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A LOCAL LAGRANGE INTERPOLATION METHOD BASED
ON C1 CUBIC SPLINES ON FREUDENTHAL PARTITIONS

GERO HECKLIN, GÜNTHER NÜRNBERGER, LARRY L. SCHUMAKER,
AND FRANK ZEILFELDER

Abstract. A trivariate Lagrange interpolation method based on C1 cubic
splines is described. The splines are defined over a special refinement of

the Freudenthal partition of a cube partition. The interpolating splines are
uniquely determined by data values, but no derivatives are needed. The in-
terpolation method is local and stable, provides optimal order approximation,
and has linear complexity.

§1. Introduction

Let V := {ηi}n
i=1 be a set of points in R

3. In this paper we are interested in the
following problem.

Problem 1. Find a tetrahedral partition � whose set of vertices includes V , an N -
dimensional space S of trivariate splines defined on � with a prescribed smoothness
r, and a set of additional points {ηi}N

i=n+1 such that for every choice of the data
{zi}N

i=1, there is a unique spline s ∈ S satisfying

(1.1) s(ηi) = zi, i = 1, . . . , N.

We call P := {ηi}N
i=1 and S a Lagrange interpolation pair.

It is easy to solve this problem using C0 splines; see Remark 1. In this case no
additional interpolation points are needed. However, the situation is much more
complicated if we want to use Cr splines with r ≥ 1. For r = 1 the problem was
first solved in [29] for the special case where the points in V are the vertices of a
cube partition. The method uses quintic splines, and provides full approximation
power six for sufficiently smooth functions. In [23] we recently described two C1

methods which solve the problem for arbitrary initial point sets V . The first method
is based on quadratic splines, and requires that each tetrahedron be split into 24
subtetrahedra. The second method is based on cubic splines, and requires that each
tetrahedron be split into 12 subtetrahedra. Both methods provide approximation
order three for sufficiently smooth functions. For the quadratic spline case this is
the optimal approximation order, but for the cubic case it is suboptimal.

The aim of this paper is to describe a new method based on cubic C1 splines
which yields optimal approximation order four. To achieve this, we restrict ourselves
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to the case where the initial points V are the vertices of a cube partition; see
Section 2 and Remark 2. The construction involves the following steps: First we
create the Freudenthal tetrahedral partition associated with the cube partition.
Next we decompose the cube partition into five classes of cubes, and color the
tetrahedra of the Freudenthal partition black or white in such a way that tetrahedra
with a common face have different colors. Based on this decomposition, we refine
some of the tetrahedra using so-called partial Worsey-Farin splits. Then we choose
the set of interpolation points P to include V as well as certain points on the edges
and faces of the Freudenthal partition. We show that our interpolation method has
the following properties:

1) The method is local in the sense that the value of a spline interpolant s at
a point η depends only data values associated with points near η.

2) The method is stable in the sense that small changes in the data values
result in small changes in s.

3) The method yields optimal approximation order four.
4) The computational complexity of the method is linear in the number of

points in V .
The paper is organized as follows. In Section 2 we classify the cubes, define

Freudenthal partitions, describe a coloring of the tetrahedra, and introduce partial
Worsey-Farin splits. In Section 3 we give an algorithm for constructing our La-
grange interpolation pair and state our main theorem. We devote Section 4 to a
review of the basic Bernstein–Bézier theory which is essential for our analysis. Two
useful lemmas about bivariate splines are proved in Section 5, while in Section 6
we discuss interpolation with spaces of C1 cubic splines defined on partial Worsey-
Farin splits. We give a proof of the main theorem in Section 7, and establish error
bounds for the corresponding interpolation operator in Section 8. In Section 9 we
give a formula for the dimension of our spline space and compare it to other related
spline spaces. We conclude the paper with remarks in Section 10.

§2. Freudenthal partitions

Let n be an odd integer, and let

Qijk := [ih, (i + 1)h] × [jh, (j + 1)h] × [kh, (k + 1)h],

for each i, j, k = 0, . . . , n − 1, where h = 1/n. Let

(2.1) ♦ =
n−1⋃

i,j,k=0

{Qijk}.

We call ♦ the uniform cube partition of the unit cube Ω = [0, 1]3.
Let V := {vijk := (ih, jh, kh)}n

i,j,k=0 be the set of (n+1)3 vertices of ♦. Our aim
in this paper is to construct a Lagrange interpolating pair P and S based on this
initial point set V . We will choose S to be a space of C1 cubic splines defined over
an appropriate tetrahedral partition � associated with ♦. As a first step towards
defining �, we describe a special tetrahedral partition associated with a uniform
cube partition.

Definition 2.1. Let �F be the tetrahedral partition obtained from ♦ as follows:
for each 0 ≤ i, j, k ≤ n − 1, intersect the cube Qijk with the three planes

y − x = (j − i)h, z − x = (k − i)h, z − y = (k − j)h.
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Figure 1. The Freudenthal partition is obtained by splitting each
cube in a uniform cube partition into six tetrahedra. It can be re-
garded as a generalization of the classical bivariate three-direction
mesh.
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class i j k

K1 even even even
K2 even odd odd
K3 odd even odd
K4 odd odd even

Figure 2. Classifying cubes.

We call �F the Freudenthal partition of Ω.

It is clear from this definition that each cube Qijk in ♦ is split into six tetrahedra.
For each 0 ≤ i, j, k ≤ n − 1, we write

T 1
ijk := 〈vijk, vi+1,j,k, vi+1,j+1,k, vi+1,j+1,k+1〉

for the tetrahedron with the listed vertices. We number the remaining tetrahedra
as T 2

ijk, . . . , T 6
ijk in clockwise order as shown in Figure 1. Note that all six of these

tetrahedra share the edge eijk connecting vijk to vi+1,j+1,k+1.
It turns out (cf. the dimension result in [13]) that �F is not a sufficiently fine

triangulation to allow the construction of a Lagrange interpolating pair using C1

cubic splines defined over �F , at least not with the desirable properties listed in the
Introduction. Instead, we define S over a refined partition � obtained by splitting
certain tetrahedra of �F into subtetrahedra. As a first step towards defining �, we
begin by sorting the cubes in ♦ into five different classes. This step is motivated
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Figure 3. Black and white coloring of the tetrahedra of �F .

by our earlier work on Lagrange interpolation with both bivariate and trivariate
splines [18]–[19],[21]–[26].

Given a cube Qijk ∈ ♦, we classify it according to the parity of its subscripts.
In particular, if the triple i, j, k fits one of the cases in the table in Figure 2, then
we assign Qijk to the corresponding class K1, . . . ,K4. All cubes not covered by the
table are assigned to the class K5. These are precisely the cubes in ♦ with an odd
number of odd subscripts. Figure 2 shows the result of this classification process
for the case n = 5. It is easy to check that

1) for each i = 1, . . . , 4, any two cubes in the same class Ki are disjoint;
2) cubes in different classes K1, . . . ,K4 can touch each other only along an

edge of ♦;
3) cubes in class K5 can touch each other only along an edge of ♦.

Our next step is to separate the tetrahedra of �F into two disjoint classes. As a
means of visualizing where tetrahedra are located within the cubes, we assign two
different colors to them. For all i, j, k, � such that i+ j +k+ � is odd, we define T �

ijk

to be black. All other tetrahedra are defined to be white. Note that in each cube
Qijk, three of the tetrahedra are black, and three are white, see Figure 3, where the
cubes on the top and bottom correspond to i + j + k odd and even, respectively.
Moreover, black tetrahedra share triangular faces only with white tetrahedra, and
vice versa. This is an immediate consequence of König’s theorem (see e.g. [14])
since the number of tetrahedra in �F touching each other at an interior vertex
vijk of ♦ is always even. It will be essential for our interpolation method that two
intersecting black (white) tetrahedra only touch each other along a common edge
or at a common vertex.

We now introduce some schemes for splitting individual tetrahedra in �F .

Definition 2.2. Let T be a tetrahedron, and let vT be its barycenter. Given an
integer 0 ≤ m ≤ 4, let F1, . . . , Fm be distinct faces of T , and for each i = 1, . . . , m,
let v

Fi
be a point in the interior of Fi. Then we define the m-th order partial Worsey-

Farin split �m
WF of T to be the tetrahedral partition obtained by the following steps:

1) connect vT to each of the four vertices of T ;
2) connect vT to the points v

Fi
for i = 1, . . . , m;

3) connect vFi
to the three vertices of Fi for i = 1, . . . , m.
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Figure 4. Partial Worsey-Farin splits subdivide a given tetrahe-
dron into 4, 6, 8, 10, or 12 subtetrahedra.

It is easy to see that the m-th order partial Worsey-Farin split of a tetrahedron
results in 4 + 2m subtetrahedra. When m = 0, T is split into four subtetrahedra.
This split was introduced in [1], and following [17], we refer to it as the Alfeld split
of T . When m = 4, T is split into twelve tetrahedra. This split was introduced in
[34], and following [17], we refer to it as the Worsey-Farin split of T . We illustrate
the five different partial Worsey-Farin splits in Figure 4, where Alfeld’s split is on
the right, and m-th order Worsey-Farin splits are presented in counterclockwise
order for m = 1, . . . , 4.

§3. Constructing a Lagrange interpolating pair

Let ♦ be a cube partition with vertices V , and let �F be the Freudenthal par-
tition associated with ♦. Suppose the cubes in ♦ have been separated into classes
K1, . . . ,K5, and that the tetrahedra of �F are colored as described in Section 2.
We now give an algorithm to construct an associated Lagrange interpolation pair.
The algorithm will involve applying partial Worsey-Farin splits to some tetrahedra
of �F . To uniquely define such splits (cf. Definition 2.2), we have to specify points
vF on the faces to be split. We adopt the following principle for tetrahedra which
are to be split:

1) if F is a face of �F that is shared by two tetrahedra T and T̃ in �F , choose
v

F
to be the intersection of F with the line connecting the barycenters vT

and v
T̃

of T and T̃ ;
2) otherwise, choose vF to be the barycenter of F .

Algorithm 3.1. 1) Define all edges of �F to be “unmarked”, put the points
of V in P , and set � := �F and T := ∅.

2) For each edge e := 〈u, v〉 of a cube Qijk ∈ K1, add the points (2u + v)/3
and (u + 2v)/3 to P .

3) For � = 1, 2, 3, 4,
For each cube Qijk ∈ K�,
For m = 1, 3, 5,
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Figure 5. Algorithm 3.1 inserts new interpolation points in the
interior of the faces of tetrahedra in two cases only. Thick lines
indicate edges which have already been marked at the time step
3b) of the algorithm is carried out.

a) If T := Tm
ijk has faces with either two or three marked edges, then

create a partial Worsey-Farin split of T based on splitting these faces,
and replace T in � by the subtetrahedra resulting from the split of T .

b) Add vF to P for each face F of T that has exactly two marked edges
or does not contain any marked edges.

c) Mark all edges of T and add it to T .
4) For each cube Qijk ∈ K5 and for each m = 2, 4, 6, carry out 3a) – 3c).
5) For each white tetrahedron T ∈ �F , create a partial Worsey-Farin split of

T based on the faces of T that are shared with black tetrahedra in �F that
have been split in the previous steps. If T has an unmarked (boundary) edge
e, increase the order of the partial Worsey-Farin split of T by splitting the
adjacent faces of e and add vF to P for these two faces. Add T to T , and
update � by replacing T by the new subtetrahedra.

6) Set

S := {s ∈ C1(Ω) : s|T ∈ P3 for all T ∈ �},(3.1)

where P3 is the space of trivariate polynomials of degree 3.

The most important output of this algorithm is the point set P and the spline
space S which are going to form our Lagrange interpolation pair. However, the
algorithm also produces a refinement � of the Freudenthal partition �F , and an
ordering T of the tetrahedra in �F . The refinement is constructed in such a way
as to make the final interpolation method local. The ordering plays a crucial order
in the proof that P and S are a Lagrange interpolation pair.

The marking of edges in Algorithm 3.1 plays two roles. First, it helps us decide
when to insert new interpolation points into the set P , as illustrated in Figure 5.
The marked edges are also used in deciding which faces (if any) of a given tetrahe-
dron should be used to create a partial Worsey-Farin split. It turns out that the
algorithm makes use of all five types of partial Worsey-Farin splits; see Remark 4.
We are ready to state the main result of this paper.

Theorem 3.2. P and S form a Lagrange interpolation pair.

We give the proof of this theorem in Section 7 below. In Section 8 we show that
the corresponding interpolation operator is stable, and develop error bounds for
how well it approximates smooth functions. We give a formula for the dimension
of S in Section 9.
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§4. Bernstein–Bézier techniques

We recall some standard Bernstein–Bézier notation. For more details, see [17].
Given a tetrahedron T := 〈v1, v2, v3, v4〉 and an integer d, we define the associated
domain points to be DT,d := {ξT,d

ijkl := (iv1+jv2+kv3+lv4)
d }i+j+k+l=d. We say that the

domain point ξT,d
ijkl is at a distance d−i from the vertex v1, with similar definitions for

the other vertices. We say that ξT,d
ijkl is at a distance i+j from the edge e := 〈v3, v4〉,

with similar definitions for the other edges of T . If � is a tetrahedral partition of
a polygonal domain Ω in R

3, we write D�,d for the collection of all domain points
associated with tetrahedra in �, where common points in neighboring tetrahedra
are not repeated. Given ρ > 0, we refer to the set Dρ(v) of all domain points in
D�,d which are within a distance ρ of v as the ball of radius ρ around v. Similarly,
we refer to the set Rρ(v) of all domain points which are at a distance ρ from v as
the shell of radius ρ around v. If e is an edge of �, we define the tube of radius ρ
around e to be the set tρ(e) of domain points whose distance to e is at most ρ.

Given 0 ≤ r < d, let

Sr
d(�) := {s ∈ Cr(Ω) : s|T ∈ Pd all T ∈ �},

where Pd is the space of polynomials of degree d. Now suppose s ∈ S0
d(�). Then

for each triangle T ∈ �, s|T can be written in the B-form

(4.1) s|T :=
∑

i+j+k+�=d

cT
ijk� BT,d

ijk�,

where BT,d
ijk� are the Bernstein basis polynomials of degree d associated with T . Con-

versely, given a collection of such coefficients associated with each triangle, there is
a unique associated spline in S0

d(�) provided that the coefficients associated with
domain points on a face between any two neighboring tetrahedra have common val-
ues. Thus, every spline s ∈ S0

d(�) is uniquely determined by the set of coefficients
{cξ}ξ∈D�,d

.
Since we are interested in C1 splines, we recall the conditions on the coefficients

of a spline s ∈ S0
d(�) that ensure C1 smoothness. Suppose that T := 〈v1, v2, v3, v4〉

and T̃ := 〈v1, v2, v3, v5〉 are two tetrahedra in � that share the oriented triangu-

lar face F := 〈v1, v2, v3〉, and suppose {cT
ijkl}i+j+k+l=d and {cT̃

ijkl}i+j+k+l=d are
the corresponding B-coefficients. Then the polynomials s|T and s|T̃ join with C1

smoothness across the face F if and only if

(4.2) cT
i,j,k,1 = λ1 cT̃

i+1,j,k,0 + λ2 cT̃
i,j+1,k,0 + λ3 cT̃

i,j,k+1,0 + λ4 cT̃
i,j,k,1,

for all i + j + k = d − 1, where λ1, . . . , λ4 are the barycentric coordinates of v5

relative to T .
The smoothness condition (4.2) can be used to calculate the B-coefficient on

the left provided the B-coefficients on the right are given. Clearly this calcula-
tion is stable since the weights {λν}4

ν=1 depend only on the smallest angle in the
two tetrahedra T, T̃ . Note that if exactly one of the λν vanishes at v5, then the
smoothness conditions in (4.2) degenerate to smoothness conditions of bivariate
type. Furthermore, if two of the λν vanish at v5, then the smoothness conditions
in (4.2) degenerate to familiar smoothness conditions for univariate splines.

An important tool for dealing with splines on triangulations and tetrahedral
partitions is the concept of determining set; see [17] and references therein. We
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recall that a subset M of D�,d is said to be a determining set for a spline space
S ⊆ S0

d(�) provided that setting the coefficients {cξ}ξ∈M of s ∈ S determines all
other coefficients, or, equivalently if s ∈ S and its coefficients satisfy cξ = 0 for
all ξ ∈ M, then s ≡ 0. It is known that if M is a determining set for a spline
space S, then dimS ≤ #M. A determining set M is called a minimal determining
set (MDS) for S provided that there is no smaller determining set. In this case
dimS = #M. A determining set M for a spline space S is an MDS if and only if
setting the coefficients {cξ}ξ∈M determines all coefficients of s ∈ S in a consistent
way, i.e., such that all smoothness conditions are satisfied.

§5. Two bivariate lemmas

Suppose F is a triangle, and that {B3
ijk}i+j+k=3 are the bivariate Bernstein

basis polynomials of degree three associated with F ; see [17]. Then every bivariate
polynomial p of degree three can be written uniquely in the B-form

p =
∑

i+j+k=3

cijkB3
ijk.

Lemma 5.1. Suppose that we are given all of the coefficients cijk of a bivariate
cubic polynomial p except for c111. Then for any given real number z and any point
v

F
in the interior of F , there exists a unique c111 so that p(v

F
) = z.

Proof. The interpolation condition gives

B3
111(vF ) c111 = z −

∑
′
i+j+k=3

cijkB3
ijk(vF ),

where the prime on the sum indicates that the term i = j = k = 1 is to be skipped.
This equation can be uniquely solved for c111 since B3

111(vF
) �= 0. If we take v

F
to

be the barycenter of F , then B3
111(vF

) = 2/9 regardless of the size and shape of F ,
and the computation of the coefficient c111 is a stable process. �

Given a triangle F := 〈u1, u2, u3〉, let vF be a point in its interior. Then the
well-known Clough-Tocher split FCT of F is the triangulation obtained from F by
connecting v

F
to the three vertices of F . It consists of three subtriangles Fi :=

〈v
F
, ui, ui+1〉, i = 1, 2, 3, where we identify u4 = u1. Our next result concerns

interpolation using a C1 bivariate cubic spline defined on the Clough-Tocher split
of a triangle F . Suppose s is such a spline, and that {c1

ijk}i+j+k=3 are its B-
coefficients corresponding to the domain points associated with the subtriangle F1.

Lemma 5.2. Suppose that we are given all of the coefficients of s ∈ S1
3 (FCT )

except for c1
300, c

1
210, c

1
201, c

1
111. Then for any given real number z, there exists a

unique choice of these coefficients so that s(v
F
) = z.

Proof. We set c1
300 = z which ensures that s(v

F
) = s(ξ1

300) = z. Suppose r, s, t
are the barycentric coordinates of vF relative to F . Then taking account of the
C1 smoothness conditions across the interior edges of FCT , the remaining three
unknown coefficients must satisfy the linear system⎛

⎜⎝
1 −s 0

0 −r 1

r 0 s

⎞
⎟⎠

⎛
⎜⎝

c1
210

c1
111

c1
201

⎞
⎟⎠ =

⎛
⎜⎝

R1

R2

R3

⎞
⎟⎠ ,
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where the Ri are combinations of known coefficients. This system has a unique
solution since the determinant of the matrix is −2rs �= 0. The stability of this
computation depends on the size of r and s, which in turn depends on the location
of v

F
within F . �

§6. Interpolation by C1
cubic splines

on Partial Worsey-Farin splits

Throughout this section we suppose that 0 ≤ m ≤ 4, and that �m
WF is the m-th

order Worsey-Farin split of a tetrahedron T := 〈v1, v2, v3, v4〉 based on the split
point vT . We begin with a useful technical lemma.

Lemma 6.1. For all 0 ≤ m ≤ 4, S1
2 (�m

WF ) ≡ P2.

Proof. Let M be the set of ten domain points lying on the edges of T . We claim
that M is a determining set for S1

2 (�m
WF ). To see this, suppose s is a spline

in S1
2 (�m

WF ) whose coefficients corresponding to the domain points ξ ∈ M are
set to zero. Then using the C1 smoothness conditions, it is easy to see that all
other coefficients of s must be zero. Now the fact that M is a determining set
implies dimS1

2 (�m
WF ) ≤ #M = 10. But since P2 is a ten dimensional subspace of

S1
2 (�m

WF ), we conclude that S1
2 (�m

WF ) ≡ P2. �

Corollary 6.2. Suppose s ∈ S1
3 (�m

WF ). Then s ∈ C2(vT ), i.e., all of the polyno-
mial pieces on subtetrahedra sharing the vertex vT have common derivatives at vT

up to order 2.

Proof. We can regard the coefficients of s associated with domain points in the ball
D2(vT ) as coefficients of a spline g ∈ S1

2 (�m
WF ). But Lemma 6.1 implies g ∈ P2,

and so g ∈ C2(vT ). Since derivatives of s and g up to order 2 at vT match, the
claim follows. �

Theorem 6.3. Fix 0 ≤ m ≤ 4, and let D be the set of domain points associated
with cubic splines defined on �m

WF . Let M be the union of the following sets of
points in D:

1) for each i = 1, . . . , 4, D1(vi) ∩ Ti for some tetrahedron Ti ∈ �m
WF contain-

ing vi;
2) for each face F of T that is not split, the point ξF

111;
3) for each face F of T that is split, the points {ξFi

111}3
i=1, where F1, F2, F3 are

the subfaces of F .
Then M is a minimal determining set for S1

3 (�m
WF ).

Proof. We have to show that if s ∈ S1
3 (�m

WF ), then setting its coefficients corre-
sponding to domain points in M consistently determines all remaining coefficients,
i.e., in such a way that all smoothness conditions are satisfied. First, for each
1 ≤ i ≤ 4, set the coefficients corresponding to D1(vi) ∩ Ti. Then by the C1

smoothness, all coefficients corresponding to domain points in the balls D1(vi) are
determined. Now if F is a face of T that is not split, then setting the coefficient
cF
111 determines all coefficients of s associated with domain points in F . Similarly,

if F is a split face of T , then setting the three coefficients associated with the do-
main points {ξFi

111}3
i=1 uniquely determines all other coefficients of s corresponding

to domain points in the face F since this corresponds to the standard bivariate
Clough-Tocher macro-element; see [10], [16], [17].
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At this point we have determined all coefficients of s corresponding to domain
points on the shell R3(vT ). But then the C1 smoothness conditions across the
interior faces of �m

WF can be used to compute all coefficients of s corresponding
to domain points on the edges of the shell R2(vT ). Now the fact that s ∈ C2(vT )
coupled with the proof of Lemma 6.1 shows that all remaining coefficients of s are
consistently determined. �

Since the set M in Theorem 6.3 is a minimal determining set, it follows that
dimS1

3 (�m
WF ) = #M = 20 + 2m.

§7. Proof of Theorem 3.2

Let {zξ}ξ∈P be a given set of real numbers. We show how to compute the B-
coefficients of a spline s ∈ S so that s(ξ) = zξ for all ξ ∈ P . We begin with
coefficients corresponding to domain points located at the vertices of �F which are
just the points of V . For each ξ ∈ V , we choose the B-coefficient cξ of s to be zξ.
This ensures s(ξ) = zξ for all ξ ∈ V . Next for each edge e of a cube in class K1,
we determine the coefficients corresponding to the two domain points ξ, η in the
interior of e by using the fact that s reduces to a univariate cubic polynomial on
e. Since the set P contains these two points, we get two equations s(ξ) = zξ and
s(η) = zη for determining the coefficients cξ and cη. Since the points ξ and η are
equally spaced on e, we get the same 2× 2 nonsingular system for every edge. Now
for each vertex of v of �F , we use the C1 continuity at v to compute all remaining
coefficients of s corresponding to domain points in the ball D1(v). At this point
we have determined all coefficients corresponding to domain points on the edges of
�F .

To compute the remaining coefficients of s, we work through the tetrahedra of
�F in the order prescribed by the list T created in Algorithm 3.1. By the nature of
Algorithm 3.1, all black tetrahedra appear in the list T before any white tetrahedra.
Recall that two black tetrahedra cannot share a face. Suppose T� is a tetrahedron
in T , and that we have already computed the coefficients of s on all tetrahedra
T1, . . . , T�−1. We now show how to compute the coefficients of s corresponding to
domain points in T�. Note that we already know the coefficients corresponding to
domain points on the edges of T�. Moreover, for each edge e that is shared with
a tetrahedron in the list T1, . . . , T�−1, we can use the C1 smoothness around e to
compute coefficients of s corresponding to domain points in T� that lie in the tube
t1(e).
Case 1: T� is a black tetrahedron not split by Algorithm 3.1. In this case we have to
compute the four coefficients corresponding to domain points at the barycenters of
the faces of T�. Let F be a face of T�. If F shares an edge e with one of the tetrahedra
T1, . . . , T�−1, then we already know the coefficient cF

111 since it corresponds to the
domain point ξF

111 in the tube t1(e). If F does not share an edge with any of
the tetrahedra T0, . . . , T�−1, then P contains a point v

F
in the interior of F ; see

Figure 5. In this case we use Lemma 5.1 to determine the coefficient cF
111 from the

interpolation condition at v
F
.

Case 2: T� is a black tetrahedron that was subjected to a partial Worsey-Farin
split. Let vT�

be its barycenter. We first compute the coefficients of s corresponding
to domain points on the shell R3(vT�

), i.e., on the outer faces of T�. Let F be such
a face. If none of the edges of F are shared with T1, . . . , T�−1, then F is not
split and P contains a point v

F
in the interior of F ; see Figure 5. In this case
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we can use Lemma 5.1 to determine the coefficient cF
111. If exactly one of the

edges of F is shared, then again F is not split, and the coefficient cF
111 is already

determined by C1 smoothness around that edge. If exactly two of the edges of F
are shared with tetrahedra in the list T1, . . . , T�−1, then the face F was subjected
to a Clough-Tocher split as described in Section 5, and P contains the split point
v

F
see Figure 5. In this case we can use Lemma 5.2 to compute the remaining

coefficients of s associated with domain points on F . Finally, if all three edges of
F are shared with tetrahedra in the list T1, . . . , T�−1, then we already know the
coefficients associated with the barycenters of the three subtriangles making up the
Clough-Tocher split of F (since they lie in tubes of radius 1 around shared edges).
But this corresponds to the classical Clough-Tocher macro-element, see [17], and
all coefficients associated with domain points on F are consistently determined.
We have now computed all coefficients on the shell R3(vT�

). By the argument in
the proof of Theorem 6.3, all remaining coefficients of s corresponding to domain
points in the ball D2(vT�

) are consistently determined.
Case 3: T� is a white tetrahedron. As in Case 2, to determine the coefficients of s
corresponding to domain points in T�, it suffices to do so for the coefficients on the
outer faces. Suppose F is such a face. If F is shared with a black tetrahedron, then
the coefficients of s corresponding to domain points on F are already determined
by C0 continuity. Now suppose F is not shared with a black tetrahedron. In this
case we can argue exactly as in Case 2.

To complete the proof we must verify that all C1 smoothness conditions of S
are satisfied. The only case where this is not immediately clear involves smooth-
ness conditions connecting coefficients on two sides of a face F shared by a black
tetrahedron T and a white tetrahedron T̃ . If the face F is not split, it is clear
that all C1 smoothness conditions are satisfied since they either come from C1

smoothness at a vertex or in a tube around an edge. If the face F is split, the
required C1 smoothness follows from the fact that the point v

F
used to create the

Clough-Tocher split of F lies on the line segment joining the barycenters vT and
v

T̃
of the two tetrahedra T and T̃ sharing the face F ; see [34]. �

It may be helpful to explain the procedure in the above proof in a little more
detail. The first tetrahedron T1 in the list T is of the form T 1

ijk with Qijk ∈ K1. We
already know the coefficients of s corresponding to domain points on the edges of
T1. For each face F of T1 we have inserted an interpolation point at the barycenter
of F , and Lemma 5.1 can be used to compute the corresponding coefficient cF

111;
see Figure 6. This gives all the coefficients of s|T1 .

The second tetrahedron T2 in the list T is of the form T 3
ijk with Qijk ∈ K1. We

already know the coefficients of s corresponding to domain points on the edges of
T2, and we know that T2 shares an edge e with T1. Thus, we not only know the
coefficients of s|T2 corresponding to domain points on this edge, but also in the
tube t1(e). This leaves just two undetermined coefficients of s|T2 corresponding
to domain points at the barycenters of the two faces that do not contain e. But
P contains these two points (see Figure 6), and we can again use Lemma 5.1 to
compute the associated coefficients.

The third tetrahedron T3 in the list T is of the form T 5
ijk with Qijk ∈ K1. We

already know the coefficients of s corresponding to domain points on the edges of
T3, and we know that T3 shares an edge e with T1. Thus, we know all the coefficients
of s|T3 except for the two corresponding to domain points at the barycenters of the
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T

T
T1

3

5

Figure 6. Interpolation points (black dots) in the black tetrahe-
dra Tm

ijk, m = 1, 3, 5, contained in Qijk ∈ K1.

two faces that do not contain e. But P contains these two points (see Figure 6),
and we can again use Lemma 5.1 to compute the associated coefficients.

We can repeat these steps to deal with all of the black tetrahedra lying in cubes
of class K1. This is done simultaneously for all cubes in K1, which is possible since
these cubes do not have any vertices in common, and thus there is no interference
of the corresponding coefficients with each other; see the proof of Lemma 8.1. Then
the next tetrahedron in the list T has the form T := T 1

ijk, where the corresponding
cube Qijk is of class K2. This tetrahedron shares one edge e with a previously
processed tetrahedron contained in a cube of class K1, and so besides knowing the
coefficients corresponding to domain points on the edges of T , we also know them
for domain points in the tube t1(e). This determines the coefficients associated with
the barycenters of the two faces sharing that edge. The coefficients corresponding
to the barycenters of the other two faces of T are determined by Lemma 5.1. The
next tetrahedron in the list T has the form T := T 3

ijk with Qijk of class K2. This
tetrahedron shares one edge with a previously processed tetrahedra, and is treated
similarly. The next tetrahedron in the list T has the form T := T 5

ijk with Qijk

of class K2. This tetrahedron shares exactly two edges with previously processed
tetrahedra, and by the algorithm, the face F containing these edges will have been
split about a split point that has been inserted in P . In this case Lemma 5.2 can
be used to determine all coefficients of s corresponding to domain points lying on
F . This process can now be repeated for each of the cubes of class K2.

The procedure for processing the remaining tetrahedra in the list T is analogous,
but some care is needed to determine exactly which edges are shared with previously
processed tetrahedra. We have included Figure 7 as an aid to visualizing which
edges these are. Suppose we have completed all of the cubes in class K1, and now
examine a cube Q in class K2. Then the edges of Q that belong to black tetrahedra
in cubes of class K1 are marked with dark lines in the cube on the left in Figure 7.
Similarly, suppose we have completed all of the cubes in class K1 and K2, and now
examine a cube Q in class K3. Then the edges of Q that belong to black tetrahedra
in K1∪K2 are marked with dark lines in the second cube from the left in the figure.
The figure also shows the situation for cubes in the classes K4 and K5. Note that
if a cube Q has any edges that are on the outside faces of the domain Ω, then they
may not be shared with edges of black tetrahedra in lower classes. This can happen
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2K K3 K4 K5

Figure 7. Edges shared by a cube Q in class Kν with edges of
black tetrahedra in cubes of classes K1, . . . ,Kν−1.

for cubes in the classes K3,K4,K5. Figure 7 shows only the generic case where none
of the edges of Q are on the outside faces of Ω.

§8. Bounds on the error of the interpolant

Let P and S be the Lagrange interpolation pair constructed in the previous
sections. Then for every f ∈ C(Ω), there exists a unique spline If ∈ S such that

If(ξ) = f(ξ), ξ ∈ P.

This defines a linear projector I mapping C(Ω) onto S. In order to give an error
bound for f − If , we first show that I is local and stable.

Lemma 8.1. Fix f ∈ C(Ω), and let T be a tetrahedron in �. Suppose T lies in
the cube Q in the cube partition, and let ΩT be the union of the (at most 27) cubes
that have at least one point in common with Q. Then If |T depends only on values
of f in ΩT , and

(8.1) ‖If‖T ≤ K ‖f‖ΩT
,

where K is an absolute constant.

Proof. Let s = If . We first show that the B-coefficients {cξ}ξ∈DT,3 depend only
on values of f in ΩT . To see this, we review the way in which coefficients are
determined. If ξ ∈ V is a vertex of the original cube partition, then the associated
coefficient is just equal to f(ξ). Coefficients corresponding to domain points lying
on edges of cubes in K1 are determined from data at points on the same edges.
These in turn determine coefficients corresponding to domain points in the disks
D1(v) around the vertices of �F . We conclude that any coefficient corresponding
to a domain point on an edge of �F can depend only on data values at points in
ΩT .

Now consider coefficients on the faces of black tetrahedra. They are computed
in three ways: from a C1 smoothness condition around an edge, or using either
Lemma 5.1 or 5.2. Thus, a coefficient in one black tetrahedron can influence the
value of a coefficient in a neighboring one, leading to a certain propagation. How-
ever, due to the ordering imposed on the tetrahedra by Algorithm 3.1, and the fact
that black tetrahedra do not share faces, there can be no propagation from a black
tetrahedron in a cube in class Ki to another black tetrahedron in a different cube
in the same class. Thus, any propagation from a cube Ki is limited to a sequence
of neighboring cubes, each in a different class. There can also be propagation into
a white tetrahedron, but no propagation from one white tetrahedron to another. It
follows from the way in which the classes of cubes are defined that for every ξ ∈ T ,
cξ depends only on values of f in ΩT , see also Figure 1.
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We now turn to stability. In view of the fact that the Bernstein basis polynomials
associated with T are nonnegative and form a partition of unity, it suffices to show
that the coefficients cξ of s|T satisfy

(8.2) |cξ| ≤ K‖f‖ΩT
,

for all domain points ξ ∈ DT,3. If ξ ∈ V , then (8.2) clearly holds with K = 1. Now
consider ξ �∈ V . Suppose ξ ∈ DT,3 lies on the shell R1(v) for some vertex v of �F .
Then cξ can be computed from the gradient of s at v. This is a stable computation
since the angles in the partition �F are bounded away from zero by an absolute
constant independent of n. On the other hand, the gradient of s at v can be stably
computed from B-coefficients of s corresponding to domain points on the edges of ♦
attached to v. Next, suppose cξ is a coefficient that is computed from Lemma 5.1.
In this case cξ is stably determined from the coefficients associated with the other
domain points in T (which have already been determined) coupled with the value
f(v

F
), where v

F
is the barycenter of a face F of a tetrahedron T in �F . Finally,

suppose cξ is a coefficient that is computed from Lemma 5.2. Then, ξ lies on a face
of a tetrahedron in �F which has been subjected to a Clough-Tocher split. Since
�F is a Freudenthal partition, it is easy to see (cf. [13]) that the common vertices
of any two tetrahedra T := 〈v1, v2, v3, v4〉 and T̃ := 〈v1, v2, v3, v5〉 in �F can be
arranged such that the relation v5 = v1 + v2 − v4 is satisfied. Hence, the point v

F

where the line segment through the barycenters vT = (v1 + v2 + v3 + v4)/4 and
v

T̃
= (v1 + v2 + v3 + v5)/4 intersects the triangular face F = 〈v1, v2, v3〉 is

v
F

= (vT + v
T̃
)/2 = (v1 + v2 + v3)/4 + (v4 + v5)/8 = (3v1 + 3v2 + 2v3)/8.

It follows that the split point v
F

has barycentric coordinates (3/8, 2/8, 3/8) in all
cases, and so the inverse of the matrix appearing in the proof of Lemma 5.2 is
bounded by an absolute constant. The remaining coefficients of s corresponding to
domain points in DT are determined from those that we have aleady computed by
applying smoothness conditions, and thus satisfy (8.2) with a constant depending
only on the smallest angle in the faces of the tetrahedra in �. Since this angle does
not depend on n, K is an absolute constant. �

Given an integer m ≥ 1 and any compact subset B of Ω, let Wm
∞(B) be the usual

Sobolev space defined on B with seminorm

(8.3) |f |m,∞,B :=
∑

|α|=m

‖Dαf‖B.

Here α is a multi-index of length |α| = α1 +α2 +α3, Dα := Dα1
x Dα2

y Dα3
z , and ‖.‖B

denotes the infinity norm on B.
We now give an error bound for the interpolation operator I which shows in

particular that the C1 cubic spline space S has full approximation power. Let |�|
be the mesh size of �, i.e., the maximum diameter of the tetrahedra in �.

Theorem 8.2. Suppose f ∈ Wm+1
∞ (Ω) for some 0 ≤ m ≤ 3. Then there exists an

absolute constant K such that

(8.4) ‖Dα(f − If)‖Ω ≤ K |�|m+1−|α||f |m+1,∞,Ω,

for all multi-indices α with 0 ≤ |α| ≤ m.
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Proof. The proof is similar to the proof of Theorem 6.3 in [29]; see also Theorem 9
in [23]. Fix m, and let f ∈ Wm+1

∞ (Ω). Fix T ∈ �, and let ΩT be as in Lemma 8.1.
We first show that

(8.5) ‖Dα(f − If)‖T ≤ K1|ΩT |m+1−|α||f |m+1,∞,ΩT
,

where α is a multi-index with 0 ≤ |α| ≤ m. By Lemma 4.3.8 of [9], there exists a
cubic polynomial p such that

(8.6) ‖Dβ(f − p)‖ΩT
≤ K2 |ΩT |m+1−|β||f |m+1,∞,ΩT

,

for all 0 ≤ |β| ≤ m, where |ΩT | is the diameter of ΩT . Since Ip = p, it follows that

‖Dα(f − If)‖T ≤ ‖Dα(f − p)‖T + ‖DαI(f − p)‖T .

In view of (8.6) with β = α, it suffices to estimate the second term. By the Markov
inequality [36] and (8.1),

‖DαI(f − p)‖T ≤ K3 |T |−α‖I(f − p)‖T ≤ K4 |T |−α‖f − p‖ΩT
,

where |T | is the diameter of T . Because of the geometry of the partition, |ΩT | ≤
K5|T | and |T | ≤ K6|�| for some absolute constants K5 and K6. Now inserting
(8.6) for β = 0, and combining the above, we get (8.5). Taking the maximum over
all tetrahedra in � leads to (8.4). �

§9. Dimension of the space S

Suppose P and S are the interpolation pair constructed above. For comparison
with other spline interpolation methods, we now count the number of points in P ,
which by Theorem 3.2 is also the dimension of S.

Theorem 9.1. For all odd integers n,

dimS = #P = 8n3 + 18n2 + 15n + 5.

Proof. To count the number of points in P , we count the number of cubes in each
of the classes Kν of the cube partition ♦, and then count the number of points
of P in a given cube, but not in any cube already counted. Unfortunately, this is
nontrivial since cubes on the boundary of Ω are special. We summarize our counts
in Table 1. The first column describes the type of cube. Here we have introduced
the notation L,R,F,B,T, and b to stand for left, right, front, back, top, and bottom,
respectively. We use the letter O to stand for “other”. With this notation, cubes
in the class 1Bb are those of class K1 that lie along the edge along the back and
bottom of Ω. The classes in this table are disjoint, so for example a cube in 5F is
not in any of the classes 5LF, 5RF, 5FT, or 5Fb.

There are six classes of cubes where some white tetrahedron has an edge that is
on the boundary of Ω and is not shared with any edge of a black tetrahedra. These
are 1Bb, 1LT, 1RF, 5LB, 5Rb, and 5FT. In each of these cases Algorithm 3.1 inserts
two extra points in the set P . We emphasize the counting of these extra points by
writing +2 in the column labelled ni.

For each class we give the number of such cubes nc, the number of points ni

in each cube of this class (but not in any cube higher in the table), and the total
number of points nt := nc × ni in cubes of this class. Adding the numbers in the
second column gives the total number of cubes n3. Adding the numbers in the last
column of Table 1 gives us #P . �
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Table 1. The number of cubes nc contained in each class, the
number ni of points in each cube of that class, and the total number
nt := nc × ni of points in all cubes of the given class.

class nc ni nt

1Bb (n + 1)/2 40+2 21(n + 1)
1LT (n + 1)/2 40+2 21(n + 1)
1RF (n + 1)/2 40+2 21(n + 1)
1O (n3 + 3n2 − 9n − 11)/8 40 5n3 + 15n2 − 45n − 55
2 (n3 − n2 − n + 1)/8 6 3(n3 − n2 − n + 1)/4
3F (n2 − 2n + 1)/4 6 3(n2 − 2n + 1)/2
3B (n2 − 2n + 1)/4 8 2(n2 − 2n + 1)
3O (n3 − 5n2 + 7n − 3)/8 6 3(n3 − 5n2 + 7n − 3)/4
4T (n2 − 2n + 1)/4 4 n2 − 2n + 1
4b (n2 − 2n + 1)/4 6 3(n2 − 2n + 1)/2
4O (n3 − 5n2 + 7n − 3)/8 4 (n3 − 5n2 + 7n − 3)/2
5LF (n − 1)/2 4 2(n − 1)
5LB (n − 1)/2 6+2 4(n − 1)
5LT (n − 1)/2 4 2(n − 1)
5Lb (n − 1)/2 6 3(n − 1)
5RF (n − 1)/2 2 n − 1
5RB (n − 1)/2 4 2(n − 1)
5RT (n − 1)/2 4 2(n − 1)
5Rb (n − 1)/2 4+2 3(n − 1)
5FT (n − 1)/2 4+2 3(n − 1)
5Fb (n − 1)/2 4 2(n − 1)
5BT (n − 1)/2 6 3(n − 1)
5Bb (n − 1)/2 4 2(n − 1)
5L (n2 − 4n + 3)/2 4 2(n2 − 4n + 3)
5R (n2 − 4n + 3)/2 2 n2 − 4n + 3
5F (n2 − 4n + 3)/2 2 n2 − 4n + 3
5B (n2 − 4n + 3)/2 4 2(n2 − 4n + 3)
5b (n2 − 4n + 3)/2 4 2(n2 − 4n + 3)
5T (n2 − 4n + 3)/2 4 2(n2 − 4n + 3)
5O (n3 − 6n2 + 12n − 7)/2 2 n3 − 6n2 + 12n − 7

The result of Theorem 9.1 can be compared with the dimensions of C1 cubic
splines on other tetrahedral partitions of the uniform cube partition ♦. It was shown
in [13] that dimS1

3 (�F ) = 12n2 + 18n + 4. Furthermore, for type-6 tetrahedral
partitions �6 (each cube Q is subdivided in 24 congruent tetrahedra which have a
common vertex at the center of Q), it is known [12] that dimS1

3 (�6) = 6n3+24n2+
18n2 + 4. Hence, compared with these two spaces, S has more degrees of freedom
when n > 1. On the other hand, if we apply the full Worsey-Farin split to each
tetrahedron of �F , then it follows from [34] and some elementary computations
that the dimension of the space of C1 cubic splines on the resulting partition is
equal to 18n3 + 30n2 + 18n + 4. Our space S has a much lower dimension while
still providing full approximation power.



A LOCAL LAGRANGE INTERPOLATION METHOD 1033

§10. Remarks

Remark 1. Suppose V is an arbitrary set of points in R
3, and that � is some tetra-

hedral partition with vertices V . Set P := V , and let S := S0
1 (�) be the space of

continuous linear splines. Then clearly P and S form a Lagrange interpolation pair.
It is also straightforward to create a Lagrange interpolation pair using C0 splines of
higher degree provided we add an appropriate set of additional interpolation points.

Remark 2. The results in this paper can be extended to more general domains Ω
consisting of the union of a set of uniform boxes, although the description of a
Lagrange interpolation pair becomes more technical since there are many special
cases when tetrahedra have edges on the boundary of Ω. Even the case of a uniform
cube partition of the unit cube with n an even integer is more complicated than
the odd case presented here. Bivariate results in [21], [25] can help guide the
construction.

Remark 3. For an early reference to Freudenthal partitions, see [11].

Remark 4. Algorithm 3.1 makes use of all five types of partial Worsey-Farin splits.
For example, a first order split is applied to the tetrahedra T 5

ijk for Qijk ∈ K2 ∪K3.
The second order split is used on certain tetrahedra T 3

ijk for Qijk ∈ K3 ∪ K4. The
third order split is used on certain tetrahedra T 2

ijk for Qijk ∈ K5. The fourth order
split is always applied to the tetrahedra T 4

ijk and T 6
ijk, where Qijk ∈ K5. There

are also some tetrahedra which are not split at all, for instance the tetrahedra
T 1

ijk, T 3
ijk, T 5

ijk when Qijk ∈ K1. For others that are not split, see the table in the
following remark.

Remark 5. As an indication of the complexity of the refined partition �, we tabulate
the number of split faces (nsf) of black tetrahedra in classes K1, . . . ,K4. The top
row of the table shows the classes of cubes to which the tetrahedra belong. Note
that we have separated class 3 into 3F (those in front), and 3O (the remainder).
Similarly, we have separated class 4 into 4b (those on the bottom), 4T (those on the
top), and 4O (the remainder). The first row shows the indices m of the tetrahedra
Tm

ijk in each class which have no split faces. The second and third rows show the
indices of those that have one or two split faces, respectively.

nsf 1 2 3O 3F 4O 4b 4T
0 1,3,5 1,3 1 1 1 1 1
1 5 5 3,5 5 3,5
2 3 3,5 3

Remark 6. It was observed in [2],[3] that degrees of freedom can be removed from
spline spaces by forcing them to satisfy certain isolated smoothness conditions. This
idea can be used to remove the interpolation condition in Lemma 5.2 by imposing
one extra C2-super smoothness condition. This leads to a Lagrange interpolation
pair where the point set P has fewer points than the one constructed here, and
the corresponding spline space S has lower dimension. However, the associated
interpolation method has almost the same properties as the one presented above.
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Remark 7. For the bivariate case, the problem of constructing a Lagrange interpo-
lating pair utilizing smooth splines defined on triangulations has been studied in a
number of recent papers [18]–[19], [21]–[22], [24]–[26]. Our most recent paper [19]
(see also [18]) deals with the general case of arbitrary smoothness and given initial
triangulations. On the other hand, much less is known for the trivariate case; see
[23], [29].

Remark 8. Spline spaces where the restriction of a spline to a (refined) tetrahedron
T is determined from Hermite data at points in T are called macro-element spaces.
Trivariate macro-elements have been constructed in [1], [4]–[6], [15], [29]–[35]. Ex-
cept for the spaces discussed in [29], all of these constructions require Hermite
data, and cannot be modified to work with Lagrange data. Recently, some local
quasi-interpolation methods that are based on trivariate splines and require only
Lagrange data have been constructed; see [20], [27], [33]. These methods differ
from the method discussed here in that no data is interpolated. On the other
hand, a common feature is that the methods are based on piecewise polynomials of
low polynomial degree, which is important for applications such as the contouring
three-dimensional data, also called iso-surfacing.

Remark 9. The fact that C1 cubic splines on a partial Worsey-Farin split automat-
ically have supersmoothness C2 at the split point vT (see Corollary 6.2) generalizes
immediately to C1 spaces of splines of arbitrary degree q ≥ 3.

Remark 10. It can be shown using the same kind of arguments as in Lemma 6.1
that for the Alfeld split �0

WF of a tetrahedron, S1
3 (�0

WF ) = P3. Following the
arguments of Lemma 6.1, it follows that if s ∈ S1

3 (�0
WF ), then s is automatically

in C3(vT ), where vT is the split point. This fact also holds for all C1 spaces of
arbitrary degree q ≥ 3 on the Alfeld split.

Remark 11. Trivariate spline spaces are much more difficult to analyze than bi-
variate spline spaces, where questions of dimension, stable local bases, and approx-
imation power are already very challenging; see [17]. For results on dimension and
the construction of bases, see [7], [8], [12], [13], [17]. For a survey on interpolation
using bivariate splines, see [24].

Remark 12. It is known that constructing well-behaved tetrahedral partitions of
given points in R

3 is nontrivial. Currently available methods in computational
geometry are able to solve this problem with algorithmic complexity O(n2 log(n)),
where n is the number of given data points. In this regard, using uniform type
partitions as proposed in this paper has obvious advantages from a computational
point of view, since it leads to an interpolation method with linear algorithmic
complexity. In order to find Lagrange interpolation pairs starting with arbitrary
point sets V , we will have to allow more complicated tetrahedral partitions. We are
currently investigating this more general problem.
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[15] Lai, M.-J., Le Méhauté, A., A new kind of trivariate C1 spline, Advances in Comp. Math.,
21 (2004), 373–392.

[16] Lai, M.-J., Schumaker, L. L., Macro-elements and stable bases for splines on Clough-Tocher
triangulations, Numer. Math., 88 (2001), 105–119. MR1819391 (2001k:65027)

[17] Lai, M.-J., Schumaker, L. L., Spline Functions on Triangulations, Cambridge University
Press, Cambridge, 2007.

[18] Nürnberger, G., Rayevskaya, V., Schumaker, L. L., Zeilfelder, F., Local Lagrange interpola-
tion with C2 splines of degree seven on triangulations, Advances in Constructive Approxi-
mation, M. Neamtu and E. Saff (eds.), Nashboro Press, Brentwood, TN, 2004, 345–370.

[19] Nürnberger, G., Rayevskaya, V., Schumaker, L. L., Zeilfelder, F., Local Lagrange interpo-
lation with bivariate splines of arbitrary smoothness, Constr. Approx., 23 (2006), 33–59.
MR2176226 (2006e:41062)
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