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ODD PERFECT NUMBERS

HAVE A PRIME FACTOR EXCEEDING 108

TAKESHI GOTO AND YASUO OHNO

Abstract. Jenkins in 2003 showed that every odd perfect number is divisible
by a prime exceeding 107. Using the properties of cyclotomic polynomials, we
improve this result to show that every perfect number is divisible by a prime
exceeding 108.

1. Introduction

A positive integer n is said to be perfect if σ(n) = 2n, where σ(n) denotes the
sum of positive divisors of n. As of November 2006, forty-four even perfect numbers
are known. On the other hand, it is still open whether or not an odd perfect number
exists. Many necessary conditions for existence of an odd perfect number have been
found. For example, Euler showed that the prime factorization of an odd perfect
number n must be of the form

n = pe00 p2e11 · · · p2ekk , p0 ≡ e0 ≡ 1 (mod 4).

Here p0 is called the special prime of n. Brent, Cohen and te Riele [1] showed that
n > 10300. Chein [2] and Hagis [7] independently showed that n must have at least
8 distinct prime factors, and this bound was recently improved to 9 by Nielsen [18].
Hare [9] showed that n must have totally at least 47 prime factors, and he recently
improved this bound to 75 in [10].

In the present paper, we focus our attention on the largest prime factor of an
odd perfect number. In 1944, Kanold [15] showed that every odd perfect number
is divisible by a prime exceeding 60. This lower bound was improved by Hagis
and McDaniel [5] (resp. [6]) to 104 (resp. 105), by Hagis and Cohen [8] to 106, by
Jenkins [13], [14] to 107. Jenkins reported that he needed about 25,800 hours for
computing time. On the other hand, Ore [19] proved that every perfect number is
a harmonic number (a positive integer is said to be harmonic if the harmonic mean
of its positive divisors is an integer). Chishiki, Goto and Ohno [3] showed that
every odd harmonic number is divisible by a prime exceeding 105. This is another
extension of the result given by McDaniel [6]. The aim of the present paper is to
show the following result.

Theorem 1.1. Every odd perfect number is divisible by a prime exceeding 108.
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In §2 and §3, we explain our proof of Theorem 1.1. For more details, see the
note on the webpage http://www.ma.noda.tus.ac.jp/u/tg/perfect.html. The
programs used in the computation are also available on this webpage. In §4, we
discuss our algorithm.

2. Outline of the proof

In this paper, p, q will denote odd primes and r will denote a (possibly even)
prime. The dth cyclotomic polynomial will be denoted by Φd, so that σ(pe) =
1 + p+ p2 + · · ·+ pe =

∏
d|(e+1),d>1 Φd(p). Let n be an odd perfect number whose

prime factorization is pe11 · · · pekk (note that this is different from the form in §1).
Since σ is multiplicative, it easily follows from σ(n) = 2n that

(2.1)

k∏

i=1

∏

d | (ei + 1)
d > 1

Φd(pi) = 2

k∏

i=1

peii .

For integers a, d ≥ 2, the integer Φd(a) is often called a cyclotomic number. In the
nineteenth century, cyclotomic numbers were studied by Sylvester, Kronecker et al.
The following proposition is a summary of their results (cf. [20]).

Proposition 2.1. Let q be a prime, and a, d be integers. Suppose that a ≥ 2, d ≥ 3.
Then the following facts hold.

(1) If q | Φd(a), then q | d or q ≡ 1 (mod d).
(2) If q | Φd(a) and q | d, then q2 � Φd(a).
(3) If (a, d) �= (2, 6), then the cyclotomic number Φd(a) has at least one prime

factor q such that q ≡ 1 (mod d).

2.1. Acceptable values. Assume that n is an odd perfect number whose largest
prime factor is less than 108. Then the right-hand side of (2.1) has no prime factors
exceeding 108, hence so does the left-hand side. Since n is odd, the cyclotomic
numbers in (2.1) are not divisible by 4.

Definition. For an odd prime p and a prime r, we say that Φr(p) is acceptable if
the following two conditions hold.

(1) Φr(p) has no prime factors exceeding 108.
(2) 4 � Φr(p).

Clearly, cyclotomic numbers in (2.1) must be acceptable. Our first aim is to find
all acceptable values Φr(p) with 3 ≤ p < 108.

Lemma 2.2. Suppose that 3 ≤ p < 108, r ≥ 7, and the cyclotomic number Φr(p)
is acceptable. Then Φr(p) is one of 671 numbers listed in the online note mentioned
in §1.

The details of the proof of Lemma 2.2 can be found in §3. The basic techniques
used for proving Lemma 2.2 is first to show that we can restrict our search to
r < 5 × 107 (hence we need search only finitely many numbers), and then to use
properties of cyclotomic polynomials to further refine the search.
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2.2. Inadmissible small primes. Under Lemma 2.2, we show the following.

Lemma 2.3. Assume that n is an odd perfect number whose largest prime factor
is less than 108. Then n is not divisible by any prime in the following set X.

X = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 61, 71, 113, 127, 131, 151, 197,
211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631, 659, 673, 743,

757, 827, 911, 953, 967, 1051, 1093}.
In particular, n has no prime factors less than 41.

For the proof of this lemma, primes in X are considered in the order

1093, 151, 31, 127, 19, 11, 7, 23, 131, 37, 61, 13, 3, 5, 29, 43, 1051, 17,

71, 113, 197, 211, 239, 281, 337, 379, 421, 449, 463, 491, 547, 617, 631,

659, 673, 743, 757, 827, 911, 953, 967.

For example, after proving that 1093 � n, we prove 151 � n as follows. Assume
that 151 | n. Then the left-hand side of (2.1) is divisible by a cyclotomic number
Φr(151) for some prime r. Only Φ3(151) = 3 · 7 · 1093 is acceptable, however, it is
contradictory to 1093 � n. Hence we have 151 � n. The proof of 1093 � n has many
branches. At each step, we only need to branch on r where Φr(p) is acceptable.
We write p∗ to indicate that p is the special prime. Note that two different primes
cannot be special simultaneously.

(initial part of the proof of Lemma 2.3)

(1093 � n)

1093 : Φ2(1093) = 2 · 547; Φ3(1093) = 3 · 398581.
1093∗, 547 : Φ3(547) = 3 · 163 · 613.
1093∗, 547, 613 : Φ3(613) = 3 · 7 · 17923; Φ5(613) = 131 · 20161 · 53551.
1093∗, 547, 613, 17923 : Φ3(17923) = 3 · 13 · 31 · 265717.
1093∗, 547, 613, 17923, 265717 : Any Φr(265717) is unacceptable.
1093∗, 547, 613, 20161 : Any Φr(20161) is unacceptable.
1093, 398581 : Φ2(398581) = 2 · 17 · 19 · 617; Φ3(398581) = 3 · 1621 · 32668561.
1093, 398581∗, 617 : Φ3(617) = 97 · 3931.
1093, 398581∗, 617, 3931 : Φ3(3931) = 3 · 7 · 31 · 23743.
1093, 398581∗, 617, 3931, 23743 : Φ3(23743) = 3 · 37 · 5078863.
1093, 398581∗, 617, 3931, 23743, 5078863 : Any Φr(5078863) is unacceptable.
1093, 398581, 32668561 : Φ2(32668561) = 2 · 19 · 43 · 19993.
1093, 398581, 32668561∗, 19993 : Φ3(19993) = 3 · 73 · 1825297.
1093, 398581, 32668561∗, 19993, 1825297 : Φ3(1825297) = 3 · 326863 · 3397663.
1093, 398581, 32668561∗, 19993, 1825297, 326863 : Φ3(326863) = 3 · 67 · 3313 · 160441.
1093, 398581, 32668561∗, 19993, 1825297, 326863, 3313 : Φ3(3313) = 3 · 7 · 7 · 19 · 3931.
1093, 398581, 32668561∗, 19993, 1825297, 326863, 3313, 3931 :

Φ3(3931) = 3 · 7 · 31 · 23743.
1093, 398581, 32668561∗, 19993, 1825297, 326863, 3313, 3931, 23743 :

Φ3(23743) = 3 · 37 · 5078863.
1093, 398581, 32668561∗, 19993, 1825297, 326863, 3313, 3931, 23743, 5078863:

Any Φr(5078863) is unacceptable.

(153 � n)

151 : Φ3(151) = 3 · 7 · 1093.
151, 1093 : contradiction to 1093 � n.

(31 � n)

31 : Φ3(31) = 3 · 331; Φ5(31) = 5 · 11 · 17351; Φ13(31) = 42407 · 2426789 · 7908811.
· · ·
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For the complete proof of Lemma 2.3, see the online note mentioned in §1.

2.3. Restriction on exponents in the prime factorization. Under Lemmas
2.2, 2.3, we show the following.

Lemma 2.4. Assume that n is an odd perfect number whose largest prime factor
is less than 108. Let the prime factorization of n be pe11 · · · pekk . Then every ei + 1
has no prime factors greater than 5.

Assume that some ei+1 has a prime factor r greater than 5. Then the cyclotomic
number Φr(pi) is acceptable. Hence Φr(pi) is one of the 671 numbers mentioned
in the statement of Lemma 2.2. From Lemma 2.3, it follows that pi �∈ X, and
Φr(pi) is not divisible by any prime in X. There are 87 such cyclotomic numbers.
It is sufficient to show that each of these 87 numbers cannot appear in (2.1). For
example, we can check Φ13(47) as follows. Assume that Φ13(47) | n. This implies
14050609 | n since

Φ13(47) = 53 · 2237 · 14050609 · 71265169.
Only Φ2(14050609) = 2·5·7·200723 is acceptable. Since 5 ∈ X, this is contradictory
to Lemma 2.3. For the complete proof of Lemma 2.4, see the online note mentioned
in §1.

2.4. Four sets. We denote by |A| the size of the set A. Let P = {p | p is prime,
41 ≤ p < 108}. A computer search showed that |P | = 5761443 and

P ∗ :=
∏

p∈P

p

p− 1
< 4.87934286481804236682.

The four subsets S, T, U, V of P are defined by

S = {p ∈ P | p �≡ 1 (mod 3) and p �≡ 1 (mod 5)},
T = {p ∈ P | p ≡ 1 (mod 15)},
U = {p ∈ P | p ≡ 1 (mod 3), p �≡ 1 (mod 5) and Φ5(p) is unacceptable},
V = {p ∈ P | p �≡ 1 (mod 3), p ≡ 1 (mod 5) and Φ3(p) is unacceptable}.

Note that these subsets are disjoint and S ∪ T ∪ U ∪ T �= P . Computer searches
showed that |S| = 2160618, |T | = 719983, |U | = 2144188, |V | = 496701 and

S∗ :=
∏

p∈S

p

p− 1
> 1.82219345901032950583,

T ∗ :=
∏

p∈T

p

p− 1
> 1.19902263543776496408,

U∗ :=
∏

p∈U

p

p− 1
> 1.43699138263382743310,

V ∗ :=
∏

p∈V

p

p− 1
> 1.03750936160818766647.

Proposition 2.5. Assume that n is an odd perfect number whose largest prime
factor is less than 108. Then the following facts hold.

(1) The number n is divisible by at most two elements of S. If there is such an
element s, then it is not the special prime of n, and s ≥ 47.
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(2) The number n is divisible by at most one element of T . If there is such an
element t, then it is the special prime of n, and t ≥ 61.

(3) The number n is divisible by at most one element of U . If there is such an
element u, then it is the special prime of n, and u ≥ 73.

(4) The number n is not divisible by any element of V .

Proof. These facts can be proven similarly to the paper [8]. Here we show only (1)
since it is slightly different from the original one. Suppose that p ∈ S and p | n.
Then p divides some cyclotomic number Φd(pj) in equation (2.1). Assume that
d �= 2. By Lemma 2.4, d is divisible by 3 or 5, and hence p ≡ 1 (mod 3) or p ≡ 1
(mod 5) from Proposition 2.1 (1). This is a contradiction to p ∈ S. Therefore d = 2.
Because of the definition of the special prime, pj is the special prime and p is not.
Since the smallest element of S is 47, it holds that p ≥ 47. Since p | Φ2(pj) and
the other cyclotomic numbers in (2.1) are not divisible by p, we have p2 | (pj + 1).
If there are three such p, then pj + 1 ≥ 2 · 472 · 532 · 592 > 108, a contradiction to
pj < 108. �

We define σ−1(n) by

σ−1(n) :=
∑

d|n
d−1 =

σ(n)

n
.

An integer n is perfect if and only if σ−1(n) = 2. The function σ−1 is multiplicative,
and for any positive integer e,

σ−1(p
e) < σ−1(p

∞) := lim
e→∞

σ−1(p
e) =

p

p− 1
.

Assume again that n = pe11 · · · pekk is an odd perfect number whose largest prime
factor is less than 108. From Proposition 2.5, n is divisible by at most three elements
of S ∪ T ∪U ∪ V . Since x/(x− 1) is monotone decreasing for x > 1, if pi ∈ S, then
σ−1(p

∞
i ) ≤ 47/46, and if pi ∈ T ∪ U , then σ−1(p

∞
i ) ≤ 61/60. Therefore it follows

from Proposition 2.5 that

2 = σ−1(n) <
∏

i

pi
pi − 1

≤ 47

46
· 53
52

· 61
60

· P ∗

S∗T ∗U∗V ∗ < 1.5859314817,

a contradiction. The proof of Theorem 1.1 is completed.

3. Details on the search for acceptable values

From Proposition 2.1 (3), the cyclotomic number Φr(p) has a prime factor q
such that q ≥ 2r + 1, hence if Φr(p) is acceptable, then r < 5 · 107. Therefore we
need to check only finitely many cyclotomic numbers, however, it is hard to directly
determine whether or not each number is acceptable because of difficulty of prime
factorization. The key point of the proof of Lemma 2.2 is the following lemma. The
notation pe ‖ n means that pe | n and pe+1 � n.

Lemma 3.1. If p, q < 108 and 6679 < r < 5 · 107, then q4 � Φr(p) for all primes q
and q3 ‖ Φr(p) for at most one prime q. In fact, q3 � Φr(p) except for

284993 ‖ Φ14249(70081199), 606473 ‖ Φ30323(6392117), 635873 ‖ Φ31793(42326917).

In the rest of this section, we prove Lemma 2.2 using Lemma 3.1. In §4, we
discuss our algorithm to show Lemma 3.1.
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Lemma 3.2. If 102 < p < 108 and 6679 < r < 5 · 107, then Φr(p) is unacceptable.

Proof. For a prime r, we define Q(r) by

Q(r) =
∏

q < 108

q ≡ 1 (mod r)

q.

Note that r ·Q(r) is the product of all primes which may divide an acceptable cy-
clotomic number Φr(p) in view of Proposition 2.1. Therefore, if Φr(p) is acceptable
and squarefree, then Φr(p) ≤ r · Q(r). Under the assumption of this lemma, we
have Φr(p) < 108r ·Q(r)2 from Lemma 3.1.

We show that if 6679 < r < 5 · 107, then 108r · Q(r)2 < 102(r−1). A direct
computation showed that if 6679 < r < 5 · 104, then the required inequality holds.
Suppose that r ≥ 5 · 104. If q ≡ 1 (mod r), then q = 2kr + 1 with k < 103, hence

we have 104
√
r ·Q(r) < (108)10

3+2 < 1010
4

< 10r−1. The square of this inequality
is the required one.

Hence it follows that Φr(p) < 108r · Q(r)2 < 102(r−1). On the other hand, we
have Φr(p) > pr−1 > 102(r−1), a contradiction. �
Lemma 3.3. If 102 < p < 108 and 4723 < r ≤ 6679, then Φr(p) is unacceptable.

Proof. A direct computation showed that if 4723 < r ≤ 6679, then 108r · Q(r) <
102(r−1). Another computer search showed that if 4723 < r ≤ 6679, then q3 �
Φr(p) for all primes q and q2 ‖ Φr(p) for at most one prime q. Assume that
102 < p < 108, 4723 < r ≤ 6679 and Φr(p) is acceptable. Then it follows that
102(r−1) < pr−1 < Φr(p) < 108r ·Q(r) < 102(r−1), a contradiction. �
Lemma 3.4. (1) If 106 < p < 108 and 2707 < r ≤ 4723, then Φr(p) is unaccept-
able. (2) If 107 < p < 108 and 2503 < r ≤ 2707, then Φr(p) is unacceptable.

Proof. A computer search showed that if p, q < 108 and 2503 < r ≤ 4723, then
q2 | Φr(p) for at most one prime q, and q3 � Φr(p) except for

107093 ‖ Φ2677(6619441), 59393 ‖ Φ2969(41492783), 67193 ‖ Φ3359(59698039),

81473 ‖ Φ4073(41112823), 81473 ‖ Φ4073(41728717).

(1) A direct computation showed that if 2707 < r ≤ 4723, then (108)2r ·Q(r) <
106(r−1). Hence if 106 < p < 108, 2707 < r ≤ 4723 and Φr(p) is acceptable, then
it follows that 106(r−1) < pr−1 < Φr(p) < (108)2r ·Q(r) < 106(r−1), a contradiction.

(2) A direct computation showed that if 2503 < r ≤ 2707, then (108)2r ·Q(r) <
107(r−1). Hence if 107 < p < 108, 2503 < r ≤ 2707 and Φr(p) is acceptable, then it
follows that 107(r−1) < pr−1 < Φr(p) < (108)2r ·Q(r) < 107(r−1), a contradiction.

�
Suppose that p < 102 and q2 | Φr(p). Proposition 2.1 (1), (2) imply that

r | (q−1), and we have pr ≡ 1 (mod q2) by the argument in the proof of Proposition
4.1. Hence it follows that pq−1 ≡ 1 (mod q2). According to the table of Montgomery
[16], all solutions of pq−1 ≡ 1 (mod q2), 3 ≤ p < 102, q < 108 are given by Table 1.
From the table, if p < 102 and 3 ≤ r < 5 · 107, then Φr(p) is squarefree except for

112 ‖ Φ5(3), 489472 ‖ Φ24473(17), 472 ‖ Φ23(53), 592 ‖ Φ29(53),

72 ‖ Φ3(67), 472 ‖ Φ23(71), 72 ‖ Φ3(79), 48712 ‖ Φ487(83).
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Table 1

p q p q

3 11, 1006003 43 5, 103
5 20771, 40487, 53471161 47 none
7 5, 491531 53 3, 47, 59, 97

11 71 59 2777
13 863, 1747591 61 none
17 3, 46021, 48947 67 7, 47, 268573
19 3, 7, 13, 43, 137, 63061489 71 3, 47, 331
23 13, 2481757, 13703077 73 3
29 none 79 7, 263, 3037, 1012573, 60312841
31 7, 79, 6451, 2806861 83 4871, 13691
37 3, 77867 89 3, 13
41 29, 1025273 97 7, 2914393

Using a program based on Algorithm 2 in §4, we showed this fact again without
Montgomery’s table.

For a prime p, we define R(p) by

R(p) = min{a ∈ N | 108r ·Q(r) < pr−1 if r ≥ a}.
It immediately follows that R(p) ≤ 5 · 104. In fact, if r ≥ 5 · 104, then

108r ·Q(r) < (108)10
3+2 < (317)10

3+2 < 3r−1 ≤ pr−1.

By directly checking each r < 5 · 104, we have Table 2.

Table 2

p R(p) p R(p) p R(p)

3 9650 29 5508 61 4952
5 7950 31 5508 67 4890
7 7238 37 5310 71 4878

11 6548 41 5262 73 4878
13 6318 43 5262 79 4818
17 5954 47 5108 83 4788
19 5882 53 5060 89 4734
23 5660 59 4988 97 4724

Lemma 3.5. If 3 ≤ p < 102 and R(p) ≤ r < 5 · 107, then Φr(p) is unacceptable.

Proof. Assume that Φr(p) is acceptable. Since q2 | Φr(p) for at most one prime q,
it follows that pr−1 < Φr(p) < 108r ·Q(r) < pr−1, a contradiction. �

For a completion of the proof of Lemma 2.2, we must check r given in Table 3
for each p. We can do this by a direct search.

Table 3

p r

3 ≤ p < 102 r ≤ R(p)− 1
102 < p < 106 r ≤ 4723
106 < p < 107 r ≤ 2707
107 < p < 108 r ≤ 2503
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4. Improved algorithm

It is the hardest task to show Lemma 3.1. In general, we consider the algorithm
to find all triplets of odd primes (p, q, r) satisfying p, q < M, r ≥ c and q3 | Φr(p) for
some given integers M, c. From Proposition 2.1, it is necessary that r < M/2 and
q ≡ 1 (mod 2r). The algorithm made by Jenkins [13] is described by Algorithm 1.

Algorithm 1 (original algorithm)

for r = c to M/2 do
if r is prime then
q ← 2r + 1
while q < M
if q is prime then
for p = 3 to M do
if p is prime and q3 | Φr(p) then print (p, q, r)

end for
end if
q ← q + 2r

end while
end if

end for

By this algorithm, we will check triplets (p, q, r) in the set

(4.2) {(p, q, r) | p, q, r are primes, p, q < M, c ≤ r < M/2, q ≡ 1 (mod 2r)}.
Our improved algorithm is based on the following proposition.

Proposition 4.1. Suppose that q | Φr(p) and q ≡ 1 (mod r). Let g be a generator
of the cyclic group (Z/qmZ)×, and put w = (q− 1)/r. Then qm | Φr(p) if and only

if p belongs to the subgroup 〈gwqm−1〉 of (Z/qmZ)×.

Proof. Note that w is an integer since q ≡ 1 (mod r). Assume that p ≡ 1 (mod q).
Then it follows that Φr(p) ≡ r (mod q), a contradiction. Hence p �≡ 1 (mod q) and

qm | Φr(p) ⇐⇒ qm | (p− 1)Φr(p)

⇐⇒ pr ≡ 1 (mod qm)

⇐⇒ the order of p ∈ (Z/qmZ)× is r

⇐⇒ p ∈ 〈gwqm−1〉,
as required. �

Our program is described by Algorithm 2. In the algorithm, we use Proposition
4.1 withm = 2 instead ofm = 3, since we would not like to deal with large numbers.

By the improved algorithm, we will check triplets (p, q, r) in the set

{(p, q, r) | p, q, r are primes, p, q < M, c≤r < M/2, q≡1 (mod 2r), p ∈ 〈gq(q−1)/r〉},
which is a subset of the set given by (4.2). Note that if c >

√
M/2, then q ≥

2r+ 1 >
√
M and hence q2 > M . Therefore there exists at most one prime p < M

satisfying p ≡ (gq(q−1)/r)i (mod q2) for each i. In [4], we estimate the amount of
the computation for the improved algorithm. In §5, we give some data for the effect
of the improvement.
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Algorithm 2 (improved algorithm)

for r = c to M/2 do
if r is prime then
q ← 2r + 1
while q < M
if q is prime then
p ← 1
g ← a generator of the cyclic group (Z/q2Z)×

for i = 1 to r do
p ← p× (gq(q−1)/r)mod q2

if p < M , p is prime and q3 | Φr(p) then print (p, q, r)
end for

end if
q ← q + 2r

end while
end if

end for

5. Concluding remarks

For the proof of Lemma 3.1, we used PARI/GP and a computer AlpherServer
GS320 (CPU: Alpha21264, 731MHz) which belongs to Computing and Communi-
cations Center, Kyushu University. The computation needed about 26,000 hours
for total CPU time. Since we used ten CPU’s simultaneously, it took about four
months. For the bound 107, the same computer needed 274 hours. Using our
UBASIC program and a PC (CPU: Pentium4, 3GHz), we needed 42 hours. For
the bound 106, we needed 11 hours using the original UBASIC program made by
Jenkins, and needed 35 minutes using our UBASIC program. These data show how
our improved algorithm is effective.

Our UBASIC program is faster than our PARI/GP program, however, we can-
not use UBASIC on UNIX machines. The authors do not have enough Windows
machines, so we mainly used PARI/GP to show Lemma 3.1 and used UBASIC for
the other computations.

The inequality at the end of §2 is much stronger than is needed and the theorem
could be proved by only S and U . The referee of the paper [8] also pointed out
this fact. However, it is considered that the four sets are worth being mentioned as
Hagis and Cohen claimed.

Iannucci [11], [12] showed that the second (resp. third) largest prime factor of
an odd perfect number must exceed 104 (resp. 102). He used the bound 106 of the
largest prime factor, hence the new bound 108 is possibly useful to raise the bounds
of the second and third largest prime factor.

In order to raise the lower bound to 109, we need much CPU time or a better
method. In the case of the bound 108, it was shown that if Φr(p) is acceptable,
then r ≤ 47. Is it possible to eliminate the possibility of 47 < r < 5 · 107 without
hard computations? The authors consider that a hint is in the paper by Murty and
Wong [17]. They showed that if the ABC conjecture is true, then largest prime
factors of cyclotomic numbers are large enough in a sense.
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