ON THE EQUATION $s^2 + y^{2p} = \alpha^3$

IMIN CHEN

ABSTRACT. We describe a criterion for showing that the equation $s^2+y^{2p}=\alpha^3$ has no non-trivial proper integer solutions for specific primes p>7. This equation is a special case of the generalized Fermat equation $x^p+y^q+z^r=0$. The criterion is based on the method of Galois representations and modular forms together with an idea of Kraus for eliminating modular forms for specific p in the final stage of the method (1998). The criterion can be computationally verified for primes $7 and <math>p \neq 31$.

1. Introduction

A solution $(\alpha, s, y) \in \mathbb{Z}^3$ to the equation $s^2 + y^{2p} = \alpha^3$ is said to be non-trivial if $sy \neq 0$, and proper if $(\alpha, s, y) = 1$. In this paper, we describe a criterion for showing that equation $s^2 + y^{2p} = \alpha^3$ has no non-trivial proper integer solutions for specific primes p > 7. This equation is a special case of the generalized Fermat equation $x^p + y^q + z^r = 0$ (cf. [8] and its references for a recent survey of this equation).

The proper solutions to the diophantine equation $s^2 + y^{2p} = \alpha^3$ naturally arise as certain suitably-defined integral points on a twist of the modular curve associated to the subgroup Γ_3 of index 2 of $\mathrm{SL}_2(\mathbb{Z})$ (for a description of this viewpoint as applied to familiar cases, see [5]). This was in fact the initial motivation for considering the above diophantine equation. A uniformizer for this genus 0 modular curve is usually denoted γ_3 in the classical literature.

For p>3 a prime and q a prime of the form np+1, let $\Omega_{p,q}$ be the subset of elements $\bar{\zeta}\in\mathbb{F}_q^{\times}$ such that $\bar{\zeta}=\bar{A}^p$ and $\bar{\zeta}+\frac{1}{27}=\bar{U}^2$ for some $\bar{A}\in\mathbb{F}_q^{\times}$, $\bar{U}\in\mathbb{F}_q$. For $\bar{\zeta}\in\Omega_{p,q}$, let $E_{\bar{\zeta}}$ denote the isomorphism class of the elliptic curve over \mathbb{F}_q given by $Y^2=X^3+2\bar{U}X^2+\frac{1}{27}X$ where $\bar{\zeta}+\frac{1}{27}=\bar{U}^2$ (note the choices of U give rise to elliptic curves which are twists of each other). Let E_0 denote an elliptic curve over \mathbb{Q} of conductor 96.

Theorem 1. Let p > 7 be a prime. Suppose there exists a prime q of the form np+1 such that $a_q(E_0)^2 \not\equiv 4 \pmod{p}$ and for all $\bar{\zeta} \in \Omega_{p,q}$ we have $a_q(E_{\bar{\zeta}})^2 \not\equiv a_q(E_0)^2 \pmod{p}$. Then there are no triples $(\alpha, s, y) \in \mathbb{Z}^3$ satisfying $s^2 + y^{2p} = \alpha^3$ with $(\alpha, s, y) = 1$ and $sy \neq 0$.

Corollary 2. Let $7 and <math>p \neq 31$ be a prime. Then there are no triples $(\alpha, s, y) \in \mathbb{Z}^3$ satisfying $s^2 + y^{2p} = \alpha^3$ with $(\alpha, s, y) = 1$ and $sy \neq 0$.

Received by the editor October 13, 2004 and, in revised form, January 20, 2005. 2000 Mathematics Subject Classification. Primary 11G05; Secondary 14G05. This research was supported by NSERC.

1224 IMIN CHEN

Corollary 3. Let p > 7 be a prime such that q = 2p + 1 is prime. If $\left(\frac{q}{7}\right) = 1$ and $\left(\frac{q}{13}\right) = (-1)^{\frac{p+1}{2}}$, then there are no triples $(\alpha, s, y) \in \mathbb{Z}^3$ satisfying $s^2 + y^{2p} = \alpha^3$ with $(\alpha, s, y) = 1$ and $sy \neq 0$.

For instance, the hypotheses of Corollary 3 are satisfied for

$$p = 100000000000000014611, q = 2000000000000000029223.$$

Based on the conjectures described in [6], the conclusion of the above theorem should hold if p > 3.

2. Proof of Theorem 1

We first recall the parametrization of solutions to the equation $s^2 + t^2 = \alpha^3$.

Lemma 4. A triple $(\alpha, s, t) \in \mathbb{Z}^3$ with $(\alpha, s, t) = 1$ satisfies $s^2 + t^2 = \alpha^3$ only if $(\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))$ for some $(u, v) \in \mathbb{Z}^2$.

Proof. Cf. Lemma 3.2.2 in [3].
$$\Box$$

Lemma 5. Let p be an odd prime. Suppose $(u,v) \in \mathbb{Z}^2$ gives rise to a triple $(\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))$ satisfying $(\alpha, s, t) = 1$ and $st \neq 0$. Then the constraint that $t = y^p$ for some $y \in \mathbb{Z}$ implies either

- (1) $v = r^p$ and $3u^2 v^2 = a^p$ for some $a, r \in \mathbb{Z}$, where $3 \nmid a, r$ and a, r, u are non-zero pairwise coprime,
- (2) $v = 3^{pj-1}r^p$ and $3u^2 v^2 = 3a^p$ for some $a, r \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$, where $3 \nmid a, r, u$ and a, r, u are non-zero pairwise coprime.

Proof. Since $(\alpha, s, y) = 1$, it is necessary that (u, v) = 1. If $d \mid v$ and $d \mid 3u^2 - v^2$, then $d \mid 3u^2$. Since (u, v) = 1, we have that $d \mid 3$. Hence, $(v, 3u^2 - v^2) \mid 3$.

If $3 \nmid v$, then $(v, 3u^2 - v^2) = 1$. The condition that $t = v(3u^2 - v^2) = y^p$ for some $y \in \mathbb{Z}$ implies by unique factorization that $v = r^p$ and $3u^2 - v^2 = a^p$ for coprime $a, r \in \mathbb{Z}$. It now follows that $3 \nmid a, r$ and a, r, u are pairwise coprime.

If $3 \mid v$, then $(v, 3u^2 - v^2) = 3$. The condition that $t = v(3u^2 - v^2) = y^p$ for some $y \in \mathbb{Z}$ implies by unique factorization that $v = 3^n r^p$ and $3u^2 - v^2 = 3^m a^p$ for coprime $a, r \in \mathbb{Z}, 3 \nmid a, r$, and positive $n, m \in \mathbb{Z}$. It is now easily checked that $3 \nmid u$, m = 1, n = pj - 1 for some positive $j \in \mathbb{Z}$, and a, r, u are pairwise coprime. \square

Corollary 6. Let p be an odd prime. Suppose $(u,v) \in \mathbb{Z}^2$ gives rise to a triple $(\alpha, s, t) = (u^2 + v^2, u(u^2 - 3v^2), v(3u^2 - v^2))$ satisfying $(\alpha, s, t) = 1$ and $st \neq 0$. Then the constraint that $t = y^p$ for some $y \in \mathbb{Z}$ implies there are non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying either

- (1) $a^p + (r^2)^p = 3u^2$ with $3 \nmid a, r$,
- (2) $a^p + 3^{2pj-3}(r^2)^p = u^2$ with $3 \nmid a, u$.

Theorem 7. Let p > 3 be a prime. Suppose $(a, r, u) \in \mathbb{Z}^3$ satisfies $a^p + (r^2)^p = 3u^2$ with a, r, u pairwise coprime and $3 \nmid a, r$. Then aru = 0.

Proof. This is a special case of Theorem 1.1 in [1].

For non-zero $a, d \in \mathbb{Z}$, let $\operatorname{Rad}_d(a)$ be the product of primes dividing a but not d.

Proposition 8. Let p > 3 be a prime. Suppose $(a, r, u) \in \mathbb{Z}^3$ satisfies $a^p +$ $3^{2pj-3}(r^2)^p=u^2$ with a,r,u non-zero pairwise coprime, $3 \nmid a,u$, and positive $j \in \mathbb{Z}$. Associate to (a, r, u) the elliptic curve E over \mathbb{Q} given by

- (1) $Y^2 = X^3 + 2uX^2 + 3^{2pj-3}r^{2p}X$ if ar is odd, (2) $Y^2 + XY = X^3 + \frac{\pm u 1}{4}X^2 + \frac{3^{2pj-3}(r^2)^p}{64}X$ if ar is even,

where the sign in $\pm u$ is chosen so that $\pm u \equiv 1 \pmod{4}$. Then the conductor N of E and the Artin conductor M of $\rho_{E,p}$ are given in each case by

- (1) $N = 96 \cdot \text{Rad}_6(ab) \text{ and } M = 96$,
- (2) $N = 6 \cdot \text{Rad}_6(ab) \text{ and } M = 6.$

Furthermore, the representation $\rho_{E,p}$ is flat at p.

Proof. This follows from Lemma 2.1 of [1].

The above proposition allows us to invoke the machinery of galois representations and modular forms to establish Theorem 1.

Proof of Theorem 1. Suppose $(\alpha, s, y) \in \mathbb{Z}^3$ satisfies $s^2 + y^{2p} = \alpha^2$ with $(s, t, \alpha) = 1$ and $sy \neq 0$. By Corollary 6, we obtain non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ satisfying $a^p + (r^2)^p = 3u^2$ with $3 \nmid a, r$, or non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^p + 3^{2pj-3}(r^2)^p = u^2$ with $3 \nmid a, u$. In the former case, Theorem 7 allows us to deduce that aru = 0, a contradiction. In the latter case, let E be the elliptic curve over \mathbb{Q} associated to (a, r, u) by Proposition 8. Since E is modular [2], it follows that $\rho_{E,p}$ is modular.

The elliptic curve E has one odd prime of multiplicative reduction, namely q=3. By Corollary 4.4 in [9], E having at least one prime odd prime q of multiplicative reduction and $\rho_{E,p}$ reducible implies that p=2,3,5,7,13. If p=13 however, then E would give rise to a non-cuspidal rational point on $X_0(26)$ as E also has a rational point of order 2, contradicting [10]. Since p > 7 we may assume now that $\rho_{E,p}$ is irreducible. Since $\rho_{E,p}$ has Artin conductor M=6 or M=96 and is flat at p, it follows by level lowering [11] that $\rho_{E,p} \cong \rho_{g,p}$ where g is a weight 2 newform on $\Gamma_0(M)$. There are no weight 2 newforms on $\Gamma_0(6)$, so we are left with the case that M = 96.

There are two possibilities for q corresponding to the isogeny classes labelled as 96A, 96B respectively in Cremona's tables [4]. Let E_0 be the elliptic over \mathbb{Q} corresponding to g.

If q is a prime and $q \neq 2, 3, p$, then the fact that $\rho_{E,p} \cong \rho_{E_0,p}$ implies $p \mid$ $a_q(E)^2 - a_q(E_0)^2$ if E has good reduction at q and $p \mid a_q(E_0)^2 - (q+1)^2$ if E has multiplicative bad reduction at q. If E_0 does not have a rational point of order 2, then it is possible to find a prime q (independently of the exponent p and the solution (a, r, u) so that $a_q(E_0)$ is odd. On the other hand, $a_q(E)$ is even so that $a_q(E) - a_q(E_0)$ is non-zero. The quantity $a_q(E_0)^2 - (q+1)^2$ is non-zero by Hasse's bounds. Hence, we obtain a bound on p. This method to bound p is used in the proof of Theorem 7 [1].

Unfortunately, all elliptic curves over \mathbb{Q} of conductor 96 have a rational point of order 2. Thus, it is not possible to use the above method to bound p. However, in this situation, the method in [7] can be used to obtain a contradiction for specific p.

The method works as follows. Recall we are in the situation where we have obtained non-zero pairwise coprime $a, r, u \in \mathbb{Z}$ and positive $j \in \mathbb{Z}$ satisfying $a^p +$ $3^{2pj-3}(r^2)^p = u^2$ with $3 \nmid a, u$, and this solution gave rise to the elliptic curve E over 1226 IMIN CHEN

 \mathbb{Q} given by $Y^2 = X^3 + 2uX^2 + 3^{2pj-3}r^{2p}X$. For a fixed exponent p, we search for q = np+1 prime such that $a_q(E_0)^2 \not\equiv 4 \pmod{p}$ and $a_q(E_{\bar{\zeta}})^2 \not\equiv a_q(E_0)^2 \pmod{p}$ for all $\bar{\zeta} \in \Omega_{p,q}$.

The existence of such a prime q for the given p now yields a contradiction as follows. If E were to have multiplicative reduction modulo q, then we would have that $a_q(E_0)^2 \equiv (q+1)^2 \equiv 4 \pmod{p}$, a contradiction. Hence, E has good reduction modulo q. By Lemma 2.1 in [1], the discriminant of E is equal to $a^p r^{4p}$ up to factors of 2 and 3. Hence, both a, r are non-zero modulo q. If we let $A = \frac{a}{r^2 3^{2j}}$ and $U = \frac{u}{r^p 3^{pj}}$, then $\zeta + \frac{1}{27} = U^2$ where $\zeta = A^p$. The elliptic curve E is isomorphic to $Y^2 = X^3 + 2UX^2 + \frac{1}{27}X$ over $\mathbb{Q}(\sqrt{3^{pj}r^p})$ which also has good reduction modulo q. Hence, the reduction modulo q of E is isomorphic to a twist of $E_{\bar{\zeta}}$ where $\bar{\zeta} \in \Omega_{p,q}$ is the reduction modulo q of ζ . Now, $a_q(E)^2 = a_q(E_{\bar{\zeta}})^2$. But then we would have that $p \mid a_q(E)^2 - a_q(E_0)^2 = a_q(E_{\bar{\zeta}})^2 - a_q(E_0)^2$, a contradiction.

Notice that the elliptic curves 96A and 96B are twists of each other and that the criterion above only depends on E_0 up to twist.

Although it is possible to treat the diophantine equation $s^2 + y^{2p} = \alpha^3$ using the elliptic curves classified by the modular curve associated to Γ_3 directly, many of the arguments are essentially equivalent to the work incorporated into the proof of Theorem 1.1 of [1].

Proof of Corollary 2. We were able to computationally verify the criterion of Theorem 1 for $7 and <math>p \neq 31$ using MAGMA.

Curiously, it is sometimes the case that $\Omega_{p,q}$ is empty for specific p,q (e.g. p = 11, q = 23). When this is the case, this last portion of the argument becomes completely elementary (but note the overall argument still requires [1]).

For example, suppose p>3 and n=2 so q=2p+1 is prime. The set $\Omega_{p,q}$ is not empty if and only if $\pm 27+1=3x^2$ for some $x\in \mathbb{F}_q^{\times}$, in other words if and only if $\left(\frac{28}{q}\right)=\left(\frac{3}{q}\right)$ or $\left(\frac{-26}{q}\right)=\left(\frac{3}{q}\right)$. Using quadratic reciprocity, we find that the set $\Omega_{p,q}$ is empty if and only if $\left(\frac{q}{7}\right)=1$ and $\left(\frac{q}{13}\right)=(-1)^{\frac{p+1}{2}}$. This proves Corollary 3.

Algorithm 1: Verifying the criterion in Theorem 1 for specific primes p, q

```
input : primes p,q such that p>7 and q=np+1 output: true if criterion of Theorem 1 is satisfied for p,q; false otherwise if a_q(E_0)^2\equiv 4\pmod{p} then | return false; end forall \bar{\zeta}\in \mu_n(\mathbb{F}_q^\times) do | if \bar{\zeta}+\frac{1}{27}=\overline{U}^2 and p\mid a_q(E_{\bar{\zeta}})^2-a_q(E)^2 then | return false | end end return true;
```

ACKNOWLEDGEMENTS

I would like to thank M. Bennett and N. Bruin for useful discussions. I would also like to thank the referee for suggestions which simplified the criterion and improved its computational efficiency.

References

- [1] M. Bennett and C. Skinner. Ternary diophantine equations via galois representations and modular forms. *Canadian Journal of Mathematics*, 56(1):23–54, 2004. MR2031121 (2005c:11035)
- [2] C. Breuil, B. Conrad, F. Diamond, and R. Taylor. Modularity of elliptic curves over Q: wild 3-adic exercises. *Journal of the American Mathematical Society*, 14(4):843–939, 2001. MR1839918 (2002d:11058)
- [3] N. Bruin. Chabauty methods and covering techniques applied to generalised Fermat equations. Ph.D. thesis, University of Leiden, 1999.
- [4] J.E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, second edition, 1997. MR1628193 (99e:11068)
- [5] H. Darmon. Faltings plus epsilon, Wiles plus epsilon, and the generalized Fermat equation. C.R. Math. Rep. Acad. Sci. Canada, 19(1):3–14, 1997. MR1479291 (98h:11034a)
- [6] A. Granville and H. Darmon. On the equations $x^p + y^q = z^r$ and $z^m = f(x, y)$. Bulletin of the London Math. Society, 27(129):513–544, 1995. MR1348707 (96e:11042)
- [7] A. Kraus. Sur l'équation $a^3 + b^{\dot{3}} = c^p$. Experiment. Math., 7:1–13, 1998. MR1618290 (99f:11040)
- [8] A. Kraus. On the equation $x^p + y^q = z^r$: A survey. The Ramanujan Journal, 3:315–333, 1999. MR1714945 (2001f:11046)
- [9] B. Mazur. Rational isogenies of prime degree. *Inventiones Mathematicae*, 44:129–162, 1978. MR482230 (80h:14022)
- [10] B. Mazur and J. Vélu. Courbes de Weil de conducteur 26. C. R. Acad. Sci. Paris Sér. A-B, 275:A743-A745, 1972. MR0320010 (47:8551)
- [11] K. Ribet. On modular representations of $Gal(\overline{\mathbb{Q}} \mid \mathbb{Q})$ arising from modular forms. *Inventiones Mathematicae*, 100:431–476, 1990. MR1047143 (91g:11066)

DEPARTMENT OF MATHEMATICS, SIMON FRASER UNIVERSITY, BURNABY, B.C., CANADA V5A 1S6 *E-mail address*: ichen@math.sfu.ca