a-posteriori estimator.

Lemma 2.1. For T = T− or T = T+ (i.e., for the first or the last element of Th)
we have

(2.19) |β|1/2h
−1/2
T ‖v‖L2(T ) �

(
1 + log+(Pe)

)1/2 ‖v‖V , ∀v ∈ H1
0 .

Moreover,

(2.20) |β|1/2L−1/2‖v‖L2 �
(
1 + log+(Pe)

)1/2 ‖v‖V , ∀v ∈ H1
0 .

Above, we have denoted by log+(·) the positive part of the logarithm, that is,
max{log(·), 0}. The proof of Lemma 2.1 is postponed at the end of this section.

Continuity and infsup conditions with respect to ‖·‖V are stated in [21, Lemma 2]:

(2.21)

continuity: 〈�Lw, v〉 ≤ Ccont‖w‖V ‖v‖V , ∀v, w ∈ H1
0 ,

infsup: inf
w∈H1

0

sup
v∈H1

0

〈�Lw, v〉
‖w‖V ‖v‖V

≥ Cinfsup > 0;

the constants Ccont and Cinfsup are independent of the coefficients of �L, which gives
(2.13). Notice that in (2.21) the norm ‖ · ‖V acts both on test and trial functions.
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For this reason, (2.21) seem natural extensions of the usual coercivity and continuity
conditions for symmetric operators (i.e., β = 0), where the energy norm appears.

Insights on the structure of ‖ · ‖V are given in [21, Lemma 3]. For this, we need
the two spaces C0 := {v ∈ L2|

∫
Ω

v = 0} and C1 = H−1, endowed with the norms

‖v‖C0 := ‖β−1ν‖E , ∀v ∈ C0, and ν(x) =
∫ x

0

v(t) dt,

‖v‖C1 := ‖v‖E∗ , ∀v ∈ C1.

Then, we have (see [21, Lemma 3])

(2.22) ‖v‖2
V 
 ‖v‖2

E + ‖βv′‖2
(C0,C1)1/2,2

,

where the norm ‖ · ‖(C0,C1)1/2,2
is defined by interpolation, similarly to (2.17). Ac-

tually, ‖ · ‖(C0,C1)1/2,2
plays the role of a (−1/2)-order norm and it is substantially

independent of the coefficients ε and ρ. Roughly speaking, one could think of
‖ · ‖(C0,C1)1/2,2

as |β|−1/2‖ · ‖−1/2; this is stated properly in the next proposition.

Proposition 2.2. We have

(2.23) |β|1/2|v|H1/2 � ‖βv′‖(C0,C1)1/2,2
� |β|1/2‖v‖

H
1/2
00

, ∀v ∈ H1
0 .

The proof of (2.23) can be found in [20] or [21, Theorem 2]. Together with (2.22),
(2.23) motivates (1.3).

As a corollary of the previous results, ‖·‖V bounds ‖·‖L2 , and the constant in the
inequality depends on the coefficients ε, β and ρ. Indeed, by definition, ρ‖v‖2

L2 ≤
‖v‖2

E ≤ ‖v‖2
V ; making use of the Poincaré inequality εL−2‖v‖2

L2 � ‖v‖2
E ≤ ‖v‖2

V ;
we also have (2.20): |β|L−1

(
1 + log+(Pe)

)−1 ‖v‖2
L2 � ‖v‖2

V . Summarizing,

(2.24)
(
εL−2 + |β|L−1

(
1 + log+(Pe)

)−1
+ ρ

)
‖v‖2

L2 � ‖v‖2
V , ∀v ∈ H1

0 .

Another corollary is that we can state meaningful a-priori bounds for the exact
solution u of (1.1). For example, (2.21), (2.20) and (2.23) yield

‖u‖V �
(
1 + log+(Pe)

)1/2 |β|−1/2‖f‖H−1/2 ,

where ‖ · ‖H−1/2 is the dual of L−1/2‖ · ‖L2 + | · |H1/2 (see [13, §12.1]). The estimate
above expresses stability in the advection-dominated regime, uniformly with respect
to ρ ≥ 0 and with a weak (log(Pe))1/2 growth for Pe → +∞.

Finally, the proof of Lemma 2.1 is given below.

Proof of Lemma 2.1. We first give the proof of (2.19) for T = T−. Let µ be a
continuous weight function such that µ(0) = 0, µ′ = h−1

T on T and µ′ = 0 elsewhere.
Therefore µ is piecewise linear and 0 ≤ µ ≤ 1 on Ω. Given v ∈ H1

0 , integrating by
parts and using the Cauchy-Schwartz inequality we have

(2.25) |β|h−1
T ‖v‖2

L2(T ) =
∫

Ω

|β|µ′ v2 = −2
∫

Ω

µv |β|v′ ≤ 2‖µv‖E‖βv′‖E∗ .

We have

(2.26) ‖µv‖L2 ≤ ‖v‖L2 ;

since v is null at the endpoints of Ω, from the Poincaré inequality we have ‖v‖L2(T ) �
hT |v|H1(T ), therefore

(2.27) |µv|H1 � (|v|H1 + h−1
T ‖v‖L2) � |v|H1 .
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All of that gives

(2.28) ‖µv‖E � ‖v‖E .

Substituting (2.28) back in (2.25), we have

(2.29) |β|h−1
T ‖v‖2

L2 � ‖v‖E‖βv′‖E∗ = ‖βv′‖C0‖βv′‖C1 .

Using a classical result of the interpolation theory (see [14] or Lemma (a) in [22,
§1.10.1]) we can infer from (2.29) that

(2.30) |β|1/2h
−1/2
T ‖v‖L2 � ‖βv′‖(C0,C1)1/2,1

, ∀v ∈ H1
0 .

Finally, using [21, Proposition 2] yields

(2.31) ‖βv′‖(C0,C1)1/2,1
�

(
1 + log+(Pe)

)1/2 ‖v‖V , ∀v ∈ H1
0 .

Clearly, (2.30) and (2.31) give (2.19).
For T = T+ the proof of (2.19) is similar. Analogously, taking µ(x) = x/L on

Ω, (2.20) is obtained. �

2.3. Construction and properties of the needed interpolant. With the no-
tation and definitions of §2.1, we now introduce the usual nodal basis {φz}z∈Zh

for
Vh, whence {φz}z∈Z◦

h
is the nodal basis for Vh,0. We also introduce the following

interpolants: given v ∈ H1(Ω) we define Ihv ∈ Vh as

(2.32) Ihv :=
∑

z∈Zh

∫
Ω

φzv∫
Ω

φz
φz,

and Ih,0v ∈ Vh,0 as

(2.33) Ih,0v :=
∑

z∈Z◦
h

∫
Ω

φzv∫
Ω

φz
φz.

Let T ∈ Th and let ωT be the union of T and the (one or two) adjacent elements.
From the definition (2.32) we easily get the local stability property

(2.34) ‖Ihv‖L2(T ) � ‖v‖L2(ωT ), ∀v ∈ L2.

If v|ωT
is constant, then (Ihv)|T = v|ωT

. Then, thanks to the Bramble-Hilbert
lemma and the standard scaling argument, we have the local estimates

|Ihv|Hs(T ) � |v|Hs(ωT ), ∀v ∈ Hs, for s = 1/2 or s = 1,(2.35)

‖v − Ihv‖L2(T ) � hs
T |v|Hs(ωT ), ∀v ∈ Hs, for s = 1/2 or s = 1.(2.36)

From the inverse inequalities hT |Ihv|H1(T ) � ‖Ihv‖L2(T ) and h1−s
T |Ihv|H1(T ) �

|Ihv|Hs(T ), and from (2.34)–(2.35), we also get

hT |Ihv|H1(T ) � ‖v‖L2(ωT ), ∀v ∈ L2,(2.37)

h1−s
T |Ihv|H1(T ) � |v|Hs(ωT ), ∀v ∈ Hs, for s = 1/2 or s = 1.(2.38)

Let z ∈ Zh and let T be an element to which z belongs; using [23, Lemma 3.1],

(v − Ihv)2(z) � h−1
T ‖v − Ihv‖2

L2(T ) + ‖v − Ihv‖L2(T )|v − Ihv|H1(T ), ∀v ∈ H1,

and, using (2.35)–(2.36), we get

(2.39)
(v − Ihv)2(z) � ‖v‖L2(ωT )|v|H1(ωT ),

(v − Ihv)2(z) � hT |v|2H1(ωT ).
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From the previous local estimates, we infer the global estimates that hold for all
v ∈ H1,

‖Ihv‖L2(Ω) � ‖v‖L2(Ω),(2.40) ∑
T∈Th

h2
T |Ihv|2H1(T ) � ‖v‖2

L2(Ω),(2.41)

∑
T∈Th

h2−2s
T |Ihv|2H1(T ) � |v|2Hs(Ω), for s = 1/2 or s = 1,(2.42)

∑
T∈Th

h−2s
T ‖v − Ihv‖2

L2(T ) � |v|2Hs(Ω), for s = 1/2 or s = 1,(2.43)

and, for the nodal error,

(2.44)

∑
z∈Zh

(v − Ihv)2(z) � ‖v‖L2(Ω)|v|H1(Ω),∑
z∈Zh

h−1
z (v − Ihv)2(z) � |v|2H1(Ω),

for all v ∈ H1.
Consider now Ih,0. Note that

Ihv − Ih,0v =

∫
Ω

φ0v∫
Ω

φ0
φ0 +

∫
Ω

φLv∫
Ω

φL
φL, ∀v ∈ L2.

Then, we have for all v and T = T− or T = T+,

(2.45) ‖Ihv − Ih,0v‖L2(T ) � ‖v‖L2(T ), ∀v ∈ L2,

while Ihv and Ih,0v coincide on T ∈ T ◦
h . For the inverse inequality (hT |Ihv −

Ih,0v|H1(T ) � ‖Ihv − Ih,0v‖L2(T )) we also have

(2.46) hT |Ihv − Ih,0v|H1(T ) � ‖v‖L2(T ), ∀v ∈ L2.

When v ∈ H1
0 (Ω), thanks to the Poincaré inequality on T = T− or T = T+, we

have ‖v‖L2(T ) ≤ hT |v|H1(T ); using this in (2.45)–(2.46) gives

(2.47)
‖Ihv − Ih,0v‖L2(T ) � hT |v|H1(T ), ∀v ∈ H1

0 ,

|Ihv − Ih,0v|H1(T ) � |v|H1(T ), ∀v ∈ H1
0 .

Using (2.40)–(2.43), (2.45)–(2.47) and the triangle inequality, for each v ∈ H1
0 (Ω)

we get the global estimates

‖Ih,0v‖L2(Ω) � ‖v‖L2(Ω),(2.48) ∑
T∈Th

h2
T |Ih,0v|2H1(T ) � ‖v‖L2(Ω),(2.49)

∑
T∈Th

hT |Ih,0v|2H1(T ) � |v|2H1/2(Ω) + h−1
T−‖v‖2

L2(T−) + h−1
T+‖v‖2

L2(T+),(2.50)

|Ih,0v|2H1(Ω) � |v|2H1(Ω),(2.51) ∑
T∈Th

h−1
T ‖v − Ih,0v‖2

L2(T ) � |v|2H1/2(Ω) + h−1
T−‖v‖2

L2(T−) + h−1
T+‖v‖2

L2(T+),(2.52)

∑
T∈Th

h−2
T ‖v − Ih,0v‖2

L2(T ) � |v|2H1(Ω).(2.53)
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Since Ihv and Ih,0v coincide on the internal nodes, from (2.44) we immediately
have, for all v ∈ H1(Ω),

(2.54)

∑
z∈Z◦

h

(v − Ih,0v)2(z) � ‖v‖L2(Ω)|v|H1(Ω),∑
z∈Z◦

h

h−1
z (v − Ih,0v)2(z) � |v|2H1(Ω).

What we need in the next section are estimates for the interpolant Ih,0v in terms
of ‖v‖V . They are stated in the following lemma.

Lemma 2.3. Assuming (2.3), for any v ∈ H1
0 we have∑

T∈Th

τ2
T max{ρ, |β|(1 + log+(Pe))−1h−1

T , εh−2
T }‖β (Ih,0v)′ ‖2

L2(T ) � ‖v‖2
V ,(2.55)

∑
T∈Th

max{ρ, |β|(1 + log+(Pe))−1h−1
T , εh−2

T }‖v − Ih,0v‖2
L2(T ) � ‖v‖2

V ,(2.56)

∑
z∈Z◦

h

max{ρ1/2ε1/2, |β|(1 + log+(Pe))−1, εh−1
z }(v − Ih,0v)2(z) � ‖v‖2

V .(2.57)

Proof. From (2.49) we get

(2.58) ρ
∑

T∈Th

τ2
T ‖β (Ih,0v)′ ‖2

L2(T ) � ρ‖v‖2
L2(Ω),

from (2.50), (2.19), (2.23) and (2.22), we get

(2.59)

∑
T∈Th

τ2
T |β|h−1

T ‖β (Ih,0v)′ ‖2
L2(T )

� |β||v|2H1/2(Ω) + |β|h−1
T−‖v‖2

L2(T−) + |β|h−1
T+‖v‖2

L2(T+)

� (1 + log+(Pe))‖v‖2
V ,

and, from (2.51), we get

(2.60) ε
∑

T∈Th

τ2
T h−2

T ‖β (Ih,0v)′ ‖2
L2(T ) � ε|v|2H1(Ω).

From (2.58)–(2.60) we get (2.55).
In a similar way, from (2.48), (2.52) with (2.19), (2.23), (2.22), and (2.53), we

obtain (2.56).
From (2.54) we get

(2.61)
ρ1/2ε1/2

∑
z∈Z◦

h

(v − Ih,0v)2(z) � ρ1/2‖v‖L2(Ω) · ε1/2|v|H1(Ω)

� ρ‖v‖2
L2(Ω) + ε|v|2H1(Ω),

similarly, still from (2.54), we have

(2.62) ε
∑

z∈Z◦
h

h−1
z (v − Ih,0v)2(z) � ε|v|2H1(Ω).

It remains to prove

(2.63) |β|
∑

z∈Z◦
h

(v − Ih,0v)2(z) � (1 + log+(Pe))‖v‖2
V ,
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and, after that, (2.57) follows from (2.61)–(2.63). The proof of (2.63) is the technical
part. First, let v̄ be the mean value of v. Since Ih,0v̄ = v̄ on the internal nodes,
using (2.54) we get, for all v ∈ H1

0 ,∑
z∈Z◦

h

(v − Ih,0v)2(z) � ‖v − v̄‖L2(Ω)|v − v̄|H1(Ω).

Moreover,

‖v − v̄‖L2(Ω) = ‖v′‖H−1 ≡ sup
w∈H1

0

∫
Ω

v′w

|w|H1(Ω)
,

|v − v̄|H1(Ω) = ‖v′‖L2(Ω),

and therefore

(2.64)
∑

z∈Z◦
h

(v − Ih,0v)2(z) � ‖v′‖H−1‖v′‖L2(Ω).

From (2.64) and thanks to a result of [14] (see also Lemma (a) in [22, §1.10.1]), we
obtain

(2.65)
∑

z∈Z◦
h

(v − Ih,0v)2(z) � ‖v′‖(H−1,L2)1/2,1
.

Moreover, reasoning as for the proof of Proposition 2.2 (or [21, Theorem 2]) we can
obtain |β|1/2‖v′‖(H−1,L2)1/2,1

≤ ‖βv′‖(C0,C1)1/2,1
(this is indeed a variation of the

first inequality of (2.23)). Recalling (2.31), from (2.65) we actually get (2.63), and
this concludes the proof. �

2.4. Construction of the a-posteriori estimators. This section is devoted to
the proof of the a-posteriori estimates for (1). Our estimators (from below and
from above) are defined as

(2.66)

η̌V :=

⎛⎝ ∑
T∈Th

η̌2
V,T +

∑
z∈Z◦

h

η̌2
V,z

⎞⎠1/2

,

η̂V :=

⎛⎝ ∑
T∈Th

η̂2
V,T +

∑
z∈Z◦

h

η̂2
V,z

⎞⎠1/2

,

where

(2.67)

η̌2
V,T = min{ρ−1, |β|−1hT , ε−1h2

T }‖f − �Luh‖2
L2(T ),

η̌2
V,z = min{ρ−1/2ε−1/2, |β|−1, ε−1hz} (ε [u′

h]( z))2,

η̂2
V,T = min{ρ−1, |β|−1(1 + log+(Pe))hT , ε−1h2

T }‖f − �Luh‖2
L2(T ),

η̂2
V,z = min{ρ−1/2ε−1/2, |β|−1(1 + log+(Pe)), ε−1hz} (ε [u′

h]( z))2.

We also define the local counterpart of the spaces V , C0 and C1 of §2.2. Given
an open interval ω = (x1, x2) ⊂ Ω, we set A0 = A1 = V := H1

0 (ω), and C0(ω) :=
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{v ∈ L2(ω)|
∫

ω
v = 0}, C1(ω) := H−1(ω), endowed with the norms

‖v‖A0(ω) := ‖v‖E(ω),

‖v‖A1(ω) :=
(
‖v‖2

E(ω) + ‖βv′‖2
E∗(ω)

)1/2

,

‖v‖V (ω) := ‖v‖(A0(ω),A1(ω))1/2,2
,

‖φ‖C0(ω) := ‖β−1Φ‖E(ω), where Φ(x) =
∫ x

x1

φ(t) dt,

‖φ‖C1(ω) := ‖φ‖E∗(ω),

where ‖ · ‖E(ω) is the energy norm restricted to H1
0 (ω) and ‖ · ‖E∗(ω) is the cor-

responding dual norm. The definition of ‖ · ‖(A0(ω),A1(ω))1/2,2
is the analogous of

(2.17). Thanks to [21, Lemma 3], we still have

(2.68) ‖v‖2
V (ω) 
 ‖v‖2

E(ω) + ‖βw′‖2
(C0(ω),C1(ω))1/2,2

.

Lemma 2.4. Let {ωi}i∈I be a family of disjoint open subsets of Ω, and
⋃

i∈I ωi = Ω.
Let v be a function on Ω such that v|ωi

∈ H1
0 (ωi). Then we have

(2.69) ‖v‖2
V ≤

∑
i∈I

‖v|ωi
‖2

V (ωi)
.

Proof. Given v0(t), v1(t) such that v0(t)+ v1(t) = v and v0(t)|ωi
, v1(t)|ωi

∈ H1
0 (ωi),

we have

‖v‖2
(A0,A1)1/2,2

≤
∫ +∞

0

t−1‖v0(t)‖2
A0

+ t‖v1(t)‖2
A1

dt

t

=
∫ +∞

0

(∑
i∈I

t−1‖v0(t)‖2
A0(ωi)

+ t‖v1(t)‖2
A1(ωi)

)
dt

t

=
∑
i∈I

(∫ +∞

0

t−1‖v0(t)‖2
A0(ωi)

+ t‖v1(t)‖2
A1(ωi)

dt

t

)
.

Taking the infimum on v0, v1 we obtain

‖v‖2
(A0,A1)1/2,2

≤
∑
i∈I

‖v|ωi
‖2
(A0(ωi),A1(ωi))1/2,2

,

and then (2.69). �

The following lemma adapts a construction of [23] or [1] to our needs.

Lemma 2.5. Let k̃ be a positive integer and let ṽ be a continuous piecewise polyno-
mial of degree k̃ on Th, such that ṽT := ṽ|T is null at the endpoints of T , ∀T ∈ Th.
Then

‖ṽT ‖V (T ) � max{ρ, |β|h−1
T , εh−2

T }1/2‖ṽT ‖L2(T ),(2.70)

‖ṽ‖V �
( ∑

T∈Th

max{ρ, |β|h−1
T , εh−2

T }‖ṽT ‖2
L2(T )

)1/2

.(2.71)

Similarly, let v̄ :=
∑

z∈Z◦
h

v̄z, such that v̄z is the hat function supported in

Sz := [z − 1/2 · min{hz, ε
1/2ρ−1/2}, z + 1/2 · min{hz, ε

1/2ρ−1/2}],
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x

v̄z

z

min{hz, ε
1/2ρ−1/2}

Figure 2. Construction of v̄z in Lemma 2.5

as in Figure 2. Then

max{ρ, |β|h−1
z ,εh−2

z }1/2‖v̄‖L2(Sz)(2.72)

� max{ρ1/2ε1/2, |β|, εh−1
z }1/2|v̄(z)|,∑

T∈Th

max{ρ, |β|h−1
T ,εh−2

T }‖v̄‖2
L2(T )(2.73)

�
∑

z∈Z◦
h

max{ρ1/2ε1/2, |β|, εh−1
z }|v̄(z)|2,

‖v̄‖V (Sz) � max{ρ1/2ε1/2, |β|, εh−1
z }1/2|v̄(z)|,(2.74)

‖v̄‖V �

⎛⎝ ∑
z∈Z◦

h

max{ρ1/2ε1/2, |β|, εh−1
z }|v̄(z)|2

⎞⎠1/2

.(2.75)

Proof. We recall the usual inverse inequality

ε1/2|ṽT |H1(T ) � ε1/2h−1
T ‖ṽT ‖L2(T ).

Then we get

‖βṽ′T ‖C0(T ) = ‖ṽT ‖E(T ) � max{ρ, εh−2
T }1/2‖ṽT ‖L2(T ),

‖βṽ′T ‖C1(T ) = ‖βṽ′T ‖E∗(T ) � |β|h−1
T max{ρ, εh−2

T }−1/2‖ṽT ‖L2(T ),

whence, using interpolation [22, Theorem 1.3.3.a],

‖βṽ′T ‖(C0(T ),C1(T ))1/2,2
� |β|1/2h

−1/2
T ‖ṽT ‖L2(T ).

Then, from (2.68), we obtain (2.70). Thanks to (2.69), we get (2.71).
For what concerns (2.72), it easily follows from the inverse inequality

(2.76) ‖v̄z‖L2(Sz) � |Sz|1/2|v̄z(z)|,
where |Sz| := min{hz, ρ

−1/2ε1/2} is the length of the support Sz of v̄z. Then, after
squaring (2.72) and summing over the elements, since hz 
 hT when z is a node of
T , we get (2.73).
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By the same reasoning as for (2.70), we obtain

(2.77) ‖v̄z‖V (Sz) � max{ρ, |β||Sz|−1, ε|Sz|−2}1/2‖v̄z‖L2(Sz).

Then we can use (2.76) in (2.77), obtaining

(2.78) ‖v̄z‖V (Sz) � max{ρ|Sz|, |β|, ε|Sz|−1}1/2|v̄z(z)|,

and then (2.74), since |Sz| = min{hz, ρ
−1/2ε1/2}. Finally, thanks to (2.69), from

(2.74) we get (2.75). �

Our main result is stated in the next theorem.

Theorem 2.6. Let u be the solution of (1.1) and let uh be given either by the plain
Galerkin method (2.1) or by the SUPG method (2.2)–(2.3). Then

(2.79) η̌V � ‖u − uh‖V � η̂V .

Proof. Thanks to (2.13), we have

(2.80) ‖u − uh‖V 
 ‖f − �Luh‖V ∗ .

Then, we have to prove that

(2.81) η̌V � ‖f − �Luh‖V ∗ � η̂V .

Let Ih,0 be the interpolant operator defined in §2.3. Then

(2.82)
sup

v∈H1
0

〈f − �Luh, v〉
‖v‖V

≤ sup
v∈H1

0

〈f − �Luh, Ih,0v〉
‖v‖V

+ sup
v∈H1

0

〈f − �Luh, v − Ih,0v〉
‖v‖V

= I + II.

The pairing 〈f − �Luh, Ih,0v〉, appearing in I, is either null, for the plain Galerkin
method, or

〈f − �Luh, Ih,0v〉 =
∑

T∈Th

τT

∫
T

(f − �Luh) (βIh,0v)′

for the SUPG method. Thus the Cauchy-Schwartz inequality∫
T

(f − �Luh) (βIh,0v)′ ≤ ‖f − �Luh‖L2(T )‖ (βIh,0v)′ ‖L2(T )

and (2.55) yield

(2.83) I �
( ∑

T∈Th

η2
V,T

)1/2

.

Integrating by parts, element by element, we get

〈f − �Luh, v − Ih,0v〉 =
∑

T∈Th

∫
T

(f − �Luh) (v − Ih,0v)

+
∑

z∈Z◦
h

−ε [u′
h] (z) (v − Ih,0v) (z).

Then, by means of the Cauchy-Schwartz inequality and (2.56)–(2.57) we now get

(2.84) II �
( ∑

T∈Th

η̂2
V,T +

∑
z∈Z◦

h

η̂2
V,z

)1/2

.

This gives the estimates from above stated in (2.79).
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Now, we turn our attention to the estimation below of ‖f − �Luh‖V ∗ . By a usual
scaling argument (recall that f − �Luh is a polynomial of degree at most k in each
element) we have

η̌2
V,T 


∫
T

qT min{ρ−1, |β|−1hT , ε−1h−2
T }(f − �Luh)2,

where qT is the quadratic bubble on T such that ‖qT ‖L∞(T ) = 1. Setting

ṽ :=
∑

T∈Th

qT min{ρ−1, |β|−1hT , ε−1h−2
T }(f − �Luh),

we then have ∑
T∈Th

η̌2
V,T 
 〈f − �Luh, ṽ〉 .

Moreover, since the function ṽ defined above is a piecewise polynomial of degree
k̃ = k + 2, null at the nodes, we can apply Lemma 2.5, and in particular (2.71),
obtaining

‖ṽ‖V �
( ∑

T∈Th

η̌2
V,T

)1/2

.

Therefore

(2.85)

( ∑
T∈Th

η̌2
V,T

)1/2

=

∑
T∈Th

η̌2
V,T(∑

T∈Th
η̌2

V,T

)1/2
� 〈f − �Luh, ṽ〉

‖ṽ‖V
� ‖f − �Luh‖V ∗ .

Similarly, we define v̄ =
∑

z∈Z◦
h

v̄z as in Lemma 2.5, with

v̄z(z) := min{ρ−1/2ε−1/2, |β|−1, ε−1h−1
x }ε[u′

h](z).

Then we have, integrating by parts,

(2.86)

∑
z∈Z◦

h

η̌2
V,z =

∑
z∈Z◦

h

ε[u′
h](z)v̄z(z)

= 〈f − �Luh, v̄〉 −
∑

T∈Th

∫
T

(f − �Luh)v̄

= I + II.

Using (2.75) we get

I ≤ ‖f − �Luh‖V ∗‖v̄‖V � ‖f − �Luh‖V ∗

⎛⎝ ∑
z∈Z◦

h

η̌2
V,z

⎞⎠1/2
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and, for (2.73) and (2.85),

II ≤
( ∑

T∈Th

min{ρ−1, |β|−1hT , ε−1h2
T }‖f − �Luh‖2

L2(T )

)1/2

·
( ∑

T∈Th

max{ρ, |β|h−1
T , εh−2

T }‖v̄‖2
L2(T )

)1/2

≤
( ∑

T∈Th

η̌2
V,T

)1/2
⎛⎝ ∑

z∈Z◦
h

max{ρ1/2ε1/2, |β|, εh−1
x }|v̄(z)|2

⎞⎠1/2

� ‖f − �Luh‖V ∗

( ∑
T∈Th

η̌2
V,z

)1/2

.

Using the last estimates in (2.86) we end up with

(2.87)

( ∑
T∈Th

η̌2
V,z

)1/2

� ‖f − �Luh‖V ∗ .

Collecting (2.82)–(2.87) and recalling (2.81), we finally get (2.79). �

2.5. One-dimensional numerical tests. In this section we test the a-posteriori
error estimators (2.66)–(2.67), and compare them with those of [23].

We only perform tests in the advection-dominated regime (in the other regimes,
when diffusion or the reaction-dominates, the present estimators coincide with those
of [23]). We consider here two simple model problems: a one-dimensional advection-
diffusion-reaction problem, with ε = 10−6, β = ρ = 1,

(ADR)

{
−10−6u′′ + u′ + u = f in (0, 1),

u(0) = u(1) = 0,

and a one-dimensional advection-diffusion problem, with ε = 10−6, β = 1 and
ρ = 0,

(AD)

{
−10−6u′′ + u′ = f in (0, 1),

u(0) = u(1) = 0,

for different right-hand sides f .
The theory of [23] encompasses (ADR) but not (AD). Indeed, in [23] the problem

is assumed to be L2-coercive, uniformly with respect to the coefficients (in our one-
dimensional example, this means that the reaction coefficient ρ is taken fixed and
positive) and the estimates do not depend explicitly on ρ, but only on ε and β.
However, a straightforward generalization of [23] allows for any ρ ≥ 0, and leads to
the following (one-dimensional) estimators whose expression depends on all of the
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coefficients:

(2.88)

η̌E :=

⎛⎝ ∑
T∈Th

η̌2
E,T +

∑
z∈Z◦

h

η̌2
E,z

⎞⎠1/2

,

η̂E :=

⎛⎝ ∑
T∈Th

η̂2
E,T +

∑
z∈Z◦

h

η̂2
E,z

⎞⎠1/2

,

where

(2.89)

η̌2
E,T =

min
{
ρ−1, ε−1h2

T

}
1 + min{|β|2h2

T ε−2, |β|2ε−1ρ−1}‖f − �Luh‖2
L2(T ),

η̌2
E,z =

min
{
ρ−1/2ε−1/2, ε−1hz,

}
1 + min{|β|2h2

zε
−2, |β|2ε−1ρ−1} (ε [u′

h]( z))2,

η̂2
E,T = min{ρ−1, ε−1h2

T }‖f − �Luh‖2
L2(T ),

η̂2
E,z = min{ρ−1/2ε−1/2, ε−1hz} (ε [u′

h]( z))2.

If uh is a plain Galerkin or SUPG discrete solution of the problem (1.1), one has2

(as in [23, Proposition 4.1])

(2.90) η̌E � ‖u − uh‖E � η̂E .

In what follows, uh is computed by a piecewise linear SUPG-FEM scheme (2.2),
with stabilizing parameter

(2.91) τT := hT /(2|β|T ) = hT /2.

The exact solution u is also approximated numerically, on a fine mesh which fully
resolves the smallest scales of the problem.

Our aim is to measure the effectivity indeces (e.i.) for estimators (2.88)–(2.89)
and (2.66)–(2.67), that is, the quantities

η̌E

‖u − uh‖E
and

η̂E

‖u − uh‖E
,

and
η̌V

‖u − uh‖V
and

η̂V

‖u − uh‖V
,

respectively.

2A proof of (2.90) can be given also imitating the one of Theorem 2.6. We sketch it in what
follows, assuming a uniform mesh and considering the plain Galerkin method for the sake of
simplicity. First, one has

‖u − uh‖E ≤ ‖f − �Luh‖E∗ � (1 + min{|β|hε−1, |β|ε−1/2ρ−1/2})‖u − uh‖E ;

indeed, the left bound above comes from the coercivity of �L, while the right bound follows from
the Cauchy-Schwartz inequality and the Galerkin orthogonality. The second step is

η̂E � ‖f − �Luh‖E∗ � η̂E ,

which can be proved similarly to (2.81), replacing β with 0 whenever β appears in ‖ · ‖V ∗ , ‖ · ‖V

and in the estimators. Together, the two estimates give (2.90).
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Figure 3. Numerical errors for problem (ADR), and f(x) =
cos(5/2πx), on uniform meshes
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Figure 4. Effectivity indeces for the problem considered in Figure 3
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Figure 5. Numerical errors for problem (AD), and f(x) =
cos(5/2πx), on uniform meshes
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Figure 6. Effectivity indeces for the problem considered in Figure 5
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For the evaluation of ‖ · ‖V we adopt the following procedure: on a fine mesh
we assemble the scalar product A0 and A1, corresponding to the norms in (2.15);
then we compute a generalized eigenvalues decomposition

(2.92) A1 ∗ W = A0 ∗ W ∗ D,

where W and D denote the eigenvectors and the diagonal eigenvalue’s matrices,
respectively. Finally, we approximate the scalar product associated to ‖ · ‖V by the
matrix V := (A0 ∗ W)t ∗ D1/2 ∗ (A0 ∗ W). This procedure is motivated by the
construction of interpolated norms as described in [13, §2.1].

In the first two tests we set f(x) = cos(5/2πx), and we compute uh on a sequence
of uniform meshes of 2i nodes, with i = 2, . . . , 7. The numerical errors ‖u − uh‖E

and ‖u − uh‖V are plotted in Figures 3 and 5, for (ADR) and (AD), respectively.
The exact solution has a boundary layer at x = 1, which is under-resolved on all of
the meshes. For that reason, in Figures 3 and 5 we do not see any order convergence
of the numerical solution uh towards the exact solution u. In Figures 4 and 6 we
plot the e.i. for these two tests. We can see that η̂V and η̌V give quite satisfactory
results, with e.i. that are less than one order of magnitude close to the optimality
(e.i.= 1), and perform better than η̂E and η̌E . Notice the poor performance of η̂E

and η̌E for (AD) (recall that these estimators are based on the coercivity of the
differential operator, which is a very weak condition when ρ = 0).

In the second set of tests the exact solution u has no layers, with f(x) = x2/2 +
x/2 − 1/2 for (ADR) and f(x) = x − 1/2 for (AD). The meshes, as before, are
uniform with 2i nodes, i = 2, . . . , 7. Now we see the expected order of convergence
for ‖u − uh‖E and ‖u − uh‖V , which is 2 and 3/2 for (ADR) (see Figure 7) and 1
and 3/2 for (AD) (see Figure 9), respectively. Now η̂E is far from optimality, while
the other estimators give good effectivity indeces (see Figures 8 and 10).
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Figure 7. Numerical errors for problem (ADR), and f(x) =
x2/2 + x/2 − 1/2, on uniform meshes
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Figure 8. Effectivity indeces for the problem considered in Figure 7
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Figure 9. Numerical errors for problem (AD), and f(x) = x−1/2,
on uniform meshes
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Figure 10. Effectivity indeces for the problem considered in Figure 9

In the last tests we consider an adaptive procedure, for both (ADR) and (AD),
and f(x) = cos(5/2πx). We follow the strategy of [23]: we start with a uniform
mesh (5 elements) and, at each step, we compute the numerical solution uh, we
compute a local estimator, and mark for refinement the elements where the local
estimator is larger than one half of the maximum of the local estimators. For an
internal element T = (z−, z+), the local estimators are taken as

(2.93) η̂2
E,T + η̂2

E,z− + η̂2
E,z+

and

(2.94) η̂2
V,T + η̂2

V,z− + η̂2
V,z+ ,

respectively, with the obvious modification for the first and last element. The error
histories are shown in Figure 11 for (ADR), and in Figure 13 for (AD). In both
cases, the mesh is initially refined only in the layer region. When the boundary
layer (at x = 1) is captured, the refinement occurs in the whole domain, and the
errors start decreasing. In Figures 12 and 14 we plot the e.i. for the two cases, and
confirm that the estimators η̂E and η̌E are not robust, at least when the layer is
not resolved.
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Figure 11. Numerical errors for problem (ADR), and f(x) =
cos(5/2πx), with adaptive refinement
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Figure 13. Numerical errors for problem (AD), and f(x) =
cos(5/2πx), with adaptive refinement
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Figure 14. Effectivity indeces for the problem considered in Figure 13
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Finally, observe that, from ‖ · ‖Ai
≥ ‖ · ‖E and the definition of ‖ · ‖V , one has

‖ · ‖V ≥ ‖ · ‖E . Therefore

(2.95) ‖u − uh‖E � η̂V .

Though trivial, (2.95) is interesting because, comparing (2.67) with (2.89), we also
have η̂E ≥ η̂V . Then, (2.95) is a more effective estimate from above of the error
‖u − uh‖E than the estimate ‖u − uh‖E � η̂E . That is, η̂V is a better estimator of
‖u − uh‖E than η̂E . This is confirmed by the tests. For example, in Figure 15 we
consider (AD) with f(x) = cos(5/2πx) and compare the errors ‖u−uh‖E for the two
adaptive procedures driven by the local estimators (2.93) and (2.94), respectively;
the latter procedure gives meshes on which the error ‖u − uh‖E is in fact smaller.
Improvements are seen also for (ADR) (not shown).

A similar qualitative behavior of the estimators is observed when a different
stabilizing parameter τT is chosen for SUPG, or when the plain Galerkin method
is used for computing uh (the results are not shown).
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Figure 15. Numerical errors ‖u−uh‖E for problem (AD), f(x) =
cos(5/2πx), when using the local estimators (2.93) or (2.94), re-
spectively, for the adaptive refinement

3. Numerical tests in two-dimensions

We now consider the two-dimensional model problem

(3.1)
{ �Lu := −ε∆u + β · ∇u + ρu = f in Ω,

u = 0 on ∂Ω,

where Ω is the unitary (L = 1) square (0, 1)2. In the next tests, we shall take ε > 0,
β = [1 0], and ρ = 0. For the sake of simplicity, in the present section we denote
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the differential operator, the estimators, the norms, the mesh by the same notation
of §2, though we refer to new two-dimensional objects.

The previous a-posteriori estimates, which have been rigorously derived in §2 for
(1.1), can be formally extended in multi-dimensions. One possibility of doing that,
perhaps the most obvious, is the following. For the estimator, we set

(3.2)

η̂V :=

⎛⎝ ∑
T∈Th

η̂2
V,T +

∑
e∈E◦

h

η̂2
V,e

⎞⎠1/2

,

η̂2
V,T := min{ρ−1, ‖β‖−1(1 + log+(Pe))hT , ε−1h2

T }‖f − �Luh‖2
L2(T ),

η̂2
V,e := min{ρ−1/2ε−1/2, ‖β‖−1(1 + log+(Pe)), ε−1he}‖ε [∇uh · n] ‖2

L2(e),

where Th now denotes the decomposition of Ω into triangular elements T of diameter
hT , E◦

h is the set of the internal edges e of length he, [∇uh · n] is the jump of the
normal derivative of the discrete solution uh across a given edge. In the same way
we set

(3.3)

η̂E :=

⎛⎝ ∑
T∈Th

η̂2
E,T +

∑
e∈E◦

h

η̂2
E,e

⎞⎠1/2

,

η̂2
E,T := min{ρ−1, ε−1h2

T }‖f − �Luh‖2
L2(T ),

η̂2
E,e := min{ρ−1/2ε−1/2, ε−1he}‖ε [∇uh · n] ‖2

L2(e),

which is similar to the definition in [23], though we make the dependence on ρ
explicit, as in (2.89) (η̌V and η̌E are not taken into consideration in the next tests).
For what concern the norms, ‖ · ‖E is the multi-dimensional analogous of (2.7),
while for ‖ · ‖V we set

(3.4) ‖w‖2
V := ‖w‖2

E + ‖β‖−1‖β · ∇w‖2
H−1/2(Ω), ∀w ∈ H1

0 (Ω),

where ‖ · ‖H−1/2(Ω) is the dual of L−1/2‖ · ‖L2(Ω) + | · |H1/2(Ω)(see [13, §12.1]). The
definition (3.4) is inspired by (2.22), but it is not the multi-dimensional extension
of it, in a strict sense3. The advantage of using (3.4) is that it is not difficult to
evaluate ‖ · ‖H−1/2 . In particular, we use FFT on a uniform mesh.

We only consider two test cases. First, we set ε = 10−3, β = [1 0] and ρ = 0,
f(x, y) = 2x cos(πy); the exact solution exhibits an exponential layer at the outflow
x = 1 and characteristic layers at y = 0 and y = 1. For the second test we have
ε = 10−6, advection and reaction coefficients as before, f(x, y) = π cos(πx) sin(πy),
and the solution is now smooth up to the boundary.

In both cases, the finite element approximation uh is given by an SUPG formu-
lation [9] with stabilizing parameter τT := hT /(2||β||) = hT /2. The meshes are
uniform and obtained subdividing Ω into 2i × 2i squares, which are then cut into
two triangles; uh is computed for i = 3, . . . , 8, that is, h = 21/22−3, . . . , 21/22−8. As
an exact solution, we take the Galerkin approximation on a mesh of 221 triangles
(i.e., h = 21/22−10), which fully resolves the fine scales of u.

The effectivity indeces η̂V /‖u − uh‖V and η̂E/‖u − uh‖E are plotted in Figure 16
(first case, with layer) and Figure 17 (second case, no layers). The behavior of the

3The “rigorous” extension of (2.16) in multi-dimensions is also possible (see [19]), and guaran-
tees theoretical properties such as (2.21). However, its practical calculation by (2.92) in the tests
we propose is too heavy.
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Figure 16. Effectivity indeces for the two-dimensional test prob-
lem with layers
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Figure 17. Effectivity indeces for the two-dimensional test prob-
lem without layers

indeces is similar to the analogous one-dimensional cases. Consider that for Figure
16 we have ε = 10−3, and therefore on the finest mesh the regime is moderately
advection-dominated, whence the two estimators η̂V and η̂E are quite similar to
each other. Nevertheless, on coarser meshes η̂V is superior. This is more clear in
Figure 16, where the regime is strongly advection-dominated.
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We tested other cases (not shown) which are analogous to those considered in
§2.5, and the results are similar.

4. Conclusion

In the first part of this work, we have revised the theory of a-posteriori residual-
based error estimates (for finite element methods and elliptic problems) and have
discussed the results proposed in literature for advection-dominated problems. We
have seen that, in order to derive a meaningful estimate, it is important to use an
appropriate norm. Our choice of the norm ‖ · ‖V was based on the results of [21].

Then, for the one-dimensional problem, we have obtained upper and lower a-
posteriori estimators of the numerical error ‖u − uh‖V . When the advection is
dominant, our upper estimator η̂V differs from the lower estimator η̌V (at most)
by the factor (1 + log+(Pe))1/2. There is a weak loss of robustness, and then we
refer to the estimate as almost-robust. We have confirmed the theoretical results
by numerical tests, showing also that our estimators perform better than the well
known ones first proposed in [23].

The theory developed only encompasses the one-dimensional problem. In spite
of its simplicity, we have seen that a satisfactory a-posteriori analysis of (1.1) is not
a trivial task.

In two dimensions, we only performed a few basic numerical tests, showing that,
at least in the examples considered, our estimator seems to preserve the good
features of the one-dimensional case, and deserves further investigation.
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