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CONVERGENCE OF A FINITE VOLUME SCHEME
FOR COAGULATION-FRAGMENTATION EQUATIONS

JEAN-PIERRE BOURGADE AND FRANCIS FILBET

Abstract. This paper is devoted to the analysis of a numerical scheme for
the coagulation and fragmentation equation. A time explicit finite volume
scheme is developed, based on a conservative formulation of the equation. It
is shown to converge under a stability condition on the time step, while a first
order rate of convergence is established and an explicit error estimate is given.
Finally, several numerical simulations are performed to investigate the gelation
phenomenon and the long time behavior of the solution.

1. Introduction

Coagulation and fragmentation processes arise in the dynamics of cluster growth
and describe the mechanisms by which clusters can coalesce to form larger clusters
or break apart into smaller pieces. In the simplest coagulation-fragmentation mod-
els the clusters are usually assumed to be fully identified by their size (or volume,
or number of particles). The coagulation-fragmentation models we consider in this
paper describe the time evolution of the cluster size distribution as the system
of clusters undergoes binary coagulation and binary fragmentation events. More
precisely, denoting by Cx the clusters of size x with x ∈ R

+ = (0,∞), the basic
reactions taken into account herein are

(1) Cx + Cx′
a(x,x′)−−−−→ Cx+x′ , (binary coagulation)

and

(2) Cx
b(x−x′,x′)−−−−−−−→ Cx−x′ + Cx′ , (binary fragmentation),

where a and b denote the coagulation and fragmentation rates respectively, and are
assumed to depend only on the size of the clusters involved in these reactions.

The dynamics of the density function f = f(t, x) ≥ 0 of particles with mass
x ∈ R

+, at time t ≥ 0, subject to coagulation and fragmentation phenomena is
governed by the equation

(3)
∂f

∂t
= Qc(f) −Qf(f),
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where the coagulation and fragmentation terms are respectively defined by

Qc(f)(x) =
1
2

∫ x

0

a(x′, x − x′) f(x′) f(x − x′) dx′ −
∫ ∞

0

a(x, x′) f(x) f(x′) dx′,

Qf(f)(x) =
1
2

∫ x

0

b(x′, x − x′) dx′ f(x) −
∫ ∞

0

b(x, x′) f(x + x′) dx′.

The coagulation coefficient, a = a(x, x′), characterizes the rate at which the coa-
lescence of two particles with respective volumes x and x′ produces a particle of
volume x + x′, whereas the fragmentation coefficient, b = b(x, x′), represents the
rate at which the fragmentation of one particle with volume x + x′ produces two
particles of volume x and x′. Both coefficients a and b are nonnegative symmetric
functions and

(4) a, b ∈ L∞
loc(R+ × R+).

where R̄+ = [0,∞). For symmetric kernels, we observe that during the microscopic
coagulation and fragmentation processes, as depicted in equations (1)-(2), the num-
ber of particles varies with time while the total mass of particles is conserved. In
terms of f , the total number of particles and the total mass of particles at time
t ≥ 0 are respectively given by

M0(t) :=
∫

R+
f(t, x) dx, M1(t) :=

∫
R+

x f(t, x) dx.

It is easy to show that the total number of particles M0(t) is increased by coag-
ulation events and decreased by fragmentation events, while the total mass M1(t)
should not vary during these events.

However, when a increases sufficiently rapidly compared to the fragmentation
kernel b for large x, x′, a runaway growth takes place, producing particles with
“infinite” mass in finite time which are removed from the system. The total mass
is thereby not conserved, a phenomenon usually called the occurrence of gelation
(see [5, 8, 9, 14, 20, 21]). It is a physically relevant and mathematically challenging
question to figure out whether the mass M1(t) of solutions to (3) is kept constant
throughout time evolution.

In fact, several works in the physical literature have considered this question for
the pure coagulation equation (b = 0) [20] and either formal arguments or explicit
solutions have been provided to show that the conservation of mass holds true for
a(x, x′) = (x x′)α with α ∈ [0, 1/2] and breaks down in finite time when α ∈ (1/2, 1];
see [20, 21] and the references therein.

Concerning the mathematical theory of gelation, the kernels a(x, x′) = x x′ and
b = 0 play a special role since equation (3) can be solved by the Laplace transform
[23] and a mass-decreasing solution is known to exist.

Existence of weak solutions with non-increasing mass has been proven for a large
class of kernels by Laurençot [15, Theorem 1.2] and completed for general kernels
by Laurençot and Mischler [16, Theorem 2.3] as a limit of discrete models. Mathe-
matical proofs of the occurrence of gelation including larger classes of coagulation
rates, and also fragmentation, have been supplied recently, either by probabilistic
arguments [14] (for the discrete model) or by deterministic arguments [8, 9]. Our
aim is to give some numerical evidence of this phenomenon.

Writing equation (3) in a “conservative” form, as proposed in [22, 24], enables
us to describe precisely the time evolution of the total mass. Also, this formulation
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is particularly well adapted to a finite volume discretization which, in turn, is
expected to give a precise account of mass dissipation or conservation. Precisely,
the coagulation and fragmentation terms can be written in divergence form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
xQc(f)(x) = −∂C(f)

∂x
(x),

xQf(f)(x) = −∂F(f)
∂x

(x),

where

C(f)(x) :=
∫ x

0

∫ ∞

x−u

u a(u, v) f(u) f(v) dvdu , x ∈ R
+,(5)

F(f)(x) :=
∫ x

0

∫ ∞

x−u

u b(u, v) f(u + v) dvdu , x ∈ R
+.(6)

Then, the coagulation-fragmentation equation reads⎧⎪⎨
⎪⎩

x
∂f

∂t
= −∂ C(f)

∂x
+

∂ F(f)
∂x

, (t, x) ∈ (R+)2 ,

f(0, x) = fin(x), x ∈ R
+

(7)

and we assume that the initial datum fin satisfies:

(8) fin ∈ L1(R+) ∩ L1(R+, xdx) is a nonnegative function.

Here and below, the notation L1(R+, xdx) stands for the space of the Lebesgue
measurable real-valued functions on R

+ which are integrable with respect to the
measure xdx.

The main purpose of this work is to present a numerical scheme to solve (5)-(7)
built upon an explicit Euler discretization with respect to the time variable t and
a finite volume discretization with respect to the volume variable x. The analysis
of the so-obtained scheme allows us to prove the convergence of the discretized
particle density towards a solution to the continuous problem. An error estimate
on the approximation is given and the scheme is shown to give a first order accurate
discretization of the coagulation-fragmentation equation.

Before describing more precisely our results, let us recall that the coagulation
and fragmentation equations (5)-(7) have been the object of several studies recently.

On the one hand, the relationship between discrete and continuous models has
been considered by some authors; see [25, 16] and the survey paper [5] and the
references therein. In [25], the authors restrict themselves to a particular fragmen-
tation model and use a scaling technique, whereas a rigorous setting under general
assumptions on the coagulation and fragmentation coefficients has been given in
[16].

Among the various approaches for the approximation of coagulation and frag-
mentation models, we may distinguish between deterministic and Monte Carlo
methods. We refer for instance to [7, 18] for deterministic methods, [2, 6, 13]
for stochastic methods, and the references therein. However, there are few results
concerning the convergence analysis of numerical methods for coagulation and frag-
mentation models (see [17] for quasi Monte-Carlo methods). In [16], the authors
obtain as a by-product of their analysis a convergence result for an explicit time
discretization. However, note that the main outcome of this study is a deeper
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understanding of the link between the discrete and continuous coagulation and
fragmentation equations, thanks to scaling methods, whereas the present paper is
rather focused on the discretization of the continuous coagulation-fragmentation
equation itself. To this aim, we use the formulation in divergence form, which is
more suitable to design a finite volume scheme, and, unlike the discretization pro-
posed in [16], this scheme is built on non-uniform meshes. Also, while reference [16]
gives an analysis for unbounded domains of admissible size values, one of our goals
is to assess the reliability of non-conservative truncation methods. Among other
features established in this paper, these approximation methods prove to give a
faithful picture of long time behaviour as well as of occurence of gelation. Indeed,
the occurrence of gelation at finite time is a well-known feature of coagulation and
fragmentation processes. For a(u, v) = u v and b(u, v) = 0, the behavior approach-
ing the gelation time is studied in great detail by Menon and Pego using Laplace
transform [23]. Moreover, gelation has been theoretically established in [14] with
a probabilistic approach and in [8, 9] with deterministic arguments. Once gela-
tion is known to occur, a natural question is to determine the gelation time and
to investigate the behavior of f(t) at the gelation time, which still constitutes an
open problem. In this context, numerical simulations could give some clues on how
to solve this problem and, in particular, non-conservative truncation methods of
approximations may prove an efficient tool to observe gelation with accuracy.

We now briefly outline the contents of the paper. In the next section, we intro-
duce the numerical approximation of (5)-(7) and state the convergence result which
we prove in Sections 3 and 4. In Section 5, we give some error estimates when the
mesh is uniform. In the final section (Section 6), some numerical simulations are
performed with the numerical scheme presented in Section 2. Long time behaviour
and occurrence of gelation are investigated.

2. Numerical scheme and main results

When designing the volume discretization of the coagulation and fragmentation
terms, one is confronted with two somewhat contradictory requirements. First, the
coagulation and fragmentation terms should be discretized so as to allow for the
simulation of gelation phenomena for instance. But occurrence of gelation depends
on the behaviour of kernels a and b for large values of the volume variable x. On
the other hand, discretizing these terms makes it necessary to truncate the infinite
integrals in formulae (5)-(6). But this means restricting the domain of action of
kernels a and b to a bounded set of volumes x, that is, preventing coagulation to
occur among particles with volume exceeding a fixed value.

The discretization we propose tries to overcome this conflict by using a non-
conservative truncation method for the coagulation term. The following truncation
has been introduced for the Smoluchowski coagulation equation written in the clas-
sical form (3) in [3]. Here we present the equivalent truncation for the coagulation-
fragmentation operator written in the conservative form (5)-(6). Given a positive
real R, let

(9) CR
nc(f)(x) :=

∫ x

0

∫ R

x−u

u a(u, v) f(u) f(v) dvdu , x ∈ (0, R) .
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In that case, CR
nc(f)(R) ≥ 0 so that the total mass of the solution is now nonin-

creasing with respect to time. This approximation is particularly well suited for
reproducing the gelation phenomenon [3, 4].

For the fragmentation term, the first idea would be to give a “non-conservative”
truncation as for the coagulation term, according to

FR
nc(f)(x) :=

∫ x

0

∫ R

x−u

u b(u, v) f(u + v) dv du, x ∈ (0, R),

where R is, as above, a constant positive parameter. Obviously, if one only considers
the solution to the non-conservative fragmentation equation, it leads to a time
increasing mass for the system. However, it is hard to conclude on the conservativity
of the full model when including the coagulation term −∂x CR

nc since one should have
to determine the sign of

−CR
nc(t, R) + FR

nc(t, R), t ≥ 0,

which is not obvious (in particular, the first term is quadratical in f and depends
on a, whereas the second one is linear in f and depends on b).

Possibly the most meaningful truncation is therefore a conservative truncation
on the fragmentation term (while a non-conservative truncation is performed on
the coagulation part). We introduce

(10) FR
c (f)(x) :=

∫ x

0

∫ R−u

x−u

u b(u, v) f(u + v) dv du.

Then, the conservative fragmentation operator satisfies exactly the conservation of
total mass, so that the following equation is indeed a non-conservative coagulation
and fragmentation equation:⎧⎪⎪⎨

⎪⎪⎩
x

∂fR

∂t
= − ∂CR

nc(fR)
∂x

(x) +
∂FR

c (fR)
∂x

(x) , (t, x) ∈ R
+ × (0, R) ,

f(0, x) = fin(x), x ∈ (0, R),

(11)

since
d

dt

∫ R

0

x fR(t, x) dx = −CR
nc(fR)(t, R) ≤ 0.

Convergence for large values of R has been thoroughly studied in the recent past.
We briefly mention some results for the coagulation equation (that is, with b = 0).
On the one hand, when a(x, x′)/(x x′) → 0 as x + x′ → +∞, convergence as R →
+∞ of the solutions to (11) toward a solution of (5)-(7) can be proven by using the
approach developed in [16]. First, we observe that the previous growth assumption
on a(x, x′) does not exclude coagulation coefficients for which the occurrence of
gelation takes place. Second, when gelation does not take place, it can be shown that
the solutions to (11) converge toward a solution to (5)-(7) satisfying M1(t) = M1(0)
for t ≥ 0 (we refer to [11] for a rigorous proof on the coagulation equation). On
the other hand, the convergence of the nonconservative approximation (11) to the
solution of (5)-(7) is valid when a(x, x′) ∼ x x′ for large x, x′ [15]. Therefore,
this approximation is well-suited for the description of both gelation and mass
conservation, despite the qualitatively important gap between these regimes.
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Let us mention that these results and analysis adapt easily to the coagulation-
fragmentation equation but under different assumptions on the kernels (we refer to
[8] and [9] for a precise description of kernels).

Since the convergence of solutions to (11) towards solutions of (5)-(7) is well
established in rather general situations, this paper will only focus on the convergence
of a sequence built on a numerical scheme towards a solution to the equation (11)
when the truncature R is fixed. The works we have just mentioned fill in the gap
to get a convergence result to solutions to the original problem. In the remainder
of the paper, for the sake of clarity, we drop the subscript R and write f instead of
fR for a solution of equation (11). Parameter R being fixed, this should raise no
confusion.

Now, we turn to the discretization of equation (11). Having reduced the compu-
tation to a bounded interval, the second step is to introduce the time and volume
discretizations. To this end, let h ∈ (0, 1), Ih a large integer, and denote by
(xi−1/2)i∈{0,...,Ih} a mesh of (0, R), where

x−1/2 = 0 , xi = (xi−1/2 + xi+1/2)/2 , ∆xi = xi+1/2 − xi−1/2 ≤ h ,

and Λh
i = [xi−1/2, xi+1/2) for i ≥ 0. Moreover, given two integers i and j such that

xi+1/2 − xj ≥ 0, we introduce integer γi,j ∈ {0, . . . , Ih} such that

xi+1/2 − xj ∈ Λh
γi,j

.

In the general case of a non-uniform mesh, we denote by δh = min
i

∆xi and assume

that there exists a positive constant (independent of the mesh) K such that

(12)
h

δh
≤ K

or, if the mesh has to be excessively refined in some regions (usually close to the
origin), we assume that the mesh is increasing, that is,

(13) ∆xi ≤ ∆xi+1, ∀ i ∈ { 0, . . . , Ih − 1 }.

Remark 2.1. In the case of a uniform mesh (that is when ∆xi = h for all i), it holds
that

xi− 1
2

= i h, γi,j = i − j.

In particular, whenever xj− 1
2

< x < xj+ 1
2

and j < i, we have

xi+ 1
2
− x ∈ Λh

i−j .

Let ∆t denote the time step and let N be a large integer such that N∆t = T ,
where [0, T ] is the time domain on which the equation is studied. We also define
the time interval τn = [tn, tn+1), with tn = n ∆t, n ≥ 0.

The discretization of the coagulation and fragmentation kernels will be detailed
at the end of this section. For the time being, we formally set

a(u, v) ≈ ah(u, v) = ai,j ,(14)

b(u, w − u) ≈ bh(u, w − u) = bi,k(15)

for u in Λh
i , v in Λh

j and w in Λh
k , such that i, j ∈ {0, . . . , Ih} and k ∈ {i+1, . . . , Ih}

and assume that this defines a suitable approximation of the kernels.
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Let us now introduce the numerical scheme itself. For each integer i ∈ {0, . . . , Ih}
and each n ∈ {0, . . . , N − 1}, we define the approximation of f(t, x) for t ∈ τn and
x ∈ Λh

i as fn
i .

The sequence (fn
i )i,n is defined recursively by the following discretization of the

coagulation-fragmentation equation: for n ∈ {1, . . . , N −1}, i ∈ {0, . . . , Ih}, we set

(16) ∆xi xi (fn+1
i − fn

i ) = −∆t
(
Cn

i+1/2 − Cn
i−1/2

)
+ ∆t

(
Fn

i+1/2 −Fn
i−1/2

)
,

where the fluxes Cn
i+1/2 and Fn

i+1/2 are given by

Cn
i+1/2 =

i∑
j=0

Ih∑
k=γi,j

∆xj ∆xk xj aj,k fn
j fn

k ,(17)

Fn
i+1/2 =

i∑
j=0

Ih∑
k=i+1

∆xj ∆xk xj bj,k fn
k ,(18)

and the initial datum is approached by

fin
i =

1
∆xi

∫
Λh

i

fin(x) dx, i ∈ {0, . . . , Ih},(19)

whereas the fluxes at the boundary are

Cn
−1/2 = Fn

−1/2 = Fn
Ih+1/2 = 0, n ∈ {0, . . . , N − 1}.(20)

This discretization obviously relies on an explicit Euler time discretization and a
finite volume approach for the volume variable (see, e.g. [10, 19]). This will be
even clearer when the discretization of a and b are given.

We denote by χA the characteristic function of a set A. The following function
fh defined on [0, T ] × [0, R] will be useful in the following:

(21) fh(t, x) =
N−1∑
n=0

Ih∑
i=0

fn
i χτn

(t) χΛh
i
(x).

Note that this function depends on the time and volume steps and that

fh(0, · ) =
Ih∑
i=0

χΛh
i
(· )fin

i

converges strongly to fin in L1(0, R) as h goes to 0.
We may now state our main result.

Theorem 2.2. Assume that the coagulation and fragmentation kernels satisfy (4)
and fin satisfies (8). Moreover, suppose that the volume mesh used in the numerical
scheme is regular in the sense of assumptions (12) or (13) and that the time step
satisfies that there exists a positive constant θ such that

(22) max (2, K + 1) CT,R ∆t ≤ θ < 1,

where K is given by (12) and

(23) CT,R := ‖a‖L∞ ‖fin‖L1 eR ‖b‖L∞ T + R ‖b‖L∞ .

Then, up to the extraction of a subsequence,

fh −→ f in L∞ (0, T ; L1 (0, R)
)
,
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where f is the weak solution to (11) on [0, T ] with initial datum fin. More precisely,
f is a nonnegative function satisfying∫ T

0

∫ R

0

x f(t, x)
∂ϕ

∂t
(t, x) + [ CR

nc(t, x) − FR
c (t, x) ]

∂ϕ

∂x
(t, x) dx dt

+
∫ R

0

x fin(x) ϕ(0, x) dx −
∫ T

0

CR
nc(t, R) ϕ(t, R) dt = 0,(24)

for all continuously differentiable functions ϕ compactly supported in [0, T )× [0, R].

Moreover, when the mesh is uniform ∆xi = h, for all i ∈ {0, . . . , Ih}, we get the
following error estimate.

Theorem 2.3. Assume that the coagulation and fragmentation kernels satisfy

(25) a, b ∈ W 1,∞
loc

(
R

+ × R
+
)
.

We also assume that fin satisfies

(26) fin ∈ W 1,∞
loc (R+).

We consider a uniform volume mesh and require time step ∆t to satisfy condition
(22). Then, the following error estimate holds:

‖fh − f‖L1 ≤ C(T, R) (h + ∆t),(27)

where f is the weak solution to (11) on [0, T ] with initial datum fin.

This implies the uniqueness of the limit, and, consequently, that the whole se-
quence fh converges under these assumptions.

Of course, these results depend on the definition of a correct approximation of
the coagulation and fragmentation kernels. Equations (14) and (15) are now given
a precise meaning.

Unless otherwise specified, in the following kernels a and b are taken as in (4).
On the one hand, the kernel a is approached by a finite volume approximation
ah(u, v) on each space cell: for all (u, v) ∈ [0, R] × [0, R],

ah(u, v) =
Ih∑
i=0

Ih∑
j=0

ai,j χΛh
i
(u) χΛh

j
(v),

where χA denotes the characteristic function of set A and

ai,j =
1

∆xi∆xj

∫
Λh

i ×Λh
j

a(x, y) dx dy.

This approximation method is well-known and yields strong convergence in the
space of integrable functions provided the kernel a is in L1((0, R) × (0, R)) , which
is the case here according to (4),∥∥ah − a

∥∥
L1 → 0, as h → 0.

The fragmentation kernel b is discretized in a different way. Indeed, we first notice
that b need not be defined on the whole square [0, R] × [0, R] and that the kernel
defined on the compact set

Db := { (u, v) ∈ [0, R] × [0, R]; 0 ≤ u + v ≤ R }
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can be used to compute the fragmentation term FR
c as given in (10). Therefore,

all we need is to give an approximation bh of the kernel b on the compact set Db.
First, we define the following finite volume approximation of b, for all (u, v) ∈ Db,

(28) b̃h(u, v) =
Ih∑
i=0

Ih∑
j=i+1

b̃i,j χΛh
i
(u)χΛh

j
(v + u),

with

(29) b̃i,j =
1

∆xi ∆xj

∫
Λh

i ×Λh
j

b(x, y − x) dy dx, 0 ≤ i < j ≤ Ih.

This sequence is particularly well suited to approach b(u, v−u) since, for all (u, v) ∈
[0, R] × [0, R] such that 0 ≤ u ≤ v ≤ R,

b̃h(u, v − u) =
Ih∑
i=0

Ih∑
j=i+1

b̃i,j χΛh
i
(u) χΛh

j
(v)

is obviously a finite volume approximation of b(u, v−u). Then, since b is symmetric,
one would expect that a good approximation bh of b should satisfy

bh(u, v) = bh(v, u),

which would translate on the sequence bi,j as

(30) bi,j = bj−i,j .

However, this is not true in general and one can prove that, in the case of a more
regular kernel b satisfying condition (25) and for a uniform mesh, equality (30)
holds true only up to first order terms in h when bi,j = b̃i,j .

This motivates the following definition:

Definition 2.4. We define the approximate kernel bh such that
(i) if the fragmentation b satisfies (4), then an approximation of b is defined

by

bh(u, v) = b̃h(u, v), ∀(u, v) ∈ Db,(31)

where b̃h is given by (28) and (29);
(ii) if the fragmentation kernel b satisfies (25) and if the mesh is taken uniformly,

then one introduces the following approximation of b,

bh(u, v) =
Ih∑
i=0

Ih∑
j=i+1

bi,j χΛh
i
(u)χΛh

j
(v + u), ∀(u, v) ∈ Db,(32)

where

(33) bi,j =

{
1
2

(
b̃i,j + b̃j−i,j

)
, i ∈ {1, . . . , Ih}, j ∈ {i + 1, . . . , Ih},

b̃0,j , i = 0, j ∈ {1, . . . , Ih}.
It will be useful to write, conventionally,

(34) b0,0 = 0.

Properties of these approximations are summarized in the following lemma.

Lemma 2.5. The approximate kernel bh given either by (31) or by (32) satisfies
the following convergence properties:
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(i) Let b satisfy (4), then equation (31) defines an approximation of b which
converges strongly in the L1 topology∥∥bh − b

∥∥
L1(Db)

→ 0, as h → 0.

(ii) Let b satisfy (25), and take a uniform mesh. Then the approximation of b
given by equation (32) converges in the strong topology of L1,∥∥bh − b

∥∥
L1(Db)

→ 0, as h → 0,

and the sequence bi,j defined in (33) satisfies

(35) bi,j = bj−i,j , i ∈ {1, . . . , Ih}, j ∈ {i + 1, . . . , Ih}.

Proof. Strong convergence for the approximation (31) is classical: the proof is close
to the convergence proof of the finite volume approximation ah.

On the other hand, when the kernel b satisfies (25), we can perform a Taylor
expansion of b and easily prove that∣∣∣b̃i,j − b̃j−i,j

∣∣∣ ≤ ‖b‖W 1,∞ h,

which means that up to a first order term with respect to h, the approximation (32)
is equal to the approximation (31). Therefore, strong convergence for (31) implies
strong convergence for (32) since the first order term in h vanishes asymptotically.

�

Remark 2.6. It is worth mentioning that property (35) is used only in the proof of
Theorem 2.3 to estimate the error between the numerical scheme and the actual
solution of (11). In this case, we use approximation (32), take a uniform mesh
and assume regularity (25) for b. In contrast, Theorem 2.2 can be proven without
appealing to symmetry property (35) and, therefore, can be established under the
weaker assumption (4), using approximation (31). Of course, it also holds true
under assumption (25) and with approximation (32).

In the convergence analysis of the numerical scheme, it will be useful to consider
pointwise convergence for the coagulation and fragmentation kernels. These conver-
gences hold true up to the extraction of subsequences. Namely, there exists a sub-
family of the family R

+
∗ of indices h such that, for almost every (u, v) ∈ [0, R]×[0, R]

and almost every (x, y) ∈ Db,

ah(u, v) → a(u, v), bh(x, y) → b(x, y)

as h goes to 0. In the remainder of this paper, all sequences will be indexed on this
subfamily of indices, so that these almost everywhere convergences can be used.

3. A priori estimates

In this section, our goal is to prove that the sequence of functions (fh)h converges
in some sense to a function f as h and ∆t go to 0. First, we prove that the solution
fh to the scheme (16)-(19) enjoys properties similar to those of function f given by
(11) which we gather in Proposition 3.1 below. Next, we prove the weak convergence
of fh to a function f in L1(0, R).

The midpoint approximation of a point x is denoted by Xh(x), i.e. Xh(x) = xi

for x ∈ Λh
i ; see Section 4 for further details.
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Proposition 3.1. Assume the time step satisfies (22). Then, the distribution
function fh is a nonnegative function such that∫ R

0

Xh(x) fh(t, x) dx ≤
∫ R

0

Xh(x) fh(s, x) dx, 0 ≤ s ≤ t ≤ T

and, for all t ∈ [0, T ],∫ R

0

fh(t, x) dx ≤ ‖fin‖L1 eR ‖b‖L∞ t.(36)

Proof. We proceed by induction and first notice that fh(0) is nonnegative and
belongs to L1(0, R). Assume next that the function fh(tn) is nonnegative and∫ R

0

fh(tn, x) dx ≤ ‖fin‖L1 eR ‖b‖L∞ tn

.(37)

We start by proving that fh(tn+1) is nonnegative, and first take i = 0 since it
involves boundary conditions,

x0 fn+1
0 = x0 fn

0 − ∆t

∆x0
Cn
1/2 +

∆t

∆x0
Fn

1/2,

≥

⎛
⎝1 − ∆t

Ih∑
k=0

∆xk a0,k fn
k

⎞
⎠ x0 fn

0 .

Then, using condition (22) on the time step with (37), we conclude to the nonneg-
ativity of fn+1

0 . For i ≥ 1, we have

xi fn+1
i = xi fn

i − ∆t

∆xi

(
Cn

i+1/2 − Cn
i−1/2

)
+

∆t

∆xi

(
Fn

i+1/2 −Fn
i−1/2

)
.

On the one hand, from the nonnegativity of fh(tn), we show that

−
Cn

i+1/2 − Cn
i−1/2

∆xi
= −xi fn

i

Ih∑
k=γi,i

∆xk ai,k fn
k

+
i−1∑
j=0

γi,j−1∑
k=γi−1,j

∆xk

∆xi
fn

k ∆xj aj,k xj fn
j

≥ −

⎛
⎝ Ih∑

k=0

∆xk ai,k fn
k

⎞
⎠ xi fn

i .(38)

On the other hand, still using the nonnegativity of fh(tn), we get for the discrete
fragmentation operator

Fn
i+1/2 −Fn

i−1/2

∆xi
=

Ih∑
k=i+1

∆xk xi bi,k fn
k −

i−1∑
j=0

∆xj bj,i xj fn
i

≥ −

⎛
⎝ Ih∑

k=0

∆xk bk,i

⎞
⎠ xi fn

i .(39)
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Then gathering the two inequalities (38) and (39), we get

xi fn+1
i ≥

⎛
⎝1 − ∆t

⎛
⎝ Ih∑

k=0

∆xk ai,k fn
k +

Ih∑
k=0

∆xk bk,i

⎞
⎠
⎞
⎠ xi fn

i .

Using condition (22) on the time step and the L1-estimate (37) on fh(tn), we finally
prove that fh(tn+1) is nonnegative.

Next, the time monotonicity of the total mass with respect to time follows at
once from the nonnegativity of fh by summing (16) with respect to i

Ih∑
i=0

∆xi xi fn+1
i ≤

Ih∑
i=0

∆xi xi fn
i − ∆t Cn

Ih+1/2 ≤
Ih∑
i=0

∆xi xi fn
i .

Now, let us prove that fh(tn+1) enjoys a similar estimate as (37). It follows from
(16) that

Ih∑
i=0

∆xi fn+1
i =

Ih∑
i=0

∆xi fn
i − ∆t

Ih∑
i=0

Cn
i+1/2 − Cn

i−1/2

xi
+ ∆t

Ih∑
i=0

Fn
i+1/2 −Fn

i−1/2

xi
.

Of course the coagulation term decreases the number of particles (Ci+1/2 ≥ 0, for
all i)

−
Ih∑
i=0

Cn
i+1/2 − Cn

i−1/2

xi
≤ −

Ih∑
i=0

Cn
i+1/2

(
1
xi

− 1
xi+1

)
≤ 0.

For the fragmentation term, we observe that

Ih∑
i=0

Fn
i+1/2 − Fn

i−1/2

xi
≤

Ih∑
i=0

∆xi

Ih∑
k=i+1

∆xk bi,k fn
k ,

and using the assumption (4) on the kernel b, we finally get

Ih∑
i=0

∆xi fn+1
i ≤ ( 1 + R ‖b‖L∞ ∆t )

Ih∑
i=0

∆xi fn
i .

Thus, using estimate (37) at step n,

Ih∑
i=0

∆xi fn+1
i ≤ ‖fin‖L1 eR ‖b‖L∞ tn+1

. �

We also remark that fh(0, ·) is an approximation of fin, with strong convergence
in L1(0, R). Moreover, the initial datum fin is in L1(0, R), hence, by the La Vallée-
Poussin theorem, there exists a nonnegative and convex function Φ continuously
differentiable on R

+ with Φ(0) = 0, Φ′(0) = 1, such that Φ′ is concave,

Φ(r)
r

−→ +∞, as r → ∞

and

(40)
∫ R

0

Φ
(
fin
)
(x)dx < +∞.

Let us now recall an inequality on convex functions.
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Lemma 3.2. Let Φ ∈ C1(R+) be convex such that Φ′ is concave, Φ(0) = 0, Φ′(0) =
1, and Φ(r)/r → +∞ as r → +∞. Then, for all (x, y) in R

+ × R
+,

x Φ′(y) ≤ Φ(x) + Φ(y).(41)

Next, the following result holds.

Proposition 3.3. Let fin ∈ L1(0, R) be nonnegative, and let fh be defined for all
h and ∆t by (16)-(21) where ∆t satisfies (22). Then the family (fh)(h,∆t) is weakly
relatively sequentially compact in L1((0, T ) × (0, R)).

Proof. Based on estimate (40), one can prove a similar estimate on the function
fh, uniformly in h. First, the integral of Φ(fh) is clearly related to the sequence
fn

i through

∫ T

0

∫ R

0

Φ
(
fh(t, x)

)
dxdt =

N−1∑
n=0

Ih∑
i=0

∆t ∆xi Φ(fn
i ).

From the discrete equation (16), together with the convexity of the function Φ and
the nonnegativity of Φ′, it follows that

Ih∑
i=0

∆xi

[
Φ(fn+1

i ) − Φ(fn
i )
]

≤
Ih∑
i=0

∆xi

(
fn+1

i − fn
i

)
Φ′(fn+1

i )

≤ ‖a‖L∞ ∆t
Ih∑
i=0

i−1∑
j=0

∆xjf
n
j

γi,j−1∑
k=γi−1,j

∆xk fn
k Φ′(fn+1

i )

+ ‖b‖L∞ ∆t

Ih∑
i=0

Ih∑
k=i+1

∆xi ∆xk fn
k Φ′(fn+1

i ),

where we have used assumption (4) and the fact that xj/xi ≤ 1 whenever j ≤ i.
Then the convexity of Φ together with (41), entails

‖a‖L∞ ∆t

Ih∑
i=0

i−1∑
j=0

∆xj fn
j

γi,j−1∑
k=γi−1,j

∆xk fn
k Φ′(fn+1

i )

≤ ‖a‖L∞ ∆t
Ih∑
i=0

i−1∑
j=0

∆xj fn
j

γi,j−1∑
k=γi−1,j

∆xk

[
Φ(fn

k ) + Φ(fn+1
i )

]

= ‖a‖L∞ ∆t
Ih∑

j=0

∆xj fn
j

Ih∑
i=j+1

γi,j−1∑
k=γi−1,j

∆xk

[
Φ(fn

k ) + Φ(fn+1
i )

]
,
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and still applying (41) to the fragmentation term, it yields

Ih∑
i=0

∆xi

[
Φ(fn+1

i ) − Φ(fn
i )
]

≤ ‖a‖L∞ ∆t
Ih∑

j=0

∆xj fn
j

Ih∑
i=j+1

γi,j−1∑
k=γi−1,j

∆xk

[
Φ(fn

k ) + Φ(fn+1
i )

]

+ ‖b‖L∞ ∆t

Ih∑
i=0

∆xi

Ih∑
k=i+1

∆xk

[
Φ(fn

k ) + Φ(fn+1
i )

]
.

On the one hand, we have

(42)
Ih∑

i=j+1

γi,j−1∑
k=γi−1,j

∆xk Φ(fn
k ) =

γ
Ih,j

−1∑
k=γj,j

∆xk Φ(fn
k ) ≤

Ih∑
k=0

∆xk Φ(fn
k ).

On the other hand, observing that

γi,j−1∑
k=γi−1,j

∆xk = xγi,j−1/2 − xγi−1,j−1/2

and since xγi,j−1/2 and xγi−1,j−1/2 are defined as left point approximations of
xi+1/2 − xj and xi−1/2 − xj respectively, it gives

xγi,j−1/2 − xγi−1,j−1/2 =
(
xγi,j−1/2 − xi+1/2

)
−
(
xγi−1,j−1/2 − xi−1/2

)
+ ∆xi

=
(
xi−1/2 − xj

)
− xγi−1,j−1/2 −

((
xi+1/2 − xj

)
− xγi,j−1/2

)
+ ∆xi

≤
(
xi−1/2 − xj

)
− xγi−1,j−1/2 + ∆xi.

Either assumption (12) or assumption (13) holds, and we get, accordingly,(
xi−1/2 − xj

)
− xγi−1,j−1/2 ≤ h

or (
xi−1/2 − xj

)
− xγi−1,j−1/2 ≤ ∆xi.

The latter inequality is a consequence of the fact that the mesh is increasing. In
the former case, however, the regularity of the mesh is such that, by (12), one has

h ≤ K∆xi.

Finally, both cases yield

xγi,j−1/2 − xγi−1,j−1/2 ≤ M∆xi

with M = 1 + K or M = 2. Therefore,

Ih∑
i=j+1

γi,j−1∑
k=γi−1,j

∆xkΦ(fn+1
i ) ≤ M

Ih∑
i=0

∆xi Φ(fn+1
i ).
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Consequently, this result and inequality (42) lead to
Ih∑
i=0

∆xi

[
Φ(fn+1

i ) − Φ(fn
i )
]

≤ ∆t ‖a‖L∞

⎛
⎝ Ih∑

j=0

∆xj fn
j

⎞
⎠ Ih∑

i=0

∆xi

[
M Φ(fn+1

i ) + Φ(fn
i )
]
,

which entails, as ‖a‖L∞
∑

∆xjf
n
j is bounded by CT,R according to (23) and (36),

Ih∑
i=0

∆xi

[
Φ(fn+1

i ) − Φ(fn
i )
]

≤ ∆t M CT,R

Ih∑
i=0

∆xi Φ(fn+1
i )

+ ∆t CT,R

Ih∑
i=0

∆xi Φ(fn
i ).

Finally, it appears that if the time step satisfies (22), a discrete version of Gronwall’s
lemma gives∫ R

0

Φ(fh(t, x)) dx ≤ e
CT,R(1+M)

1−θ t

∫ R

0

Φ(fin(x)) dx, ∀t ∈ [0, T )

and this estimate allows us to conclude to the compactness of the sequence (fh)h

due to the La Vallée-Poussin theorem. Indeed, the exponent is uniformly bounded
with respect to h and ∆t as long as (22) holds true. �
Remark 3.4. Proposition 3.3 implies that there exist a function f in L1((0, T ) ×
(0, R)) and a subsequence of (fh)

h
such that fh ⇀ f as h → 0. By a diagonal

procedure, one can extract subsequences of (fh)
h
, (ah)

h
and (bh)

h
such that

fh ⇀ f, in the weak topology of L1((0, T ) × (0, R)), as max{h, ∆t} → 0

and

ah(u, v) → a(u, v), for almost every (u, v) ∈ (0, R) × (0, R), as h → 0,

bh(u, v) → b(u, v), for almost every (u, v) ∈ Db, as h → 0.

Next, these diagonally extracted subsequences are considered implicitly, unless
otherwise specified.

Thus, Proposition 3.3 gives enough information to study the asymptotic be-
haviour of all terms in equation (16). However, the following lemma recalls a
classical tool that will be needed afterwards.

Lemma 3.5. Let Ω be an open subset of R
m and let there exist a constant κ > 0

and two sequences (vn)n∈N and (wn)n∈N such that (vn)n∈N ∈ L1(Ω), v ∈ L1(Ω) and

vn ⇀ v, weakly in L1(Ω), as n → ∞,

(wn) ∈ L∞(Ω), w ∈ L∞(Ω), and for all n ∈ N, |wn| ≤ κ with

wn → w, almost everywhere in Ω, as n → ∞.

Then, lim
n→∞

‖vn (wn − w)‖L1(Ω) = 0, and

vn wn ⇀ v w, weakly in L1(Ω), as n → ∞.
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Proof. The proof of this classical result in measure theory is based on the Dunford-
Pettis and Egorov theorems. �

All the material required for the convergence proof is now gathered. The follow-
ing proposition gives, under additional assumptions on the kernels and on the mesh,
some estimates which will prove useful to estimate the error in view of Theorem
2.3.

Proposition 3.6. Let the coagulation kernel a and fragmentation kernel b satisfy
property (4) and let the mesh be regular in the sense of (12) or (13); the time step
∆t also satisfies (22).

Assume that the initial datum fin is bounded in L∞
loc(R

+). Then, the approximate
solution fh and the exact solution f to (11) are essentially bounded in (0, T )×(0, R),

‖fh‖L∞((0,T )×(0,R)) ≤ C(T, R), ‖f‖L∞((0,T )×(0,R)) ≤ C(T, R).

Moreover, if the kernels a and b satisfy (25) and the initial datum fin satisfies
the smoothness condition (26). Then, there exists a positive constant C(T, R) such
that

(43) ‖f(t)‖W 1,∞(0,R) ≤ C(T, R),

where f is the exact solution to (11).

Proof. We prove a priori boundedness for the solution f to the continuous equation
(11) only. The proof in the discrete case is similar to the one for the nonnegativity
of fh. Integrating equation (11) with respect to time gives

f(t, x) = fin(x) +
∫ t

0

− 1
x

∂ CR

∂x
(s, x) +

1
x

∂ FR

∂x
(s, x) ds

≤ fin(x) +
1
2

∫ t

0

∫ x

0

a(x′, x − x′) f(s, x′) f(s, x − x′) dx′ ds

+
∫ t

0

∫ R

x

b(x′ − x, x) f(s, x′) dx′ ds

≤ fin(x) + ‖b‖L∞‖f‖∞,1 t +
‖a‖L∞

2
‖f‖∞,1

∫ t

0

sup
y∈(0,R)

f(s, y) dx,

where ‖f‖∞,1 denotes the norm of f in L∞(0, T ; L1(0, R)). Then, Gronwall’s
lemma enables us to conclude the proof.

We turn to the proof of estimate (43). First, we integrate equation (11) with
respect to time, divide it by x and next differentiate it with respect to volume vari-
able x (using formulae (9) and (10) for the coagulation and fragmentation terms).
Then, taking the maximum value over all possible values of x, it yields∥∥∥∥∂f

∂x
(t)
∥∥∥∥

L∞
=

∥∥∥∥∂fin

∂x

∥∥∥∥
L∞

+
{3

2
‖a‖W 1,∞ ‖f‖∞,1 ‖f‖L∞ +

1
2
‖a‖L∞ ‖f‖2

L∞

+
3
2
‖b‖L∞ ‖f‖L∞ + ‖b‖W 1,∞

(
‖f‖∞,1 +

1
2

R‖f‖L∞

)}
t

+
3
2

(‖a‖L∞ ‖f‖∞,1 + ‖b‖L∞)
∫ t

0

∥∥∥∥∂f

∂x
(s)
∥∥∥∥

L∞
ds

and, again Gronwall’s lemma allows us to conclude. �
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Note that, in this proof, f ∈ L∞(0, T ; L1(0, R)) has been extensively used.
Indeed, Theorem 2.2 gives this information under the same (or weaker) assumptions
as those made in Proposition 3.6. We underline that, of course, Theorem 2.2 is
proven independently of this proposition.

4. Convergence of the numerical solution

Proving Theorem 2.2 is achieved by interpreting the sequence fn
i built from the

numerical scheme as a sequence of step functions fh depending on the mesh size
h and on ∆t. Properties (in particular weak compactness) of this sequence have
been stated in detail in the previous section. The proof is now reduced to writing
the discrete coagulation and fragmentation operators in terms of fh and proving
(weak) convergence for these expressions towards the continuous coagulation and
fragmentation operators (5)-(6). This is provided by Lemma 4.1 below. Then the
usual finite volumes techniques allow us to conclude.

The following notations will be used throughout the analysis of the numerical
scheme. First, several point approximations are defined:

Xh : x ∈ (0, R) → Xh(x) =
Ih∑
i=0

xi χΛh
i
(x), (midpoint approximation)

Ξh : x ∈ (0, R) → Ξh(x) =
Ih∑
i=0

xi+1/2 χΛh
i
(x), (right endpoint approximation)

ξh : x ∈ (0, R) → ξh(x) =
Ih∑
i=0

xi−1/2 χΛh
i
(x), (left endpoint approximation)

and

Θh : (x, u) ∈ (0, R)2 → Θh(x, u) =
Ih∑
i=0

i∑
j=0

xγi,j
χΛh

i
(x) χΛh

j
(u).

At this stage, note that (Xh)
h
, (Ξh)

h
and (Θh)

h
converge pointwisely: for all

x ∈ (0, R),

Xh(x) → x, Ξh(x) → x,

as h → 0 and for all (x, u) ∈ (0, R)2, we have{
Θh(x, u) → x − u if x ≥ u,
Θh(x, u) → 0 if x ≤ u.

Then, the proof of Theorem 2.2 is based on the following lemma.

Lemma 4.1. Let us define the approximations of the coagulation and fragmentation
terms according to:

Ch(t, x) =
∫ R

0

∫ R

0

χ[0,Ξh(x)](u) χ[Θh(x,u),R](v) Xh(u) ah(u, v) fh(t, u) fh(t, v) dv du,

Fh(t, x) =
∫ R

0

∫ R

0

χ[0,Ξh(x)](u) χ[Ξh(x)−u,R−u](v) Xh(u) bh(u, v) fh(t, u + v) dv du.
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There exists a subsequence of (fh)
h
, such that

Ch ⇀ CR
nc in L1((0, T ) × (0, R)), as h → 0,

Fh ⇀ FR
nc in L1((0, T ) × (0, R)), as h → 0.

In addition, Ch(·, R) converges weakly to CR
nc(·, R) in L1(0, T ).

Proof. We consider the sequences (fh)
h
, (ah)

h
and (bh)

h
extracted according to the

procedure sketched in Remark 3.4. Then, obviously for all (t, x) ∈ (0, T ) × (0, R)
and almost all (u, v) ∈ (0, R) × (0, R), the sequence Xh(.) ah(., v) is bounded in
L∞(0, R) and

χ[0,Ξh(x)](u) χ[Θh(x,u),R](v) Xh(u) ah(u, v) → χ[0,x](u) χ[x−u,R](v) u a(u, v),

as h goes to 0. Thus, applying Lemma 3.5, it yields

∫ R

0

χ[0,Ξh(x)](u) χ[Θh(x,u),R](v) Xh(u) ah(u, v) fh(t, u) du

→
∫ x

0

χ[x−u,R](v) u a(u, v) f(t, u) du(44)

for each t, x, and almost every v. The same argument is used to prove the pointwise
convergence of Ch. Indeed, for each x and t and for almost every v (44) holds true,
and since fh converges weakly, Lemma 3.5 applies again and gives

Ch(t, x) → CR
nc(t, x)

for every (t, x) ∈ [0, T ]× [0, R]. This pointwise convergence obviously implies weak
convergence for Ch and for the boundary value Ch(·, R).

The convergence study of Fh is similar to that of Ch, observing that

Fh(t, x) =
∫ R

0

∫ R

0

χ[0,Ξh(x)](u) χ[Ξh(x),R](v) Xh(u) bh(u, v − u) fh(t, v) dv du

and recalling that bh(u, v − u) converges to b(u, v − u) for almost every 0 ≤ u ≤
v ≤ R. �

To make the importance of this lemma clear, it may be useful to mention that
Ch(t, x) (resp. Fh(t, x)) actually coincide with Cn

i (resp. Fn
i ) whenever t ∈ τn and

x ∈ Λh
i . This will be proven in the sequel.

Now, we turn to the proof of Theorem 2.2. We consider a test function ϕ ∈
C1([0, T ) × [0, R]), which is compactly supported. On the one hand, we observe
that, for ∆t small enough, the support of ϕ with respect to the time variable satisfies
Supptϕ ⊂ [0, tN−1]. On the other hand, we define the finite volume (in time) and
left endpoint (in space) approximation of ϕ on τn × Λh

i by

ϕn
i :=

1
∆t

∫ tn+1

tn

ϕ(t, xi−1/2)dt.
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Then, multiplying equation (16) by ϕn
i and summing over n ∈ {0, . . . , N − 1} and

i ∈ {0, . . . , Ih}, yields by a discrete integration by parts,

N−1∑
n=0

Ih∑
i=0

∆xi xi fn+1
i

(
ϕn+1

i − ϕn
i

)

+
N−1∑
n=0

Ih−1∑
i=0

∆t [Cn
i+1/2 −Fn

i+1/2]
(
ϕn

i+1 − ϕn
i

)

+
Ih∑
i=0

∆xi xi fin
i ϕ0

i −
N−1∑
n=0

∆t Cn
Ih+1/2 ϕn

Ih = 0,(45)

where the boundary and initial value properties (19)-(20) have been used. The first
and third terms in the left hand side of equation (45) can be written in terms of
function fh:

N−1∑
n=0

Ih∑
i=0

∆xi xi fn+1
i

(
ϕn+1

i − ϕn
i

)
+

Ih∑
i=0

∆xi xi fin
i ϕ0

i

=
N−1∑
n=0

Ih∑
i=0

∫
τn+1

∫
Λh

i

Xh(x) fh(t, x)
ϕ
(
t, ξh(x)

)
− ϕ

(
t − ∆t, ξh(x)

)
∆t

dx dt

+
Ih∑
i=0

∫
Λh

i

Xh(x) fh(0, x)
1

∆t

∫ ∆t

0

ϕ
(
t, ξh(x)

)
dt dx

=
∫ T

∆t

∫ R

0

Xh(x) fh(t, x)
ϕ(t, ξh(x)) − ϕ (t − ∆t, ξh(x))

∆t
dx dt

+
∫ R

0

Xh(x) fh(0, x)
1

∆t

∫ ∆t

0

ϕ(t, ξh(x)) dt dx.(46)

We first treat the last term of the former equality. On the one hand, Xh(x) con-
verges pointwise in [0, R] whereas fh(0, ·) is a finite volume approximation of fin

and, henceforth, converges strongly in L1(0, R). On the other hand, since ϕ is
continuously differentiable with compact support, its derivatives are bounded and,
therefore, the following convergence is uniform with respect to t, x as max{h, ∆t}
goes to 0:

1
∆t

∫ ∆t

0

ϕ(t, ξh(x))dt → ϕ(0, x).

Consequently, it first yields∫ R

0

Xh(x) fh(0, x)
1

∆t

∫ ∆t

0

ϕ(t, ξh(x)) dt dx →
∫ R

0

x fin(x)ϕ(0, x)dx,

as max{h, ∆t} goes to 0.
To deal with the first term in (46), a Taylor expansion of the smooth function ϕ

is performed, which finally yields

ϕ(t, ξh(x)) − ϕ(t − ∆t, ξh(x))
∆t

→ ∂ϕ

∂t
(t, x)

uniformly as max{h, ∆t} goes to 0, while χ[∆t,T ](t) Xh(x) converges pointwise to
χ[0,T ](t) x. Applying Lemma 3.5, together with Proposition 3.3, entails that the
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first term on the right hand side of (46) converges to∫ T

0

∫ R

0

x f(t, x)
∂ϕ

∂t
(t, x) dx dt

as max{h, ∆t} goes to 0.
Consider now the coagulation and fragmentation terms. As mentioned above, the

approximations Ch and Fh coincide with the discrete coagulation and fragmentation
terms. Indeed, on the one hand, for t ∈ τn and x ∈ Λh

i ,

Ch(t, x) =
∫ xi+1/2

0

∫ R

Θh(x,u)

Xh(u) ah(u, v) fh(t, u) fh(t, v) dv du

=
i∑

j=0

∫
Λh

j

du
Ih∑

k=γi,j

∫
Λh

k

dv xj aj,k fn
j fn

k

= Cn
i+1/2,

where we have used that, for x ∈ Λh
i and u ∈ Λh

j , Θh(x, u) = xγi,j
. On the other

hand, for the fragmentation operator

Fh(t, x) =
∫ xi+1/2

0

∫ R

xi+1/2

Xh(u) bh(u, v − u) fh(t, v) dv du

=
i∑

j=0

∫
Λh

j

du

Ih∑
k=i+1

∫
Λh

k

dv xj bj,k fn
k

= Fn
i+1/2.

Consequently, it is straightforward to write the second and fourth terms of the left
hand side of equation (45) in terms of Ch and Fh:

N−1∑
n=0

Ih−1∑
i=0

∆t [Cn
i+1/2 − Fn

i+1/2]
(
ϕn

i+1 − ϕn
i

)
−

N−1∑
n=0

∆t Cn
Ih+1/2 ϕn

Ih

=
N−1∑
n=0

Ih−1∑
i=0

∫
τn

∫
Λh

i

[Cn
i+1/2 − Fn

i+1/2]
1

∆xi
(ϕ(t, xi+1/2) − ϕ(t, xi−1/2)) dx dt

−
N−1∑
n=0

∫
τn

Cn
Ih+1/2 ϕ(t, R − ∆xIh) dt

=
∫ T

0

∫ R−∆x
Ih

0

[Ch(t, x) − Fh(t, x)]
∂ϕ

∂x
(t, x) dx dt

−
∫ T

0

Ch(t, R) ϕ(t, R − ∆xIh) dt.

Therefore, the weak compactness result given by Lemma 4.1 implies the convergence
of the right hand side of the latter equality to the corresponding terms in (24), as
expected.

5. Error estimates on the numerical solution

The error estimate is performed by giving a priori estimates on the difference
fh−f , where fh is built thanks to the numerical scheme and f is the exact solution
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to (11). The difference fh − f is obviously a solution to the difference of equations
(16) and (11) respectively divided by xi and x. A mere integration by parts enables
us to give to equation (11) divided by x a convenient form. Lemma 5.1 shows that
summations by parts can yield a similar result in the discrete case. Then, estimating
the difference fh − f is easy thanks to Proposition 3.6.

When the mesh is uniform, that is, ∆xi = h for all i ∈ {0, . . . , Ih}, the discrete
coagulatation and fragmentation terms read

−
Cn

i+ 1
2
− Cn

i− 1
2

h
= h

i−1∑
j=0

xj aj,i−j−1 fn
j fn

i−j−1 − h
Ih∑

j=0

xi ai,j fn
i fn

j ,(47)

Fn
i+ 1

2
−Fn

i− 1
2

h
= −h

i−1∑
j=0

xj bj,i fn
i + h

Ih∑
j=i+1

xi bi,j fn
j .(48)

The following lemma gives a simplified expression of these variation rates.

Lemma 5.1. Assume that a and b satisfy (4) and (25) respectively and consider a
uniform mesh, that is, ∆xi = h for all i. We also assume that the initial datum fin

is bounded in L∞(R+). Let (s, x) ∈ τh
n×Λh

i , with n ∈ {0, . . . , N−1}, i ∈ {0, . . . , Ih}.
Then

−
Cn

i+ 1
2
− Cn

i− 1
2

xi h
=

1
2

∫ ξh(x)

0

ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′)) dx′(49)

−
∫ R

0

ah(x, x′) fh(s, x′) dx′ fh(s, x) + εh
c (x)

Fn
i+ 1

2
−Fn

i− 1
2

xi h
= −1

2

∫ ξh(x)

h

bh(x′, x − x′) dx′ fh(s, x)(50)

+
∫ R

Ξh(x)

bh(x, x′ − x) fh(s, x′) dx′ + εh
f (x),

where εh
c and εh

f denote first order terms with respect to h in the strong L1 topology:

‖εh
c ‖L1 ≤ R

4
‖fh‖2

L∞ ‖a‖L∞ h,(51)

‖εh
f ‖L1 ≤

(
R

2
‖fh‖L∞ + ‖fh‖∞,1

)
‖b‖L∞ h.(52)

Proof. First, the variation rates have to be written in such a way that the volume
xi is factored out. To this aim, we consider for instance the fragmentation term:
since the mesh is uniform, it holds that xi+ 1

2
− xj = xi−j and we have, for i ≥ 1,

−h

i−1∑
j=1

xj bj,i fn
i = h

i−1∑
j=1

xi−j bj,i fn
i − xi+ 1

2
h

i−1∑
j=1

bj,i fn
i

= h

i−1∑
j=1

xj bi−j,i fn
i − xi+ 1

2
h

i−1∑
j=1

bj,i fn
i .

Thus, using the symmetry property (35) of bi,j ,

−h
i−1∑
j=1

xj bj,i fn
i = h

i−1∑
j=1

xj bj,i fn
i − xi+ 1

2
h

i−1∑
j=1

bj,i fn
i ,
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which finally gives

h
i−1∑
j=1

xj bj,i fn
i =

h

2
xi+ 1

2

i−1∑
j=1

bj,i fn
i ,

and for (48)

Fn
i+ 1

2
−Fn

i− 1
2

h xi

= h

⎡
⎣−x0

xi
b0,i fn

i −
xi+ 1

2

xi

1
2

i−1∑
j=1

bj,i fn
i +

Ih∑
j=i+1

bi,j fn
j

⎤
⎦

= h

⎡
⎣−x0

xi
b0,i fn

i − h

4 xi

i−1∑
j=1

bj,i fn
i − 1

2

i−1∑
j=1

bj,i fn
i +

Ih∑
j=i+1

bi,j fn
j

⎤
⎦

since xi+ 1
2

= xi + h
2 . We have used convention (34), so that b0,i is equal to zero

whenever i = 0. We define

εh
f (x) = −h

x0

xi
b0,i fn

i − h2

4 xi

i−1∑
j=1

bj,i fn
i

and then get (50). Moreover, estimating the x integral of this term is equivalent to
estimating the following sum:

h
Ih∑
i=0

∣∣∣∣∣∣h
x0

xi
b0,i fn

i +
h2

4 xi

i−1∑
j=1

bj,i fn
i

∣∣∣∣∣∣ .
The first term in this sum is bounded if one remarks that x0/xi ≤ 1 while the
second one is bounded by noting that

h2

4 xi

i−1∑
j=1

bj,i ≤ h ‖b‖L∞
(i − 1) h

4 xi
≤ h

4
‖b‖L∞ .

Hence, applying Proposition 3.6, the approximate solution is bounded in L∞ and
estimate (52) easily follows.

Now, turning to equation (47) and remarking that xi− 1
2
− xj = xi−j−1, we

similarly prove that

−
Cn

i+ 1
2
− Cn

i− 1
2

xi h
=

xi− 1
2

2 xi
h

i−1∑
j=0

aj,i−j−1 fn
j fn

i−j−1 − h

Ih∑
j=0

ai,j fn
i fn

j ,

which gives expression (49) by setting

εh
c (x) = − h2

4 xi

i−1∑
j=0

aj,i−j−1 fn
j fn

i−j−1

and the estimate (51) is obtained in the same way as (52). �
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Therefore, both terms (51) and (52) have to be compared to the explicit formu-
lation of the continuous coagulation and fragmentation terms

− 1
x

∂ CR

∂ x
(t, x) =

1
2

∫ x

0

a(x′, x − x′)f(t, x′)f(t, x − x′)dx′(53)

−
∫ R

0

a(x, x′)f(t, x′)dx′ f(t, x),

1
x

∂ FR

∂ x
(t, x) = −1

2

∫ x

0

b(x′, x − x′)dx′ f(t, x)(54)

+
∫ R

x

b(x, x′ − x)f(t, x′)dx′.

Using formulae (49), (50), (53) and (54), equation (11) and the scheme (16), we
easily get for t ∈ τn,∫ R

0

∣∣fh(t, x) − f(t, x)
∣∣ dx ≤

∫ R

0

∣∣fh(0, x) − fin(x)
∣∣ dx

+
4∑

α=1

[
Eh
c,α + Eh

f,α

]
+ Eh

t,n + ‖εh
c ‖L1 + ‖εh

f ‖L1 ,(55)

where
(
Eh
c,α

)
α=1,..,4

are error terms related to the coagulation operator

Eh
c,1 =

1
2

∫ t

0

∫ R

0

∫ ξh(x)

0

∣∣∣ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′))

− a(x′, x − Ξh(x′)) f(s, x′) f(s, x − Ξh(x′))
∣∣∣ dx′ dx ds

Eh
c,2 =

1
2

∫ t

0

∫ R

0

∫ ξh(x)

0

∣∣∣a(x′, x − Ξh(x′)) f(s, x′) f(s, x − Ξh(x′))

− a(x′, x − x′) f(s, x′) f(s, x − x′)
∣∣∣ dx′ dx ds

Eh
c,3 =

1
2

∫ t

0

∫ R

0

∫ x

ξh(x)

a(x′, x − x′) f(s, x′) f(s, x − x′) dx′ dx ds

and

Eh
c,4 =

∫ t

0

∫ R

0

∫ R

0

∣∣ah(x, x′) fh(s, x) fh(s, x′) − a(x, x′) f(s, x) f(s, x′)
∣∣ dx′ dx ds,

whereas
(
Eh
f,α

)
α=1,..,4

are error terms related to the fragmentation operator

Eh
f,1 =

1
2

∫ t

0

∫ R

0

∫ ξh(x)

h

∣∣bh(x′, x − x′) fh(s, x) − b(x′, x − x′) f(s, x)
∣∣ dx′ dx ds

Eh
f,2 =

1
2

∫ t

0

∫ R

0

∫
[0,h]∪[ξh(x),x]

bh(x′, x − x′) fh(s, x) dx′ dx ds

Eh
f,3 =

∫ t

0

∫ R

0

∫ R

Ξh(x)

∣∣bh(x, x′ − x) fh(s, x′) − b(x, x′ − x) f(s, x′)
∣∣ dx′ dx ds

and

Eh
f,4 =

∫ t

0

∫ R

0

∫ Ξh(x)

x

bh(x, x′ − x) fh(s, x′) dx′ dx ds.
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Finally, Eh
t,n is the error due to the time discretization:

Eh
t,n =

∫ t

tn

{∫ R

0

[
1
2

∫ ξh(x)

0

ah(x′, x − Ξh(x′)) fh(s, x′) fh(s, x − Ξh(x′)) dx′

+
∫ R

0

ah(x, x′) fh(s, x) fh(s, x′) dx′

+ εh
c (x) +

1
2

∫ ξh(x)

h

bh(x′, x − x′) fh(s, x) dx′

+
∫ R

Ξh(x)

bh(x, x′ − x) fh(s, x′) dx′ + εh
f (x)

]
dx

}
ds.

On the one hand, the error given by Eh
c,2 is estimated from the smoothness of the

kernel a and of the solution f to (11). Indeed, since in this section a is taken in
W 1,∞

loc , we have for all x ∈ (0, R) and x′ ∈ Λh
i

|a(x′, x − xi) − a(x′, x − x′)| ≤ ‖a‖W 1,∞ h

and applying Proposition 3.6, the W 1,∞ estimate (43) on f gives

|f(t, x − xi) − f(t, x − x′)| ≤ ‖f(t, .)‖W 1,∞ h.

Thus, it yields

(56) Eh
c,2 ≤ R2

4
‖f‖∞

(
‖a‖W 1,∞ ‖f‖∞ + ‖a‖L∞ ‖f‖L∞(W 1,∞)

)
t h.

On the other hand, we consider the terms Eh
c,3, Eh

f,2 and Eh
f,4 which are all integrals

on a domain of size t R h. Then L∞ bounds on f and fh give

Eh
c,3 ≤ ‖a‖L∞ ‖f‖2

L∞ t R h(57)

and

Eh
f,2 + Eh

f,4 ≤ 2 ‖b‖L∞ ‖fh‖L∞ t R h.(58)

The error due to the time discretization is treated similarly and it is easily seen
that

(59) Eh
t,n ≤ 2

{
R2‖fh‖2

L∞‖a‖L∞ + R2‖fh‖L∞‖b‖L∞ + ‖εh
c ‖L1 + ‖εh

f ‖L1

}
∆t

since |t − tn| ≤ ∆t.
Finally, we turn to the estimation of terms Eh

c,1, Eh
c,4, Eh

f,1 and Eh
f,3. A detailed

calculation is given for Eh
c,1. Estimations for the other terms are obtained by using

similar arguments and details are left to the reader to check. First we perform a
change of variable x → y = x − Ξh(x′) and split Eh

c,1 into three parts:

Eh
c,1 ≤ 1

2

∫ t

0

∫ R

0

∫ R

0

∣∣ah(x′, y) − a(x′, y)
∣∣ f(s, x′) f(s, y) dx′ dy ds

+
1
2

∫ t

0

∫ R

0

∫ R

0

ah(x′, y)
∣∣fh(s, x′) − f(s, x′)

∣∣ f(s, y)dx′dy ds

+
1
2

∫ t

0

∫ R

0

∫ R

0

ah(x′, y)fh(s, x′)
∣∣fh(s, y) − f(s, y)

∣∣ dx′ dy ds.
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Thus, it yields,

Eh
c,1 ≤

(
t R2 ‖f‖2

L∞ ‖a‖W 1,∞
) h

2

+
R

2
‖a‖L∞

(
‖fh‖L∞ + ‖f‖L∞

) ∫ t

0

‖fh(s) − f(s)‖L1 ds.(60)

Similarly,

Eh
c,4 ≤

(
t R2 ‖f‖2

L∞ ‖a‖W 1,∞
) h

2

+
R

2
‖a‖L∞

(
‖fh‖L∞ + ‖f‖L∞

) ∫ t

0

‖fh(s) − f(s)‖L1 ds.(61)

and

Eh
f,1 + Eh

f,3 ≤ 2
(
t R2 ‖f‖L∞ ‖b‖W 1,∞

)
h

+ 2 R ‖b‖L∞

∫ t

0

‖fh(s) − f(s)‖L1 ds.(62)

Finally, using (55) and gathering estimates (56)-(62), we conclude thanks to Gron-
wall’s lemma that

‖fh − f‖L∞(0,T ; L1(0,R)) ≤ C(T, R)
{
‖fh(0, ·) − fin‖L1(0,R) + (h + ∆t)

}
.

To get estimate (27), one only has to remember that fin is taken in W 1,∞
loc , so that

the finite volume approximation of the initial datum by fh(0, ·) is actually of order
1 in L1 with respect to h.

6. Numerical simulations

This section is devoted to the numerical study of two different phenomena: the
convergence to equilibrium under the detailed balance condition and the gelation
phenomenon, that is, the possible loss of matter during time evolution.

6.1. Detailed balance kernels and convergence to equilibrium. We assume
that the coagulation and fragmentation coefficients fulfill the detailed balance con-
dition: there exists a nonnegative function M ∈ L1

1(R+ × R
+), such that

(63) a(x, x′) M(x) M(x′) = b(x, x′) M(x + x′), (x, x′) ∈ R
+ × R

+.

Observe that this condition implies that M is a stationary solution to (7), usually
refered to as an equilibrium. An additional and interesting consequence of the
detailed balance condition (63) is the existence of a Lyapunov functional H [1]
given by

H(f) :=
∫

R+
f(t, x)

(
log
(

f(t, x)
M(x)

)
− 1
)

.

Indeed, any positive solution f of the coagulation-fragmentation equation satisfies
d

dt
H(f) = −1

2

∫
R+×R+

(a(x, x′) f(t, x) f(t, x′) − b(x, x′) f(t, x + x′))

(log(a(x, x′)f(t, x) f(t, x′)) − log(b(x, x′) f(t, x + x′))) dx dx′

≤ 0.

Since any such solution f decays the Lyapunov functional, convergence of f towards
the equilibrium state M is expected. The first series of results proposed in this
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section is concerned with the observation of this trend to equilibrium. We choose
kernels a and b as follows:

a(x, x′) = b(x, x′) = (x x′)1/2,

so that
M(x) = exp(−x), x ∈ R

+.

As an initial datum, we take

fin(x) =
{

2, if 0 ≤ x ≤ 1,
0, else,

with R = 30, ∆t = 0.004.
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Figure 1. Evolution of the total number of particles M0, the sec-
ond moment of f , the functional H(f(t)) (1+t)2 and the stationary
distribution f(x) in log scale.

From a numerical point of view, some care is needed to compute the small x-
behavior of the stationary state, taking into account that it also depends on its
values for large x. Therefore, it is important to consider a suitable mesh in order
to obtain an accurate numerical solution when x is small but also for large x. We
construct the following mesh:

xi−1/2 =

⎧⎪⎨
⎪⎩

e−6+ 7 i
N for 0 ≤ i ≤ N,

e + (R − e)
(

i − N

N

)3/2

for N + 1 ≤ i ≤ 2 N,

with N = 25, 50, 100 and 200. This mesh satisfies the condition (13) and is
extremely refined in the region close to the origin in order to describe with a lot of
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accuracy the solution in this region. On the other hand, the mesh ∆xi is increasing
for large x in order to use a large enough truncature R = 30 with few points.

In Figure 1, we report the evolution of the total number of particles M0, the
second moment of f , the Lyapunov functional H(f) and the behavior of the as-
ymptotic profile f(+∞, x). As expected, the total mass M1(t) remains constant
throughout time evolution and the moments stabilize to a fixed value. In regard to
the asymptotic profile, our numerical results are in fair agreement with the equilib-
rium M(x) = exp(−x), even when using few points (N = 25). Moreover, in view
of the comparison between the exact steady state and the numerical solution for
large time, we observe that using a non-uniform mesh allows to get a very good
approximation in the region close to zero.

Concerning the rate of convergence, it seems that it is not an exponential rate:
we plot the evolution of H(f(t)) (1 + t)2, which may converge to a constant value.
In a future work, we will investigate more accurately this behavior and expect to
formulate some conjectures on the link between the rate of convergence and the
kernels a and b.

6.2. Occurrence of gelation. As already mentioned in the introduction and in
[8, 9, 14, 20, 21], when the coagulation coefficient a increases sufficiently rapidly
with respect to the fragmentation kernel b for large x, x′, a runaway growth takes
place and leads to the formation of a particle of “infinite mass” in finite time. As
a consequence, the total mass M1 decreases with time, and the gelation time Tgel

is defined by

(64) Tgel := inf
{

t ≥ 0 ,

∫ ∞

0

x f(t, x) dx <

∫ ∞

0

x f(0, x) dx

}
∈ [0, +∞] .

Then we say that gelation occurs if Tgel < +∞. Let us mention that this phe-
nomenon is not yet completely understood mathematically. Indeed, it is expected
that the gelation time Tgel also corresponds to the blow-up of high order moments
(second order for instance), but there is no rigorous proof of that and it still con-
stitutes a conjecture. An elementary proof that Tgel < +∞ was given in [21] when
a(x, x′) = x x′, b(x, x′) = 0, and a central issue in the physical literature in the
1980s was to figure out for which coefficients a and b the gelation time Tgel is finite.
We restrict our discussion here to the model case

(65) a(x, x′) = xµ (x′)ν + xν (x′)µ , b(x, x′) = (x + x′)γ , (x, x′) ∈ (R+)2 ,

with 0 ≤ µ ≤ ν ≤ 1 and γ ∈ R. Putting λ = µ + ν, it follows from [9, Theorem 3.1]
that there is a mass-conserving solution to (7) for any initial datum with a finite
first order moment when γ > λ − 2.

On the other hand, when γ ∈ ( (λ − 3)/2 , λ − 2 ), it is proven in [9, Theorem
1.2] that if there exists a solution to (7), then gelation occurs when the initial
first moment M1 is large while there should be mass-conserving solutions when M1

is small enough. Finally, gelation should occur for every non-zero solution when
γ < (λ − 3)/2 [9, Section A.1].

We have first performed several computations to confirm the fact that the non-
conservative truncation allows us to approximate as well mass-conserving solutions
(γ > λ − 2) as gelation phenomenon (γ < (λ − 3)/2). In these situations, the long
time behaviour does not depend on the initial mass, but only on the relative propor-
tion of coagulation and fragmentation phenomena. Not surprisingly, the solution is
well approached by the scheme in this case and we prefer to give a detailed account
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of the more delicate situation where the long time behaviour strongly depends on
the initial mass. Thus, the main purpose of the numerical simulations presented in
this section is to observe numerically the intermediate regime γ ∈ ((λ−3)/2, λ−2),
which is, due to the dependence with respect to the initial datum, the most difficult
to study.

We restrict ourselves here to the model case (65) with µ = ν = λ/2; that is,

a(x, x′) = (x x′)λ/2 , b(x, x′) = (x + x′)γ , (x, x′) ∈ (R+)2 ,

with λ = 5/2 and γ = 0. We take the following initial datum f0:

(66) f0(x) = M1 exp(−x) , x ∈ R
+ .

Thus, the gelation phenomenon does take place when the initial mass M1 is large
enough and Tgel < +∞ (see [9, Theorem 1.2]) and the authors conjecture that for
a small initial mass M1, there is a mass-conserving solution.

In Figure 2, we present our results for an initial mass M1 = 0.4 and observe
that gelation occurs at finite time (Tgel ∈ [0.925, 1.05]). We see that the choice of
the truncation (9), (10) and the scheme (16)-(21) provide a good estimate of the
gelation phenomenon.

Next, the moments M�(t) are expected to blow up as t → Tgel for � ≥ 2. We
compute numerical approximations of the solution to (7) with initial datum (66) for
increasing values of the truncation parameter R. We define the moment of order
� ≥ 0 of the numerical approximation by

Mh
� (tn) =

Ih∑
i=0

∆xi x�
i fn

i ,

and we plot the time evolution of the moments of order 0, 1 and 2 (see Figure 2).
As expected, when R is increasing, the number of particles Mh

0 converge to a fixed
value, whereas Mh

2 is increasing to infinity when R becomes larger and larger.
In Figure 2, we represent the graph of some negative power of the second order
moment, [Mh

2 (t)]−1/α with α = 0.82 and observe that when R goes to infinity, it
converges to a slightly concave curve (approaching a straight line) intersecting the
axis at t = 1, which means that Tgel ≈ 1 and

M2(t) ≈
C

(Tgel − t)α
.

Thus, it seems to be clear that the gelation transition takes place in finite time
and that there is a sudden growth of the moments of order 2 near the numerical
gelation time. In particular, the growth rate increases for increasing values of R,
which is seemingly good evidence for an occurrence of blow-up.

The fact that these moments decrease after the estimated gelation time is due
to the finite length of the interval of computation (0, R). Indeed, due to the non-
conservative approximation, the amount of mass Fn

Ih+1/2 is lost and high order
moments then start to decrease with time.

In Figure 3, we also plot the evolution of the distribution function in log scale for
different radius R = 1400 and R = 6000, we observe that on the interval [0, R] both
solutions are very close to each other. Moreover, around the gelation time Tgel, it
seems that the tail of the distribution function changes its behavior and becomes
algebraic. Unfortunately, it is very difficult to compute numerically how this tail
behaves.
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Figure 2. Initial mass M1 = 0.4: Evolution of the number of
particles M0, the total mass of particles M1 and [M2(t)]−1/α with
α = 0.82.
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f(t, x) in log scale at time t = 0, 0.225, 0.45, 0.675, 0.9 and 1.125
(after the estimated blow-up time) obtained with two different
truncature (a) R = 1400 and (b) R = 6000.
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Figure 4. Initial mass M1 = 0.25: Evolution of the total mass
of particles M1, the second and third moments of f for t ≥ 25 and
the distribution f(t, x) in log scale at time t = 0, 7, 14, 35, 70, 105
and 140.

On the other hand, we perform other computations (see Figure 4) for a small
initial mass M1 = 0.25 and observe that in this case the solution is mass-conserving.
Moreover, the numerical solution converges as time goes to infinity to an equilibrium
(note that the detailed balance condition is not valid for these kernels a and b (65)):
there are two different regimes in this case, the solution first spreads out and next
concentrates itself to reach a steady state (see last pictures in Figure 4).

In a future work, it would be interesting to compute an approximation of the
critical mass for which either the solution converges to a steady state or gelation
occurs after a finite time. Up to now we focus on the qualitative behavior of the
numerical solution.

7. Conclusion

This paper provides an extensive study of a discrete approximation of coagulation
and fragmentation equations. The scheme first introduced for the discretization to
the coagulation-fragmentation equation in [12] proves unexpectedly efficient in the
description of gelation as well as long time behaviour of solutions to this model.
In particular, it should be emphasized that mass conservation or dissipation is
obtained in strong agreement with theoretical works.

The discretization is based on a divergence formulation, which (in association
with the finite volume method) makes it well adapted to the observation of the
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time evolution of the total mass. Finally, numerical results seem to indicate the
validity and the flexibility of the present approach that, in our opinion, will make
deterministic schemes much more competitive with Monte Carlo methods in several
situations for coagulation and fragmentation models.
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11. F. Filbet and Ph. Laurençot, Mass-conserving solutions and non-conservative approxima-
tion to the Smoluchowski coagulation equation, Arch. Math. (Basel) 83 (2004), pp. 558–567.
MR2105334 (2005h:82081)
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