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LATTICE-BOLTZMANN TYPE RELAXATION SYSTEMS
AND HIGH ORDER RELAXATION SCHEMES

FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

MAPUNDI BANDA, AXEL KLAR, LORENZO PARESCHI, AND MOHAMMED SEAÏD

Abstract. A relaxation system based on a Lattice-Boltzmann type discrete
velocity model is considered in the low Mach number limit. A third order re-
laxation scheme is developed working uniformly for all ranges of the mean free
path and Mach number. In the incompressible Navier-Stokes limit the scheme
reduces to an explicit high order finite difference scheme for the incompress-
ible Navier-Stokes equations based on nonoscillatory upwind discretization.
Numerical results and comparisons with other approaches are presented for
several test cases in one and two space dimensions.

1. Introduction

Many kinetic equations or discrete velocity models of kinetic equations yield,
in the limit for small Knudsen and Mach numbers, an approximation of the In-
compressible Navier-Stokes (INS) equations. A classical example is given by the
discrete velocity models used for Lattice-Boltzmann methods; see [6, 9, 19, 10, 8].
These discrete velocity models can be viewed as relaxation systems for the INS
equations.

Relaxation type schemes have been used successfully to discretize such relaxation
systems. In particular, a large number of numerical methods for kinetic equations
with stiff relaxation terms have been considered in fluid dynamics or diffusive lim-
its. For these relaxation methods and asymptotic-preserving methods, we refer to
[11, 7, 26, 23, 24, 25, 28] and for more general applications of relaxation schemes we
refer to the recent review paper [18]. We mention here that, in the context of hy-
perbolic conservation laws relaxation schemes are closely related to central schemes
[14, 37, 1, 22, 34, 31, 30, 41], in the sense that both approaches provide efficient
high resolution and Riemann solver free numerical methods for hyperbolic conser-
vation laws. Applications of central schemes to problems with stiff sources have
been considered in [35, 15].

The aim of the present paper is to present a methodology for developing com-
putational schemes for INS based on an appropriate discretization of a so-called
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relaxation system; see Section 2 for more details of such a system. Such a re-
laxation system is derived from a Lattice-Boltzmann type discrete velocity model
with diffuse scaling. The analytical derivations also demonstrate a relationship be-
tween the Lattice-Boltzmann method and such relaxation-based schemes. On the
other hand one may refer to [30, 31, 32, 33], and references therein, for alternative
approaches based on Godunov type methods.

In the present paper a third order relaxation scheme is developed. The scheme
works with uniform accuracy with respect to the Knudsen and Mach numbers,
and in the low Mach number limit it reduces to a third order explicit scheme for
the INS equations. This is achieved by combining the ideas developed in [29, 24,
25] with third order nonoscillatory spatial discretizations and IMEX Runge-Kutta
time discretizations [4, 38]. The high order nonoscillatory upwind method for the
convective part of the relaxation system turns, in the INS limit (the relaxed scheme),
into a high order treatment of the nonlinear convective parts of the INS equations.
Clearly, to obtain only a discretization of the limit INS equations, one can use the
above mentioned spatial discretization on the relaxation system and apply any high
order time discretization directly to the resulting semi-discrete relaxed schemes.
This allows us to obtain high order INS solvers with better stability properties.

The rest of the paper is organized in the following way. Section 2 contains the
Lattice-Boltzmann type discrete velocity model and its equivalent associated closed
moment system relaxing to the INS equations. Some simplified relaxation systems
are also presented. In particular we introduce a simplified relaxation system that is
suitable to provide relaxed schemes for the incompressible Navier-Stokes equations.
Section 3 describes the time and space discretizations and includes a discussion of
the discretization of the limit equations that originate from the schemes. Finally,
Section 4 contains a numerical investigation of the schemes and a comparison with
several different approaches in one and two space dimensions.

2. Lattice-Boltzmann type discrete velocity models

and simplified relaxation systems

2.1. The Lattice-Boltzmann moment system. The two-dimensional kinetic
equation

(1)
∂f

∂t
+ v · ∇f = J(f)

describes the evolution of a particle density f(x,v, t) with x = (x, y) ∈ R
2 and

v = (v1, v2) ∈ R
2. The left hand side of (1) represents free transport of the

particles, while the right hand side describes interactions through collisions. For
discrete models in 2D we have

v ∈ {c0, . . . , cN−1}, ci ∈ R
2.

Here we consider a model with nine velocities (N = 9)

c1 = ( 1
0 ) , c2 = ( 0

1 ) , c3 =
(−1

0

)
, c4 =

(
0
−1

)
,

c5 = ( 1
1 ) , c6 =

(−1
1

)
, c7 =

(−1
−1

)
, c8 =

(
1
−1

)
,

and c0 = 0. In the discrete case, the v-dependence of the particle distribution
f(x,v, t) is uniquely determined through N functions

fi(x, t) = f(x, ci, t), i = 0, . . . , N − 1.
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Macroscopic quantities like mass–, momentum– or energy–density are obtained by
taking velocity moments of f . If ζ is any v-dependent function, we denote the
discrete velocity integral by

〈ζ〉 =
N−1∑
i=0

ζ(ci).

Mass and momentum density are then given by

(2) ρ(x, t) = 〈f(x,v, t)〉 and ρu(x, t) = 〈vf(x,v, t)〉 .

In the following we denote the components of the velocity by u = (u1, u2). In
Lattice-Boltzmann applications, the collision operator J(f) in (1) is typically of
BGK-type

(3) J(f) = −1
τ

(f − feq).

The parameter τ > 0 is called relaxation time and feq is the equilibrium distribution.
In the isothermal case, feq depends on f through the parameters ρ and u which
are calculated according to (2); see for example [19, 20, 42]. For the standard
D2Q9-model [40] with 9 velocities, we have

feq[ρ,u](v) = ρ

(
1 + 3u · v − 3

2
|u|2 +

9
2
(u · v)2

)
f∗(v),

where f∗ is defined by

f∗(ci) =

⎧⎪⎨
⎪⎩

4
9 , i = 0,
1
9 , i = 1, . . . , 4,
1
36 , i = 5, . . . , 8.

The equilibrium distribution is constructed in such a way that

〈J(f)〉 = 0 and 〈vJ(f)〉 = 0,

which reflects conservation of mass and momentum in the collision process.
In order to obtain a relation between the kinetic equation (1) and the incom-

pressible Navier-Stokes system, we introduce the diffusive scaling x → x/ε, t → t/ε2

together with a rescaling of velocity u → εu. This scaling describes the small Knud-
sen and low Mach number limit of kinetic equations; see [44, 12, 5, 21, 1] for details.
Under these transformations, (1) turns into

(4)
∂f

∂t
+

1
ε
v · ∇f = − 1

ε2τ
(f − feq[ρ, εu]).

In our case, (4) consists of nine equations for the occupation numbers f0, . . . , f8.
In order to get closer in notation to the Navier-Stokes system, we transform (4)
into an equivalent set of moment equations (see also [29, 13] for a similar approach)
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using moments based on the following v-polynomials [17]:

P0(v) = 1,

P1(v) =
v1

ε
, P2(v) =

v2

ε
,

P3(v) =
v2
1

ε2
− 1

3ε2
, P4(v) =

v1v2

ε2
, P5(v) =

v2
2

ε2
− 1

3ε2
,

P6(v) =
(3|v|2 − 4)v1

ε3
, P7(v) =

(3|v|2 − 4)v2

ε3
,

P8(v) =
9|v|4 − 15|v|2 + 2

ε4
.

Note that 〈P0f〉 = ρ, 〈P1f〉 = ρu1 and 〈P2f〉 = ρu2. The second order moments
form a symmetric tensor

Θ = (Θx,Θy) =
(

θ11 θ12

θ12 θ22

)
=

(
〈P3f〉 〈P4f〉
〈P4f〉 〈P5f〉

)
,

where

Θx =
(

θ11

θ12

)
, Θy =

(
θ12

θ22

)
,

and for the remaining moments we set

q =
(

q1

q2

)
=

(
〈P6f〉
〈P7f〉

)
, s = 〈P8f〉 .

The equations of mass and momentum conservation are

(5)
∂tρ + div ρu = 0,

∂tρu + divΘ +
1

3ε2
∇ρ = 0.

Here, the divergence is applied to the rows of Θ. The equation for Θ is

(6) ∂tΘ +
2

3ε2
S[ρu] +

1
3
Q[q] = − 1

ε2τ
(Θ− ρu ⊗ u),

where

S[u] =
1
2

(
2∂xu1 ∂yu1 + ∂xu2

∂yu1 + ∂xu2 2∂yu2

)
,

and

Q[q] =
(

∂yq2 ∂yq1 + ∂xq2

∂yq1 + ∂xq2 ∂xq1

)
.

Finally, the third and fourth order moments satisfy

(7)
∂tq +

1
ε2

div
(

θ22 2θ12

2θ12 θ11

)
+

1
6
∇s = − 1

ε2τ
q,

∂ts +
4
ε2

divq = − 1
ε2τ

s.

Altogether, we obtain a hyperbolic system with stiff relaxation terms. The deter-
mination of the diffusion limit of the above system is straightforward. From the
momentum equation in (5) we conclude that ∇ρ tends to zero as ε → 0. Hence, ρ
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approaches a constant ρ̄ (which is the Boussinesq relation in the isothermal case).
Writing ρ = ρ̄(1 + 3ε2p), equation (5) transforms into

(8)
∂tp +

1
3ε2

divu = − div (pu),

∂tu + div
1
ρ̄
Θ + ∇p = −3ε2∂t(pu).

For ε → 0, equation (6) yields at the lowest order

(9)
1
ρ̄
Θ = u ⊗ u − 2τ

3
S[u].

Since (7) decouples completely from the other equations (in lowest order) and since
2 divS[u] = (∆ + ∇div )u, we obtain from (8) and (9) the incompressible Navier-
Stokes equations as a limiting system

(10)
divu = 0,

∂tu + divu ⊗ u + ∇p =
τ

3
∆u,

where the Reynolds number is related to the relaxation time by Re = 3/τ .
We remark that (5), (6) and (7) can be viewed as a relaxation system for the

Navier-Stokes equations (10).

2.2. Simplified relaxation systems. We consider the system of equations in (6)
and (8). For numerical reasons we simplify this system in such a way that the limit
as ε tends to zero is preserved, i.e. is the same as in the original system, (6) and
(8).

From equation (8) we neglect the term − div pu and −3ε2∂tpu. From equation
(6) we neglect the term 1

3Q[q] and introduce a new term, ∇a[u], as follows:

For p,u = (u1, u2) and Θ = (Θx,Θy) =
(

θ11 θ12

θ12 θ22

)
as defined above, we

consider the system

(11)

∂tp +
1
ε2

divu = 0,

∂tu + divΘ +
1
ρ̄
∇p = 0,

∂tΘ + ∇a[u] +
2
ε2

Sε[u] = − 1
ε2τ

(Θ− u ⊗ u),

where

Sε[u] = S[u] − ε2

2
∇a[u].

We have added and subtracted the term

∇a[u] =
(
a2∂xu, b2∂yu

)
=

(
a2∂xu1 b2∂yu1

a2∂xu2 b2∂yu2

)
,

where a2∂xu =
(

a2∂xu1

a2∂xu2

)
and b2∂yu =

(
b2∂yu1

b2∂yu2

)
with a =

(
a
b

)
∈ R

2
+. Obviously

the limit equations for this system are again the incompressible Navier-Stokes equa-
tions with Reynolds number Re = 1/τ .
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Remark 1. Considering the nonstiff advection parts in (11) separately for u and
Θ we obtain a hyperbolic system with characteristic speeds ±a and ±b in x and y
direction

(12)
∂tu + divΘ = 0,

∂tΘ + ∇a[u] = 0.

As we will see in section 4, a is chosen depending on the local speeds.

We can build a second relaxation system by neglecting the time derivative in the
first equation of (11) without altering the other equations. This is practical if one
considers an implementation in the vorticity formulation as given below. To this
aim we consider the system

(13)

divu = 0,

∂tu + divΘ +
1
ρ̄
∇p = 0,

∂tΘ + ∇a[u] = − 1
ε2τ

(Θ− u ⊗ u + 2τSε[u]).

We introduce the vorticity ω = ∂xu2 − ∂yu1 by taking a two-dimensional curl of
the second and third equation in (13) and applying the divergence-free condition,
divu = 0. A relaxation system for vorticity is then derived as

∂tω + divΦ = 0,(14)

∂tΦ + ∇a[ω] = − 1
ε2τ

(Φ− ωu + 2τ∇ω),

where

ω ∈ R, Φ = ∇× Θ =
(

ϕ1

ϕ2

)
∈ R

2, u =
(

u1

u2

)
∈ R

2, ∇a[ω] =
(

a2∂xω
b2∂yω

)
.

For Θ the curl is taken row-wise. Then u ∈ R
2 is determined by solving the Poisson

problem

∆ψ = ω, u = ∇⊥ψ =
(
−∂yψ
∂xψ

)
,

with ψ denoting the stream function. In the latter relaxation equations (13) the
whole system reduces to only three equations (for the variables ω, ϕ1, ϕ2) instead
of six (for the variables u1, u2, θ11, θ12, θ21, θ22) as in the case of primitive variables.

Having developed the Lattice-Boltzmann type relaxation systems (equation (11),
(13) or (14)), what remains is to develop high-order relaxation schemes which in
the limit as ε → 0 converge uniformly to numerical schemes for incompressible
Navier-Stokes equations. We will present a full discussion on some schemes that
can be used to compute the relaxation systems in Section 3 below.

3. Numerical schemes

To develop numerical schemes for the relaxation systems developed in Section
2.2 above, we will consider equation (11). This equation is used as a case study for
our derivations since to develop numerical schemes for the other systems, namely
(13) and (14), one needs analogous manipulations and neglecting similar terms as
presented above.
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3.1. Space discretizations. In this section high order upwind discretizations are
developed for the nonstiff advection part in (11). The stiff part is treated by high
order centered differences, as in [24, 25]. In the remainder of this section the time
continuous version of the scheme is considered (method of lines). The full space-
time discretization is obtained combining the spatial discretization obtained here
with the time discretization described in the next subsection.

To discretize the equations in space we use a uniform grid in the x- and y-
directions with grid points (xi, yj) with spacing h. Consider the nonstiff linear part
of the system in equations (11) as presented in (12). One observes that for the x-
direction Θx ±au are the characteristic variables associated with the characteristic
speeds ±a. For the y-direction the characteristic variables associated with the
characteristic speeds ±b are Θy±bu. According to these considerations the values of
the characteristic variables are determined at cell-boundaries following the approach
in [26]. This can be done in a straightforward way for a second order method. For
a third order method we use for the reconstruction step a third order CWENO
interpolant [1]. Similar reconstructions were also applied in [2, 3]. We report for
the convenience of the reader the polynomials, pij(z; x), for the reconstruction in
2D in the x-direction. These polynomials, in the cell (i, j) with cell-center (xi, yj),
in the case of a second order method, are given by

pij(z; x) = zij + sij(x − xi),(15)

where the MinMod limiter in sij ,

sij(z) =
1
h

MinMod(zij − zi−1j , zi+1j − zij),

is applied componentwise. The variable zij denotes the cell average of a vector
function z(x, y) in the cell (i, j) taken from a set, z = {zij}, for all cells (i, j) in the
computational domain.

For the third order CWENO case using Simpson’s rule we have

pij(z; x) = wLPL
ij(z; x) + wRPR

ij(z; x) + wCPC
ij(z; x),(16)

with

PR
ij(z; x) = zij +

1
h

(zi+1j − zij)(x − xi),

PL
ij(z; x) = zij +

1
h

(zij − zi−1j)(x − xi),

and

PC
ij(z; x) = zij −

1
12

(zi+1j − 2zij + zi−1j) −
1
12

(zij+1 − 2zij + zij−1)

+
1
2h

(zi+1j − zi−1j)(x − xi) +
1
h2

(zi+1j − 2zij + zi−1j)(x − xi)2.

In expression (16) for k = L, R, C

wk =
αk∑
l αl

, αk =
ck

(γ + ISk)β
,
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and

cL =
1
4
, cR =

1
4
, cC =

1
2
,

ISL = (vij − vi−1j)2, ISR = (vi+1j − vij)2,

ISC =
13
3

(vi+1j − 2vij + vi−1j)2 +
1
4
(vi+1j − vi−1j)2,

with γ = 10−6, β = 2. Clearly any other high order reconstruction procedure
applies.

We proceed further with the MUSCL approach as in [26] to determine the char-
acteristic variables at the boundary of the cells [xi−1/2, xi+1/2]

(Θx + au)i+1/2j = pij(Θx + au; xi+1/2),

(Θx − au)i+1/2j = pi+1j(Θx − au; xi+1/2).

An analogous procedure is used for the y direction and (Θy ± bu)ij+1/2.
We denote by F(1)

h ,F(2)
h the discretization of the convective parts divΘ and

∇a[u] in equation (11), respectively. They are described as follows:
Using the reconstruction polynomial given above componentwise one obtains

F(1)
h (Θ,u) =

1
h

(Θx
i+1/2j − Θx

i−1/2j) +
1
h

(Θy
ij+1/2 − Θy

ij−1/2),

and

F(2)
h (Θ,u) =

(
1
h

(a2ui+1/2,j − a2ui−1/2j),
1
h

(b2uij+1/2 − b2uij−1/2)
)

,

where the numerical fluxes are given by

Θx
i+1/2j =

1
2
(Θx

ij + Θx
i+1j) −

a

2
(ui+1j − uij)

+
1
2
(σ(1)

ij (Θx + au) − σ
(1)
i+1j(Θ

x − au)),

Θy
ij+1/2 =

1
2
(Θy

ij + Θy
ij+1) −

b

2
(uij+1 − uij)

+
1
2
(σ(2)

ij (Θy − bu) − σ
(2)
ij+1(Θ

y − bu)),

ui+1/2j =
1
2
(uij + ui+1j) −

1
2a

(Θx
i+1j − Θx

ij)

+
1
2a

(σ(1)
ij (Θx + au) + σ

(1)
i+1j(Θ

x − au)),

uij+1/2 =
1
2
(uij + uij+1) −

1
2b

(Θy
ij+1 − Θy

ij)

+
1
2b

(σ(2)
ij (Θy + bu) + σ

(2)
ij+1(Θ

y + bu)).

Here a and b can be chosen locally; see the last section for further details. In the
second order case the σ

(k)
ij , k = 1, 2, are given by

σ
(1)
ij (z) =

1
2
MinMod(zij − zi−1j , zi+1j − zij),

and

σ
(2)
ij (z) =

1
2
MinMod(zij − zij−1, zij+1 − zij).
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In the third order case the CWENO reconstruction gives

σ
(1)
ij (z) =

wR

2
(zi+1j − zij) +

wL

2
(zij − zi−1j) +

wC

4
(zi+1j − zi−1j)

−wC

12
(zi+1j − 2zij + zi−1j) −

wC

12
(zij+1 − 2zij + zij−1)

+
wC

4
(zij+1 − 2zij + zij−1),

and

σ
(2)
ij (z) =

wR

2
(zij+1 − zij) +

wL

2
(zij − zij−1) +

wC

4
(zij+1 − zij−1)

−wC

12
(zij+1 − 2zij + zij−1) −

wC

12
(zi+1j − 2zij + zi−1j)

+
wC

4
(zi+1j − 2zij + zi−1j).

Now we must discretize the pressure variable and the stiff parts, i.e. terms with

the coefficient
1
ε2

, in equations (11). First, we denote the discrete gradient by
Gh and the discrete divergence by Dh. They are given by second or fourth order
centered differences, respectively. Sε

h and Sh denote second or fourth order centered
difference approximations of Sε and S.

Finally, we obtain a high order spatial discretization for the moment system
characterized by

ṗ +
1
ε2

Dh · u = 0,

u̇ + F(1)
h (Θ,u) + Ghp = 0,(17)

Θ̇ + F(2)
h (Θ,u) +

2
ε2

Sε
h(u) = − 1

ε2τ
(Θ− u ⊗ u),

or equivalently

Dh · Ghp − 2ε2p̈ = −Dh · F(1)
h (Θ,u),

u̇ + F(1)
h (Θ,u) + Ghp = 0,

Θ̇ + F(2)
h (Θ,u) = − 1

ε2τ
(Θ− u ⊗ u + 2τSε

h(u)).

A corresponding high order upwind based space discretization for the incompress-
ible Navier-Stokes equations is obtained by considering the limit of the above dis-
cretization as ε → 0:

Dh · Ghp = −Dh · F(1)
h (u),

u̇ = −F(1)
h (u⊗ u − 2τSh(u),u) − Ghp.

3.2. Time discretizations. To treat only the limit equations (ε = 0) we could use
any explicit high order Runge-Kutta method combined with a Poisson solver and
the limiting (relaxed) spatial discretization. The Poisson equation is in this case
only used to determine the divergence-free velocities via ∇p and not to advance
the pressure for one time step. For example, the maximum preserving schemes in
[34, 43] can be used or the DUMKA scheme [36] or simply a suitable Runge Kutta
method. Several numerical tests in this direction are presented in the last section.

We need to point out that it is necessary to be careful if an explicit time dis-
cretization is to be used. Due to the diffusion terms, standard explicit schemes
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would suffer from excessive time step restrictions since in that case ν∆t ≤ ch2 for
a suitable constant c of order unity, which depends on the scheme. This is where
DUMKA, as an explicit scheme, is advantageous to use since it has a large value of
c; hence larger time steps are admissible.

Further, a more challenging issue is to obtain a discretization of the relaxation
system that works uniformly for all ranges of the parameter ε, thus allowing us to
study the numerical passage from the discrete velocity models for the Boltzmann
equation to the INS regime.

To this aim we can use implicit-explicit (IMEX) Runge-Kutta methods of the
type developed in [4, 38]. In these schemes the nonstiff parts are treated explicitly
and the stiff ones are treated implicitly. In particular, we will treat the pressure-
velocity coupling in an implicit way. As we will see, in the small mean free path
limit ε → 0 this leads to a projection scheme for the incompressible Navier Stokes
equations. First, second and third order time discretizations are discussed in the
sequel.

We denote the time step by k and use the superscript n to denote the time
iterations. For the first order method we can use the following simple time dis-
cretization:

un+1 = un − k( divΘn + ∇pn+1),

Θn+1 = Θn − k∇a[un] − k

ε2τ

(
Θn+1 + 2τSε[un+1] − un+1 ⊗ un+1

)
,(18)

pn+1 = pn − k

ε2
divun+1.

Using the last equation in (18) into the first equation in (18) yields a Helmholtz
equation for the pressure

∆pn+1 − ε2

k2
pn+1 =

1
k

divun − div div Θn − ε2

k2
pn.(19)

This equation can be solved by a suitable iterative method. Then un+1 is deter-
mined using the first equation in (18).

Obviously, as ε → 0 the time integration scheme tends to a time discretization
of the incompressible Navier Stokes equations. We obtain for ε → 0 the Poisson
equation for the pressure

∆pn+1 =
1
k

divun − div divΘn,

together with

un+1 = un − k(divΘn + ∇pn+1),

Θn+1 = 2τS[un+1] − un+1 ⊗ un+1.

Thus, in the limit, we have obtained the usual projection method for the incom-
pressible Navier-Stokes equations; see, e.g. [39]. We note that the incompressibility
condition is fulfilled for u in every time step.

In IMEX notation the above first order scheme is given by the explicit and
implicit Butcher tableau [4, 38]

0 0 0
1 1 0

1 0

0 0 0
1 0 1

0 1
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For the above semi-implicit time discretization the usual hyperbolic and parabolic
CFL conditions have to be fulfilled to guarantee stability.

For the second order time discretization we choose a two stage IMEX Runge
Kutta method [38, 4] which guarantees second order accuracy in the stiff limit.
The associated explicit and implicit Butcher tableau are

0 0 0 0
γ γ 0 0
1 δ 1 − δ 0

δ 1 − δ 0

0 0 0 0
γ 0 γ 0
1 0 1 − γ γ

0 1 − γ γ

with γ = 1 −
√

2/2 and δ = 1 − 1/2γ. This yields

Step 1:

∆pn+1/2 − ε2

k2γ2
pn+1/2 = − ε2

k2γ2
pn +

1
kγ

divun − div divΘn,

un+1/2 = un − kγ
(
divΘn + ∇pn+1/2

)
,

Θn+1/2 = Θn − kγ∇a[un]

− kγ

ε2τ

(
Θn+1/2 − un+1/2 ⊗ un+1/2 + 2τSε[un+1/2]

)
.

Step 2:

∆pn+1 − ε2

k2γ2
pn+1 = − ε2

k2γ2
pn +

1
kγ

(
(1 − γ)divun+1/2 + γdivun

)
−

(
δdiv divΘn + (1 − δ)div divΘn+1/2

)
− 1 − γ

γ
∆pn+1/2,

un+1 = un − k
(
δdivΘn + (1 − δ)divΘn+1/2

)
− k

(
(1 − γ)∇pn+1/2 + γ∇pn+1

)
,

Θn+1 = Θn − k
(
δ∇a[un] + (1 − δ)∇a[un+1/2]

)

− k

ε2τ

(
(1 − γ)

(
Θn+1/2 − un+1/2 ⊗ un+1/2 + 2τSε[un+1/2]

)

+ γ
(
Θn+1 − un+1 ⊗ un+1 + 2τSε[un+1]

))
.

For ε → 0 we obtain a second order time discretization of the INS equations based
on the explicit scheme in the above IMEX method. Note that the divergence free
condition is guaranteed in the limit in every time step.

A third order method is developed based on a third order IMEX scheme [4, 38].
The associated explicit and implicit tables are
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0 0 0 0 0 0
1
2

1
2 0 0 0 0

2
3

11
18

1
18 0 0 0

1
2

5
6 −5

6
1
2 0 0

1 1
4

7
4

3
4 −7

4 0
1
4

7
4

3
4 −7

4 0

0 0 0 0 0 0
1
2 0 1

2 0 0 0
2
3 0 1

6
1
2 0 0

1
2 0 −1

2
1
2

1
2 0

1 0 3
2 −3

2
1
2

1
2

0 3
2 −3

2
1
2

1
2

The scheme was selected based on the fact that it seemed to have reasonable con-
vergence and stability properties based on the results presented in [38]. We omit
for brevity the details of the scheme.

Remark 2. In the previous schemes it is of paramount importance that the implicit
part of the time integrator is diagonally implicit. Fully implicit schemes (for which
the Butcher tableau of the implicit part contains nonzero elements above the main
diagonal) originate systems of nonlinear algebraic equations that need to be solved
using suitable iterative techniques.

Remark 3. In order to develop a relaxed scheme for the limit INS equations only,
one may use the simplified relaxation system (13).

4. Numerical results and examples

In this section we test the above schemes in several different situations. Our test
examples can be considered in four general categories: starting with the
1-D time dependent problem we first perform an accuracy test for the third or-
der scheme; second, we test if the scheme converges uniformly to the limit ε → 0; in
part 2 we consider a stationary problem in 2-D and test the ability of our scheme to
resolve discontinuous, solutions especially for the convection terms; and in part 3
the scheme is tested on time dependent incompressible Navier-Stokes problems in
2-D. Indeed with such a simplified approach, it will be demonstrated that competi-
tive schemes for solving incompressible flow problems have been developed.

4.1. Accuracy and convergence for 1-D test problems. Accuracy and con-
vergence of the scheme developed in the previous section is numerically investigated
for the relaxation system leading to the inviscid and viscous Burgers equation in
one space dimension, respectively. That means we consider a system analogous to
(13):

∂tu + ∂xΘ = 0,
(20)

∂tΘ + a∂xu = − 1
ε2

(Θ − 1
2
u2 + τ∂xu).

We consider the third order method developed above based on the CWENO recon-
struction and the third order IMEX scheme.

Test 1: Accuracy
In order to check the accuracy of our third-order relaxation scheme, we first

consider the one-dimensional inviscid Burgers equation (τ = 0 and ε = 0). We solve
the equations (20) in [0, 2π] augmented with the smooth initial data, u(x, 0) = 0.5+
sin(x), and periodic boundary conditions. We discretize the spatial domain into N
gridpoints, and we choose the relaxation parameter a = 1.5 in all computations.
Recall that the unique entropy solution of (20) is smooth up to the critical time
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T = 1. In Table 1 we show the error norms at the pre-shock time t = 0.5 when the
solution is still smooth using CFL = 0.75. The errors are measured by the difference
between the pointvalues of the exact solution and the reconstructed pointvalues
of the computed solution. As expected our scheme preserves the third order of
accuracy.

Table 1. Error-norms for the invscid Burgers problem.

N L∞-error Rate L1-error Rate L2-error Rate

40 0.37681E-01 —– 0.28977E-01 —– 0.30533E-01 —–
80 0.15964E-01 1.239 0.71792E-02 2.013 0.82323E-02 1.891
160 0.47363E-02 1.753 0.12559E-02 2.515 0.17511E-02 2.233
320 0.78772E-03 2.588 0.14477E-03 3.117 0.22551E-03 2.957
640 0.69819E-04 3.496 0.92831E-05 3.963 0.17196E-04 3.713
1280 0.65638E-05 3.411 0.61968E-06 3.905 0.13613E-05 3.659

Test 2: Uniform Convergence
In this example we investigate the uniform convergence behavior of the relax-

ing method for different values of ε. The uniform convergence of the method is
numerically investigated for the relaxation system, equation (20), leading to the
one-dimensional viscous Burgers equation. Once again we consider the third order
method developed above based on the CWENO reconstruction and the third order
IMEX scheme.

We plot the convergence rates for different values of ε in Figure 1. The rates
are determined by comparing the errors at time T = 1 computed from ∆t = 0.01,
∆t = 0.005, ∆t = 0.0025, and ∆t = 0.00125, respectively.

In space the energy norm is used. Third order accuracy is reached for very small
and very large values of ε, whereas for intermediate values a slight deterioration of
the accuracy is observed. This is expected and in good agreement with the results
obtained in [38].

10 10 5 10 4 10 3 10 2 10 1 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

ε

C
on

ve
rg

en
ce

 R
at

e

ν = 0.00001

u Component     
θ Component

10 10 5 10 4 10 3 10 2 10 1 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

ε

C
on

ve
rg

en
ce

 R
at

e

ν = 0.001

 u Component    
θ Component

Figure 1. Convergence rates for τ = 0.00001 and τ = 0.001
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Figure 2. The setup of the step profile. The z-axis depicts ‖u‖.

4.2. Stationary 2-D test problems. The first problem is a simple test case to
compare the spatial discretization of the convective term with the discretization
given by other methods. We compare the second and third order relaxed schemes
with different central methods [34, 31]. The problem we consider is the stationary
convection-diffusion problem [16]

div (u⊗ u) = τ∆u

on [0, 1]2. Here we consider the relaxed schemes ε → 0. For these stationary
problems our main focus will be on the qualitative behaviour of our schemes to
resolve the solutions with very sharp gradients.

The first example is pure convection of a step profile [16]. More details on how
this system is discretized and treated numerically can be found in [16]. This is a
simple but good test problem for examining the relative performance of different
numerical approximations to convection terms with sharp gradients for u1 and u2.
We consider (x, y) in [0, 1]2. The computation domain is divided into two sub-
domains which give a step profile as sketched in Figure 2.

The flow profile inside the domains is extended to the boundary. The computa-
tional domain is discretized using a 41 × 41 regular mesh for different flow angles
θ. Values for τ were also varied. The resulting nonlinear system is solved by the
Newton method using a GMRES-based solver described and implemented in [27].

The results are plotted in Figure 3. They show the computed profile at the line
x = 1

2 for both the velocity components u1 and u2. In the figures we make a com-
parison of the following second and third order schemes: Kurganov and Tadmor’s
(KT) second order scheme [34]; Kurganov and Levy’s (KL) third order scheme [1];
the relaxed scheme based on Jin and Xin’s (JX) second order approach [26] and
the new third order relaxed scheme (RKL) based on CWENO reconstruction.

In this and the following tests we have used the local characteristic speeds as in
[34, 1] to define a at the point (xi, yj):

ai+ 1
2 j = 2 max{|pij(u1; xi+ 1

2
)|, |pi+1j(u1; xi+ 1

2
)|},

bij+ 1
2

= 2 max{|pij(u2; yj+ 1
2
)|, |pij+1(u2; yj+ 1

2
)|},
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Figure 3. Comparison of different approximations of a stationary
step profile for u1 with different angles θ = π/4, 25 degrees on the
left and right, respectively.
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and ai− 1
2 j , bij− 1

2
in the same way. Here the polynomials pij are defined for scalar

variables u1 and u2 analogous to the definition in (15) or (16). The results for the
step profile in Figure 2 are shown in Figure 3.

In this figure profiles for the u1 are shown for τ = 0 and are compared with the
exact stationary profile [16]. The profiles for u2 are similar. Tests on small values
of τ = 10−6 were made, and the results are also similar. The second example
is pure convection of a box profile. We consider a box-shaped profile as shown
in Figure 4. This example was also presented in [16]. It is normally selected
because the severe, rapid change in the gradients in velocity resembles, in different
ways, many similar profiles found, for example, in practical flows in which severe
peak profiles are characteristic across shear layers. As in the previous example we
compare approximations of the profile across a vertical plane in the middle of the
solution domain. We compare the different schemes using a uniform 41× 41 mesh,
and the results are presented in Figure 5.

In Figure 5, we present results for stationary profiles of u2. The results for u1

are very similar.
Here too, since we are mainly investigating the performance of the approximation

on the convection terms, results for τ = 0 are presented. As one observes from the
figures the second and third order relaxed methods give results that are qualitatively
similar to the KT and KL scheme, respectively. In some cases, the relaxed scheme
is more accurate, and in other cases RKL is more accurate.

4.3. Instationary 2-D incompressible Navier-Stokes test problems. Here
we are especially interested in the results of the relaxing method for very small ε and
the results of the relaxed method setting ε = 0 for the incompressible Navier-Stokes
equations.

Problem 1: (Shear layer). The next problem is set up to test the behavior of
the discretization for nonstationary situations when steep gradients are involved.
We consider the following periodic problem [1]. Let (x, y) ∈ [0, 2π]2. The initial
conditions are

u(x, y, 0) =

⎧⎨
⎩

tanh( 1
ρ (y − π/2)), y ≤ π,

tanh( 1
ρ (3π/2 − y)), y > π,

and

v(x, y, 0) = δ sin(x),

with δ = 0.05 and ρ = π/15. We use 64 × 64 and 128 × 128 spatial grid points,
respectively. The vorticity system (14) and the associated relaxing method is used.

First we consider the situation in the incompressible Navier Stokes/Euler limit.
We compute the solution using the relaxing scheme with ε = 10−6 combined with
an IMEX method of first, second and third order.
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Figure 6 shows the evolution at time t = 4 for the first, second and third order
methods described in the paper for the Euler case (τ = 0 in (14)) and ε = 10−6.
Figure 7 shows the evolution at time t = 10 for the first, second and third order
methods for the Navier-Stokes case with τ = 0.01 and ε = 10−6.

To compare these results qualitatively with other methods, see for example [1].
A closer convergence study for the vorticity variable yields the results displayed
in Tables 2 and 3. The results show the second and third order of the schemes,
respectively, in the shear layer case. In the second order case we have used a van Leer
limiter instead of the minmod limiter. Minmod gives slightly worse results. As a
reference solution we used the solution obtained on the finest mesh of 528 × 528
gridpoints.

Finally, the situation with large ε is considered. Figure 8 shows the evolution at
time t = 10 for the third order methods for the Navier-Stokes case with τ = 0.01
and ε = 0.1 and for comparison ε = 10−6.

Table 2. Error-norms for the double shear layer problem with
τ = 0 and ε = 10−6 at t = 2.

Gridpoints L∞-error Rate L1-error Rate L2-error Rate

16 × 16 3.15715E-01 —– 5.79035E-01 —– 4.26853E-01 —–
32 × 32 8.54186E-02 1.886 1.79334E-01 1.691 1.26904E-01 1.750
64 × 64 2.23542E-02 1.934 4.91291E-02 1.868 3.39324E-02 1.903

128 × 128 5.58856E-03 2.000 1.26978E-02 1.952 8.50078E-03 1.997
264 × 264 1.29906E-03 2.103 3.10696E-03 2.031 1.98562E-03 2.098

Table 3. Error-norms for the double shear layer problem with
τ = 0 and ε = 10−6 at t = 2.

Gridpoints L∞-error Rate L1-error Rate L2-error Rate

16 × 16 1.12035E-02 —– 1.87151E-02 —– 1.62533E-02 —–
32 × 32 1.62774E-03 2.783 2.88411E-03 2.698 2.45659E-03 2.726
64 × 64 2.16565E-04 2.910 4.00016E-04 2.850 3.35331E-04 2.873

128 × 128 2.74676E-05 2.979 5.23789E-05 2.933 4.33645E-05 2.951
264 × 264 3.42870E-06 3.002 6.54736E-06 3.000 5.42057E-06 3.000
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Figure 6. Results for the Euler case: first order (top), second
order (medium) and third order (bottom).
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Figure 7. Results for the Navier-Stokes case: first order (top),
second order (medium) and third order (bottom).
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Figure 8. Results for the Navier-Stokes case: third order, ε = 0.1
and ε = 10−6.
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Figure 9. Driven Cavity, plot of the stream function for Re =
1000 and Re = 10000.

Problem 2: (Driven cavity). Finally, we consider a driven cavity situation with
x ∈ [0, 1]2 and the usual boundary conditions with a drift u = (ū, 0) parallel to the
boundary at the top of the square and u = 0 at the other sides. For the simulation
we use the third order relaxation method developed above based on the relaxation
system (14). Zero initial conditions are used for all moments. ū is chosen equal
to 1. ε is again chosen equal to 10−6 for the relaxing scheme. We use 128 × 128
spatial grid points. The time step is chosen according to the CFL condition. Figure
9 shows a plot of the stream-functions for Re = 1000 at t = 100 and Re = 10000
at t = 1000.

5. Conclusions

1. Several relaxation systems based on a Lattice Boltzmann type discrete
velocity model have been presented. In the diffusive limit the systems
relax towards the incompressible Navier-Stokes equations.

2. Second and third order relaxation schemes working uniformly in the incom-
pressible Navier-Stokes limit have been presented.
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3. The space discretization is obtained using second and third order upwind
discretization based on slope limiters and CWENO discretizations.

4. For the time discretization high order IMEX Runge Kutta methods have
been used to obtain uniform accuracy with respect to the stiff relaxation
time [38].
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